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Response of periodic structures due to moving loads
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Abstract

A method is proposed to calculate the response of periodic structures subjected to moving loads. It is based on the Floquet
decomposition which allows the restriction of the analysis for the overall system to a generic cell. The main contribution of the
approach presented hereafter is that the response is directly deduced from transfer functions in the space-wavenumber domain
calculated in an unbounded generic cell. Moreover, the equivalence of this new solution with the response of invariant structures
obtained using Fourier transforms is established. To cite this article: H. Chebli et al., C. R. Mecanique 334 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Réponse de structures périodiques à des charges mobiles. Une méthode est proposée afin de calculer la réponse de structures
périodiques soumises à des charges mobiles. Celle-ci est basée sur la décomposition de Floquet qui permet de restreindre l’analyse
du système entier à une cellule de référence. La principale contribution de l’approche présentée ci-après est que la réponse est
directement déduite à partir de la fonction de transfert dans le domaine espace-nombre d’onde calculée dans une cellule de référence
non bornée. De plus, l’équivalence entre la solution obtenue et la réponse de structures invariantes calculée avec la transformée de
Fourier est établie. Pour citer cet article : H. Chebli et al., C. R. Mecanique 334 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Vibrations induced by railway traffic are of a major concern [1] since they have an important impact on the hu-
man comfort and on the built environment. The study of these vibrations requires three-dimensional (3D) models of
unbounded domains, that is the soil-railway track.

In this Note, these domains are supposed to be periodic along one given direction. Then, the analysis for the overall
system is substituted by one for a generic cell using the Floquet decomposition [2]. This paradigm has been already
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applied, but only to 1D or 2D periodically supported structures [3,4] for which the generic cell is then bounded. In
order to take into account a structure interacting with a soil half-space, a new method [5] has been proposed which
allows for 3D unbounded generic cells. This approach has been initially developed for the study of the dynamic
responses of structures subjected to 3D seismic loading. This methodology is here extended to the case of moving
loads and a new formulation is presented in which the response is directly deduced from transfer functions calculated
in the unbounded generic cell.

In a first part, the Floquet transform is defined. Its relation with the Fourier transform is introduced: this formula is
used in the last paragraph to get the relationship between the responses due to moving loads of periodic and invariant
structures. In Section 3, the generic problem is built. It corresponds to the dynamic problem posed in the reference
cell. Section 4 is devoted to the expression of the response of periodic structures due to moving loads. The proposed
method is then applied for a real railway structure. Finally, the connection with the case of invariant structures is
presented in Section 5.

2. Floquet transforms

In this section, we recall the important results related to Floquet transforms. For a deeper review, one can refer
to [2]. Moreover, relations between Floquet and Fourier transforms are introduced.

2.1. Definitions

Let Ω be an unbounded open set. The position vector of any point of this domain is given by:

x = x1e1 + x2e2 + x3e3 (1)

with (e1, e2, e3) a Cartesian reference system. The domain Ω is assumed to be periodic in the e2 direction with a
period L, i.e. it is invariant through any translation of vector nLe2, where n is a signed integer. The Floquet transform
of any function f defined in Ω is a function f̃ defined in Ω̃ × [−π/L,π/L], with Ω̃ = {x ∈ Ω | 0 < x.e2 < L}, and
such that:

f̃ (x̃, κ) =
+∞∑

n=−∞
f (x̃ + nLe2)e

inκL (2)

in which the wavenumber κ ∈ [−π/L,π/L] and where x̃ is the position vector in the reference cell Ω̃ defined by
x̃ = x̃1e1 + x̃2e2 + x̃3e3 with x̃1 = x1, x̃2 = x2 − nL, x̃3 = x3. It should be noted that the Floquet transform f̃ is
periodic of the second kind, that is:

f̃ (x̃ + Le2, κ) = e−iκLf̃ (x̃, κ) (3)

Finally, for any x = x̃ + nLe2 (x in Ω and x̃ in Ω̃), f may be recovered from its Floquet transform by:

f (x) = L

2π

2π/L∫
0

f̃ (x̃, κ)e−inκL dκ (4)

2.2. Relations between Floquet and Fourier transforms

Let F(x) be a function (defined on R for the sake of simplicity). It is recalled that its Fourier transform F̂ can be
defined by:

F̂ (k) =
+∞∫

−∞
eikxF (x)dx, ∀k ∈ R (5)

The function F can be recovered from its Fourier transform as follows:

F(x) = 1

2π

+∞∫
e−ikxF̂ (k)dk (6)
−∞
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Using these conventional formulae, the Fourier transform of the function fx1,x3 defined by:

fx1,x3(x2) = f (x) (7)

can be calculated from the Floquet transform of f as follows [5]:

f̂x1,x3(kx2) =
L∫

0

eikx2 x̃2 f̃ (x1e1 + x̃2e2 + x3e3, κ)dx̃2 (8)

where κ is in [−π/L,π/L] and kx2 = κ + 2nπ/L. Moreover, the Floquet transform of f is recovered from f̂x1,x3 by:

f̃ (x̃, κ) = 1

2π

+∞∑
n=−∞

e−i(κ+ 2nπ
L

)x̃2 f̂x1,x3

(
κ + 2nπ

L

)
(9)

3. Generic problem associated to the periodic domain

This section deals with the dynamic response of the soil-track system subjected to any external forces. This domain
is assumed to have an elastic behaviour. Using Floquet transform defined previously, the dynamic problem for the
overall system can be substituted by one posed in a reference cell. The generic problem is then introduced.

Let u(x, t) be the elastodynamic displacement field in the unbounded domain Ω . Its Fourier transform, û(x,ω),
satisfies:

divσ(û) = −ρω2û, x ∈ Ω (10)

t(û) = f0, x ∈ Γ (11)

where ρ is the mass density, σ(û) is the elastic stress tensor associated to the displacement field û and t(û) = σ(û)n
corresponds to the traction vector on the considered boundary using the outer normal convention for n. Finally, Γ is
a part of the boundary of the domain Ω on which the external forces f0 are applied.

Let ǔ(x̃, κ,ω) be a displacement field that satisfies:

divσ(ǔ) = −ρω2ǔ, x̃ ∈ Ω̃ (12)

t(ǔ) = f̃0, x̃ ∈ Γ̃ (13)

ǔ(x̃) = e−iκLǔ(x̃ − Le2), x̃ ∈ Γ̃L (14)

where Γ̃ is the restriction of Γ on the generic cell Ω̃ and Γ̃L = {x ∈ Ω | x.e2 = L}. Therefore, it is proved [2] that:

ǔ = ˜̂u (15)

where ˜̂u is the Floquet transform of û. Hence, instead of solving the problem for the whole domain (Eqs. (10) and (11)),
one can solve the generic problem defined by Eqs. (12)–(14). The response in the overall domain is recovered from
the response in the generic cell by using the inverse Floquet transform defined by Eq. (4). It should be noted here that
a method [5] has been proposed to solve the generic problem in the case of an unbounded cell.

4. Response of periodic structures due to moving loads

In this section, the dynamic behaviour of the railway track structure is focused on. The external forces applying on
it are supposed to be moving loads (which can model a train for instance).

Consider a general pinpoint load moving along the e2 axis with a constant velocity V :

G(y, t) = g(y2 − X2)δ(y1 − X1)δ(y2 − X2 − V t)δ(y3 − X3)e3

= G(y2, t)δ(y1 − X1)δ(y3 − X3)e3 (16)

with y = y1e1 + y2e2 + y3e3 and where (X1,X2,X3) = X is the position of the moving force at the time t = 0;
G(y2, t) = g(y2 − X2)δ(y2 − X2 − V t) in which g(y2 − X2) is the variation of the moving force amplitude.
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Without any lose of generality, we can assume that the point x, where the response is calculated, is in the track
generic cell. So x = x̃. Let û(x,X,ω) be the displacement in x due to a moving load acting on X at t = 0. This field is
given by:

û(x,X,ω) =
+∞∫

−∞
Ĝ(y2,ω)ĥ(x,y = X1e1 + y2e2 + X3e3,ω)dy2 (17)

where ĥ(x,y,ω) is the displacement in the frequency domain of a point x due to an impulse force at a point y.
Moreover, Ĝ is the Fourier transform of G and is given by:

Ĝ(y2,ω) = ei ω
V

(y2−X2)g(y2 − X2) (18)

For the sake of clarity, arguments x, X and ω will be often omitted in the following. Then, replacing Eq. (18) in
Eq. (17) and expressing g(y2 − X2) with its Fourier transform, one gets:

û = 1

2π

+∞∫
−∞

+∞∫
−∞

e−ik∗(y2−X2)ĝ(ky2)ĥ(y2)dy2 dky2 (19)

with k∗ = (ky2 − ω/V ). Eq. (19) is also equivalent to:

û = 1

2π

+∞∫
−∞

ĝ(ky2)

+∞∑
n=−∞

(n+1)L∫
nL

e−ik∗(y2−X2)ĥ(y2)dy2 dky2 (20)

Taking ỹ2 = y2 − nL leads to:

û = 1

2π

+∞∫
−∞

ĝ(ky2)

L∫
0

+∞∑
n=−∞

e−ik∗(ỹ2+nL−X2)ĥ(ỹ2 + nL)dỹ2 dky2 (21)

Due to the geometric periodicity, we have:

ĥ(x, ỹ2 + nL) = ĥ(x − nLe2, ỹ2) (22)

Moreover, the Floquet transform of the function ĥ(x, ỹ2), with respect to the variable x, is the function ˜̂hx(x, ỹ2, κ)

defined by:

˜̂hx(x, ỹ2, κ) =
+∞∑

n=−∞
ĥ(x + nLe2, ỹ2)e

inκL (23)

From Eqs. (21)–(23) one gets:

û(x) = 1

2π

+∞∫
−∞

ĝ(ky2)e
ik∗X2

L∫
0

e−ik∗ỹ2 ˜̂hx(x, ỹ2, κ0)dỹ2 dky2 (24)

where κ0 = k∗ − 2mπ
L

, m being the signed integer such as κ0 ∈ ]−π/L,π/L[. It is worth to notice that ˜̂hx is the

solution of the problem (12)–(14) with f̃0(x̃) = δ(x̃1 − X1)δ(x̃2 − ỹ2)δ(x̃3 − X3).
Eq. (24) has two advantages. At first, only the response of the generic cell is necessary instead of the response of

the whole domain as needed in Eq. (17). Secondly, the displacement due to a moving load in the frequency domain is

directly derived from the transfer function ˜̂hx in the ω − κ domain. Then, no inverse Floquet transform (see Eq. (4))
is needed.

In the case of a constant moving load, G(y2, t) defined by Eq. (16) is given by:

G(y2, t) = G0δ(y2 − X2 − V t) (25)
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Fig. 1. Vertical displacement response with respect to time of a point in the railway track, due to the passage of one axle for a train travelling at
200 km/h. Comparison between measurement (crosses) and simulation (continuous line).

with G0 a real constant. Eq. (24) is then equivalent to:

û = G0

2π
e−i ω

V
X2

L∫
0

ei ω
V

ỹ2 ˜̂hx(ỹ2, κ0)dỹ2 (26)

where κ0 = − ω
V

− 2mπ
L

. In this case, Fig. 1 compares simulations (continuous line) with measurements from [6] (cross
point) for the vertical displacement of one point in the railway track, due to the passage of one axle for a train travelling
at 200 km/h (cf. [7] for more details). A good agreement between the calculated and the measured displacement is
achieved and the dynamic effects described in [6] have been correctly modelled.

5. Correspondence with the case of invariant structures

At first, it should be noted that using Eqs. (22) and (23), we can deduce the Floquet transform of ĥ with respect to
the variable y from its Floquet transform with respect to the variable x:

˜̂hy(x, ỹ, κ) = ˜̂hx(x, ỹ,−κ) with x = x̃ (27)

The structure is now assumed to be invariant in the e2-direction. Consider Eq. (19) which is deduced from Eq. (17)
without any assumption about the periodicity. Using notations introduced in Eq. (7), it can be rearranged as follows:

û = 1

2π

+∞∫
−∞

ĝ(ky2)e
ik∗X2 ˆ̂hX1,X3(−k∗)dky2 (28)

with

ˆ̂hX1,X3(−k∗) =
+∞∫

e−ik∗y2 ĥ(y2)dy2 and k∗ = ky2 − ω

V
(29)
−∞
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Using Eqs. (8) and (27), we deduce that:

ˆ̂hX1,X3(−k∗) =
L∫

0

e−ik∗ỹ2 ˜̂hy(ỹ2,−κ0)dỹ2 (30)

with κ0 = k∗ − 2mπ
L

. Replacing ˆ̂hX1,X3 in Eq. (28) by its expression given in Eq. (30), it is shown that the response
of periodic structures to moving loads using Floquet transforms (expressed by Eq. (24)) is equivalent to the response
due to moving loads of invariant structures using Fourier transforms (expressed by Eq. (28)).

6. Conclusions

In this Note, Floquet transforms are used to obtain the response of periodic structures due to moving loads from
the transfer function in the frequency-wavenumber domain calculated in an unbounded generic cell. The proposed
method has been applied for a real railway structure. Finally, we established the equivalence of this new solution with
the response of invariant structures using Fourier transforms.
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