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Abstract

Following the study of Gologanu et al. (1997) which has extended the well-known approach of Gurson (1975), we propose
approximate yield criteria for anisotropic plastic voided metals containing non spherical cavities. The plastic anisotropy of the
matrix is described by means of Hill’s quadratic criterion. The procedure to establish the closed form expression of approximate
macroscopic criteria, in which void shape and plastic anisotropic effects are included, is detailed. The new criteria allow us to
recover existing results in the cases of spherical and cylindrical voids in an Hill type plastic matrix. Moreover, they agree with
previous criteria for non spherical voids in an isotropic plastic matrix. Finally, for validation purposes, we provide, in the general
case of non spherical cavities in the anisotropic matrix, a comparison with the numerical exact two field criteria. To cite this article:
V. Monchiet et al., C. R. Mecanique 334 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Critères macroscopiques pour des métaux plastiques anisotropes contenant des cavités non sphériques. En se basant sur
les travaux de Gologanu et al. (1997) qui étendent l’approche bien connue de Gurson, on propose des critères macroscopiques pour
des métaux plastiques anisotropes contenant des cavités non sphériques. L’anisotropie plastique de la matrice est décrite à l’aide du
critère quadratique de Hill. On détaille la procédure pour établir les critères approchés incluant la forme des cavités ainsi que les
effets d’anisotropie plastique. Les nouveaux critères analytiques obtenus permettent de retrouver les résultats existants dans les cas
de cavités sphériques ou cylindriques dans une matrice de type Hill. De plus, ils concordent avec ceux qui sont disponibles pour des
cavités non sphériques dans un milieu plastique isotrope. Enfin, dans un but de validation, on fournit, dans le cas général de cavités
non sphériques dans la matrice anisotrope, une comparaison avec les expressions des critères issues des solutions numériques
exactes du problème à deux champs. Pour citer cet article : V. Monchiet et al., C. R. Mecanique 334 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Void nucleation, growth and coalescence are commonly recognized as the basic micromechanisms of the ductile
fracture of metals. Since the pioneering work of Gurson [1] for a hollow sphere in a von Mises perfect plastic matrix,
the modelling of voids growth has been the subject of several works performed in the context of ductile damage
mechanics. Gologanu et al. [2,3] (see also [4]), Garajeu et al. [5] provide various extensions of the Gurson model
by incorporating void shape effects; either prolate and oblate voids are considered in these studies. Other recent
extensions of the Gurson model concern the consideration of plastic anisotropy. For instance, [6–8] deal with void
growth in a metal matrix, obeying the Hill quadratic criterion [9]. Unfortunately, all these studies are limited to the case
of spherical and cylindrical voids. The purpose of the present Note is to provide a closed form approximated expression
of the macroscopic yield function of anisotropic metals containing non spherical voids. Practical applications of the
new criteria can be found in the domain of metal forming (see [10]).

2. Principle of the estimate of the macroscopic yield criterion

2.1. Statement of the problem

Following Gologanu et al. [4], consider a spheroidal (axisymmetric) prolate or oblate cavity with semi-axes a1

(along e 3), and b1 (along e 1 and e 2) embedded in a cell which has the shape of a confocal spheroid with the semi-
axes a2 (along e 3), and b2 (along e 1 and e2). a1 > b1 corresponds to a prolate cavity while b1 > a1 is associated to

an oblate one. Let us denote c the focal distance and e1 the eccentricity defined by: c =
√

a2
1 − b2

1, e1 = c/a1 for a

prolate and c =
√

b2
1 − a2

1 , e1 = c/b1 for an oblate cavity (see Fig. 1).
For this class of geometry, it is convenient to introduce the system of spheroidal coordinates characterized by

λ,β,ϕ, defined, in the cylindrical frame (coordinates ρ,ϕ, z), by: ρ = c sinhλ sinβ and z = c coshλ cosβ for a pro-
late; in the case of an oblate, one has ρ = c coshλ sinβ and z = c sinhλ cosβ .

The iso-λ surface defines confocal spheroids, with semi axes a = c cosh(λ), b = c sinh(λ) and eccentricity e = c/a,
for a prolate. An oblate spheroid is associated to semi axes a = c sinh(λ), b = c cosh(λ) and eccentricity c/b. The unit
vectors of the new base are:

eλ = 1

Lλ

{
a sin(β)eρ + b cos(β)e 3

}; eβ = 1

Lλ

{
b cos(β)eρ − a sin(β)e 3

}; eϕ = eϕ (1)

with: Lλ =
√

a2 sin2(β) + b2 cos2(β), ϕ ∈ [0,2π], β ∈ [0,π] and eρ = cos(β)e 1 + sin(β)e 2. The porosity is defined

by: f = a1b
2
1/(a2b

2
2).

The velocity field, v, in the matrix is classically decomposed in a uniform strain rate, A.x, and an inhomogeneous
field vE : v = A.x + BvE . We adopt the trial velocity field used by [2] and [3] for nonspherical cavities analysis in

Fig. 1. The geometry of the cell considered: (left) prolate cavity; (right) oblate cavity.

Fig. 1. Géométrie de la cellule considérée : (à gauche) cavité allongée ; (à droite) cavité aplatie.
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a von-Mises matrix. Even though the accuracy expected from this choice is questionable in the anisotropic case,1 the
estimate of the macroscopic plastic dissipation being greater than the exact one, it is expected that the approximate
yield surface will be external to the exact one and will probably need to be improved in further work.

By considering the uniform strain rate condition on the cell boundary, v(λ = λ2) = D.x (D being the macroscopic
strain rate), A and B can be identified. Indeed, denoting Dh1 the hydrostatic part of D:

A = D − DhX; B = a2b
2
2

c3
Dh with: X = 3

2
(1 − α2)( e 1 ⊗ e 1 + e 2 ⊗ e 2) + 3α2 e 3 ⊗ e 3 (2)

α2 = α(e2). α(e), the function of eccentricity e, is defined by:

α(e) =
⎧⎨
⎩

1−e2

e3 (arctanh(e) − e) (prolate)

e−arcsin(e)
√

1−e2

e3 (oblate)
(3)

The strain rate field is defined by d = A + BdE , for which dE is obtained from the inhomogeneous velocity field vE

in the spheroidal coordinates. Let us recall that we adopt the velocity fields proposed by [2] and [3], instead of those
provided in [4]. It follows that:

dE = 3c3(1 − α)

2ab2
(1 − 3eλ ⊗ eλ) + 3ac3(1 − 3α)

2b2L2
λ

sin2(β)( e λ ⊗ eλ − eβ ⊗ eβ)

+ 3c3(1 − 3α)

2bL2
λ

sin(2β)eλ

s⊗ eβ (4)

2.2. Principle of the determination of the macroscopic criteria

We consider now that the plastic matrix obeys the Hill quadratic criterion which can be expressed:

F(σ11 − σ22)
2 + G(σ22 − σ33)

2 + H(σ33 − σ11)
2 + 2Lσ 2

23 + 2Mσ 2
13 + 2Nσ 2

12 − 2

3
σ 2

0 � 0 (5)

in which F,G, . . . ,N are material constants and σ0 the yield stress of the matrix. σ denotes the microscopic stress
field. This expression, written in the frame of material anisotropy, can be translated as:

F(σ ) = 3

2
σ : M : σ − σ 2

0 � 0 (6)

M is a general2 fourth order anisotropic tensor whose components are expressed in the frame of the spheroid
( e 1, e 2, e 3). When the voids orientation and the direction of plastic anisotropy coincide, M is orthotropic in na-
ture. In any case, the plastic incompressibility condition in the matrix reads Miikl = 0. Let us recall now the definition
of the dissipation:

Π(D) = σ0

|Ω|
∫
Ω

deq dV (7)

in which Ω denotes the considered domain whose volume is |Ω| = 4πa2b
2
2/3; deq is the microscopic equivalent

plastic strain rate which is written:

d2
eq = 2

3
d : H : d = A2

eq + 4

3
A : H : dE + dE

eq
2

(8)

1 Indeed, the isotropic expansion field is no longer the exact field under hydrostatic loading. However, note that, by adopting this trial velocity
fields, we follow the same kind of consideration as in [6] for spherical voids and as in [7] for cylindrical ones in the context of plastic anisotropy.

2 Such generality allows us to consider arbitrarily orientated voids with respect to the plastic anisotropy direction. Note also that the (isotropic)
von Mises criterion of the matrix is obtained from (6) by putting M = K = I − J where I is the fourth order symmetric identity tensor and
J = 1 1 ⊗ 1.
3
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H is the fourth order tensor defined by H : M = K; it also satisfies the matrix incompressibility condition, Hiikl = 0.
Expressions of Hijkl as function of the components of M are given in Appendix A. The yield surface related to the
macroscopic dissipation is classically deduced from the two following relations:

3Σh = ∂Π

∂Dh

= ∂Π

∂A
: (1 − X) + ∂Π

∂B

a2b
2
2

c3
and Σ = ∂Π

∂D
= ∂Π

∂A
: ∂A

∂D
+ ∂Π

∂B

∂B

∂D
= ∂Π

∂A
(9)

which, by combination, leads to:

3Σ∗
h = Σ : X = ∂Π

∂B

a2b
2
2

c3
; and Σ = ∂Π

∂A
(10)

D and Σ are the deviatoric part of the macroscopic strain rate and the macroscopic stress respectively. Due to the
difficulty of integrating the microscopic dissipation on Ω (Eq. (7)), the purpose of the next section is to provide some
approximate expressions of the macroscopic dissipation and then of the yield criteria, either for prolate and oblate
voids in anisotropic plastic matrix.

3. Macroscopic yield criteria for an anisotropic porous material

3.1. Approximate expression of the macroscopic dissipation

In order to establish an approximate expression of the macroscopic criteria by using (10), an analytical expression
of the Π(D) is due. In the spheroidal frame, one has:

Π(D) = 1

|Ω|
∫
Ω

deq dV = 3c3

4πa2b
2
2

λ=λ2∫
λ=λ1

β=π∫
β=0

ϕ=2π∫
ϕ=0

deqbL2
λ sinβ dλdβ dϕ (11)

The first step of the approximation consists of replacing deq by a mean value along each confocal spheroid to the
cavity. It follows that (11) can be put in the form:

Π(D) = c3

a2b
2
2

λ=λ2∫
λ=λ1

{〈
d2

eq

〉
E
}1/2

b
(
2a2 + b2)dλ (12)

The proposal made for (12) consists in replacing d2
eq by the following mean value on each confocal spheroid:

〈
d2

eq

〉
E = 3

4π(2a2 + b2)

β=π∫
β=0

ϕ=2π∫
ϕ=0

d2
eqL

2
λ sin(β)dβ dϕ (13)

This is motivated by the fact that, contrarily to the isotropic case, deq is function of ϕ in the context of plastic
anisotropy. Using (8), 〈d2

eq〉E reads:

〈
d2

eq

〉
E = A2

eq + 4

3
A : H : 〈dE

〉
E + 〈

dE
eq

2〉
E (14)

with

〈
dE

〉
E = 3

4π(2a2 + b2)

β=π∫
β=0

ϕ=2π∫
ϕ=0

dEL2
λ sin(β)dβ dϕ = 3Q(e)

2
Q (15)

where Q is a second order tensor and Q(e) is a function of eccentricity e. With α = α(e) given by (3):

Q = −1

2
( e 1 ⊗ e 1 + e 2 ⊗ e 2) + e 3 ⊗ e 3; Q(e) =

⎧⎪⎨
⎪⎩

2 3α−1+e2(1−α)

(1−e2)(3−e2)
e3 (prolate)

2 3α−1−2e2α√
2 2

e3 (oblate)
(16)
1−e (3−2e )
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The mean value of dE
eq

2
on each confocal spheroid reads:

〈
dE

eq
2〉
E = P(e) (17)

For prolate cavities, one has:

P(e) = 3

2

e4

(1 − e2)2(3 − e2)

{(
3e2α(1 − α) − 1 + 3α

)
h1

+ 9
(
1 − e2 + αe2)(e2(1 − α) − 1 + 3α

)
h2 + 4(1 − 3α)

(
1 − e2)h3

}
(18)

and for oblate cavities:

P(e) = 3

2

e4

3 − 2e2

{(
1 − 3α + 2e2)h1 + 9

1 − αe2

1 − e2

(
1 − 3α + 2αe2)h2 − 4(1 − 3α)h3

}
(19)

where parameters hi are related to the anisotropy coefficients (using Voigt’s notations) by:

h1 = H11 + H22 + H66 − 1

2
H33, h2 = H33, h3 = H44 + H55 (20)

To summarize, 〈d2
eq〉E , given by (14), takes the form:

〈
d2

eq

〉
E = A2

eq + 2Q(e)BA : H : Q + P(e)B2 (21)

The determination of the macroscopic dissipation requires now the integration of (12) with (21) over the vari-
able λ ∈ [λ1, λ2]. Once again, we need to approximate the result. Let us introduce the following notations:

μs =
√

2h1+3h2+2h3
10 ; μc =

√
3h1

8 and μp =
√

3h3 + 27π2

32 h2.

In the case of prolate cavities, it is convenient to apply the following change of variable x = c3/(ab2). It is then
easy to check that P(e) � 4μ2

s x
2 for x → 0 and P(e) � 4μ2

cx
2 for x → +∞. It appears that P(e) can be considered

approximately ‘proportional’ to x2. For oblate cavities, it is easy to check that P(e) � 4μ2
s x

2 for x → 0 and P(e) →
4μ2

p for x → +∞. The following change of variable is then introduced: y = μpx

x+μp
. P(e) is then approximately

‘proportional’ to y2.
As a unified notation, let us introduce u such that u = x for prolate cavities and u = y for oblate cavities. The

most important approximation is made now, in order to replace (12) by an integral of the type
∫ √

F 2 + G2u2 du/u2.
Following [4], P(e) and Q(e) are respectively replaced by p2(e)u2 and q(e)u2. Since p(e) exhibits low variation
according to e, it is replaced by a mean value which we have to be evaluate later. According to [4], q(e) is also
replaced by a constant. Although this approximation is not completely justified, q(e) → +∞ when e → 0, it was
observed in the isotropic case that it gives particularly good results for the approximate criteria. Using the above
approximations, d2

eq becomes:

d2
eq = A2

eq − q2u2

p2
(A : H : Q)2 +

{
pB + q

p
A : H : Q

}2

u2 (22)

Since the effect of the term q2u2

p2 is low, it can also be replaced by a constant, denoted by convenience 2r

3p2 . The
macroscopic dissipation is then expressed as:

Π(D) = σ0x2

u2∫
u1

{
Ã2 + B̃2u2}1/2 du

u2
= σ0x2

[
B̃ arcsinh

{
uB̃

Ã

}
−

√
Ã2 + u2B̃2

u

]u2

u1

(23)

for which is used the following change of variable: Ã2 = A2
eq − 2r

3p2 (A : H : Q)2 and B̃ = pB + q
p
(A : H : Q). It is

recalled that u = x for a prolate cavity and u = y for an oblate one.
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3.2. Determination of the yield function

We have to determine now the macroscopic yield surface by reporting (23) in (10), using the following change of
variables (A,B ⇒ Ã, B̃):

3Σ∗
h = p

x2

∂Π

∂B̃
; Σ − 3qx2

p2
Σ∗

h H : Q = ∂Π

∂Ã

∂Ã

∂A
(24)

In order to ease the expression of the yield surface, it is useful to put Ã2 in the form Ã2 = 2
3A : H∗ : A, with H∗ =

H − r

p2 (H : Q) ⊗ (H : Q). Let us denote by Σ∗
eq, an equivalent stress defined by:

(Σ∗
eq)

2 = 3

2

{
Σ − 3qx2

p2
Σ∗

h H : Q
}

: M
∗ :

{
Σ − 3qx2

p2
Σ∗

h H : Q
}

=
(

∂Π

∂Ã

)2

with: M
∗ = M + r

p2 − rQ : H : QQ ⊗ Q (25)

such that M∗ : H∗ = K. For prolate cavities, u2 = x2 and u1 = x1 = x2/f . For oblate cavities, let us introduce g

defined by g = x2/μp; this implies x1 = μpg/f , y2 = μpg/(g + 1) and y1 = μpg/(g + f ).
The yield surface, deduced from (24) for prolate and oblate voids, takes the general form:

Fmacro =
(

Σ∗
eq

σ0

)2

+ 2(1 + g)(f + g) cosh

{
3Σ∗

h

pσ0

}
− (1 + g)2 − (f + g)2 (26)

with g conventionally taken as zero (g = 0) in the case of prolate voids. In order to make explicit (26) which is the
most important result of the study, a more detailed expression of Σ∗

eq is required, using (25):

Σ∗2
eq = Σ2

eq + k1(Σ
∗
h)2 + k2Σ : Q2 − 2k3Σ

∗
hΣ : Q; Σ∗

h = 1

3
Σ : X (27)

where X is given by (2). k1, k2 and k3 depend on p, q , r and Q : H : Q = 9h2/4 as:

k1 = 243

2p2

κ2h2

4p2 − 9rh2
; k2 = 6r

4p2 − 9rh2
; k3 = 18κ

4p2 − 9rh2
; (28)

with κ = qx2. The macroscopic yield criterion is completely defined by (26), (27) and (28) in which p, r and κ have
to be determined; this is the subject of the following two subsections.

3.3. Calculation of the coefficient p

We now come to the determination of the formulae which will give the coefficient p. An efficient method used by
[4] in the isotropic case consists in considering the exact value in the particular case where Aeq = 0. For the plastic
anisotropic matrix case, p(e) is also function of h1, h2 and h3 and the above procedure cannot be used. We propose
therefore to identify p as follows:

p2 = 1

u2 − u1

u2∫
u1

p2(e)du (29)

With the notation α1 = α(e1) and α2 = α(e2), this leads, for prolate voids (using u = x), to:

p2 = 3

4

1

1 − f

{{
1 − 3α1

e2
1

− f
1 − 3α2

e2
2

}
(h1 + 9h2 − 4h3)

+ 18
{
α1(1 − α1) − f α2(1 − α2)

}
h2 + {

1 − α1 − f (1 − α2)
}
(h1 − 9h2 + 4h3)

}
(30)

and for oblate voids (using u = y):
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p2 = 3

4

(1 + g)(f + g)

f (1 − f )

{{
f

1 − 3α2

e2
2

− 1 − 3α1

e2
1

}
(h1 + 9h2 − 4h3)

+ 2(1 − f )h1 + 18
{
f α2

2 − α2
1

}
h2 + 4(f α2 − α1)(h1 − 2h3)

}
(31)

3.4. Calculation of the coefficient κ and r

The procedure used consists of identifying κ and r with the two fields exact solution in the particular case B → 0.
The identification method, given in Appendix B, leads to:3

κ = 2(1 + g)(f + g)(α2 − α1)

(1 − f )
; r = 6(1 + g)(f + g)(α2 − α1)

2

(1 − f )2
(32)

for which, we recall that g = 0 for prolate voids. It is interesting to notice that in the expression of κ = qx2, q could
be also deduced from the same procedure used for the determination of p.

4. Validation

A first step of validation of the results is performed by considering special cases. Indeed, for the hollow sphere
which is the particular case of a prolate or an oblate corresponding to e1 = e2 = 0, this implies that κ = r = g = 0
and then Σ∗

eq = Σeq and Σ∗
h = Σh and p2 = 2

5 (2h1 + 3h2 + 2h3) = 4
5 (H11 + H22 + H33 + H44 + H55 + H66). This

is exactly the result already established by [6].
The case of cylindrical voids corresponds to the following limiting case of prolate voids: e1 = e2 = 1; then κ =

r = 0, Σ∗
eq = Σeq, Σ∗

h = (Σxx + Σyy)/2 and p2 = 3h1
2 = 3

2 (H11 + H22 − 1
2H33 + H66).

We also mention that for an isotropic matrix (h1 = h3 = 2 and h2 = 2/3), p = 2 for spherical voids and p = √
3 for

cylindrical voids which is in agreement with Gurson’s results. We now propose a comparison between the approximate

Fig. 2. Comparison between isotropic and anisotropic yield locus for: (a) prolate cavity, a1/b1 = 5, f = 0.1, (b) oblate cavity b1/a1 = 5, f = 0.1.
The results (Eq. (26)) are compared to the two field exact ones (full line).

Fig. 2. Comparaison des seuils pour le cas isotrope et pour le cas anisotrope : (a) cavité allongée, a1/b1 = 5, f = 0,1, (b) cavité aplatie b1/a1 = 5,
f = 0,1. Les résultats (Éq. (26)) sont comparés aux résultats exacts de la méthode à deux champs (trait plein).

3 The solutions are very closed to those obtained in [4], and can be deduced by developing hyperbolic terms which appear in their expressions,
to the second order.
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two fields criteria (26) (full line) and the numerical exact two field criteria (discrete points) on Fig 2. The yield locus
for prolate (a1/b1 = 5) and oblate (b1/a1 = 5) cavities are represented on Figs. 2(a) and 2(b) respectively, for either the
particular case of the isotropic von Mises matrix and for the anisotropic Hill matrix. Anisotropy coefficients used for
the numerical applications are: M11 = 0.733, M22 = 0.57, M33 = 0.499, M44 = 3.669, M55 = 1.141, M66 = 2.2. The
data considered come from [6]. The results clearly show the effects of the plastic anisotropy of the matrix. However,
a complete validation of the new results (Eq. (26)) requires a larger number of velocity fields and probably finite
elements computations. This can be the purpose of a forthcoming study.

Appendix A. Expression of components of H

For completeness, let us first indicate the relations between the components of H and the ones of M. Let us first
note that in the local frame of the ellipsoidal void ( e 1, e 2, e 3) the components of the tensors are obtained from usual
transformation rules: Hijkl = RimRjnRkpRlqH 0

mnpq and Mijkl = RimRjnRkpRlqM0
mnpq , where H0 and M0 are the

anisotropic fourth order tensors defined in the frame related to the orthotropic directions of the matrix. The relations
between the nonzero components of H0 and those of M0 (directly obtained from (5)) are (using Voigt’s notation):

H 0
11 = − 4

9Δ

(−M0
11 + 2M0

22 + 2M0
33

); H 0
22 = − 4

9Δ

(
2M0

11 − M0
22 + 2M0

33

)
H 0

33 = − 4

9Δ

(
2M0

11 + 2M0
22 − M0

33

); H 0
44 = 1

M0
44

; H55 = 1

M0
55

; H 0
66 = 1

M0
66

(A.1)

Δ = (
M0

11

)2 + (
M0

22

)2 + (
M0

33

)2 − 2M0
11M

0
22 − 2M0

11M
0
33 − 2M0

22M
0
33

Appendix B. Determination of parameters κ and r

Let us consider the determination of κ and r . The exact point corresponding to B → 0 is defined by:

Σ∗
h

σ0
= 1

3x2
limB→0

(
∂Π

∂D

)
= 1

x2

1

|Ω|
∫
Ω

2

3Aeq
A : H : dE dV = 2

3

A : H : Q
Aeq

(α2 − α1)

Σ

σ0
= lim

B→0

(
∂Π

∂D

)
= 2

3

A : H

Aeq
(1 − f )

(B.1)

Combining these two relations, it can be shown that:

Σ∗
h = α2 − α1

1 − f
Σ : Q; Σeq = σ0(1 − f ) (B.2)

Applying B → 0 in the approximate solution (24) yields:⎧⎪⎨
⎪⎩

3Σ∗
h = p

x2

∂Π

∂B̃
= pσ0

(
arcsinh(u2χ) − arcsinh(u1χ)

)
Σ − 3κ

p2 Σ∗
hH : Q = − 2

3
A:H∗
Aeq

x2

(√
1+u2

2χ
2

u2
−

√
1+u2

1χ
2

u1

) (B.3)

where χ = q
p

A:H:Q
Ã

. Using the following identity: A : H∗ : Q = (1 − 9rh2
4p2 )A : H : Q and combining relations (B.3)

yields:⎧⎪⎨
⎪⎩

Σ :Q
σ0

− 27κh2
4p2

Σ∗
h

σ0
− 2x2

2
3u2u1pκ

(
p2 − 9rh2

4

)
sinh

{ 3Σ∗
h

pσ0

} = 0

Σ2
eq

σ 2
0

+ k1
(Σ∗

h

σ0

)2 + k2
(Σ :Q

σ0

)2 − 2k3
Σ∗

h

σ0

Σ :Q
σ0

+ 2x2
2

u2u1
cosh

( 3Σ∗
h

pσ0

) − x2
2

u2
2

− x2
1

u2
1

= 0
(B.4)

Since Σ∗
h is assumed to be low, we propose to develop the hyperbolic terms in (B.4) at the second order. The iden-

tification of κ and r is made by replacing in (B.4), Σ∗
h and Σeq by their exact expressions given by (B.2). The two

equations (B.4) then become:⎧⎪⎨
⎪⎩

1−f
α2−α1

− 2x2
2

u2u1κ
− 9h2

2κp2

{ 3κ2

2 − rx2
2

u2u1

} = 0

r(1−f )2

2 − κ
1−f + x2

2 + 9h2
2

{ 3κ2 − rx2
2

} = 0
(B.5)
6(α2−α1) α2−α1 u2u1 4p 2 u2u1
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Since (B.5) must be verified whatever the value of h2, four equations can be deduced from (B.5) and have to fulfilled
by κ and r . The solution reads:

κ = 2x2
2(α2 − α1)

u2u1(1 − f )
; r = 6x2

2(α2 − α1)
2

u2u1(1 − f )2
(B.6)
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