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Abstract

This Note reports on numerical simulations of the kinematic dynamo action in a test flow modeling the Von Kármán Sodium
(VKS) experiment performed at CEA-Cadarache. We show that the conductivity of the vessel greatly influences the critical mag-
netic Reynolds number. These effects are dramatically amplified as the ratio of the conductivity of the vessel to that of the sodium
increases from 1 to 5. To cite this article: R. Laguerre et al., C. R. Mecanique 334 (2006).
© 2006 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Influence des discontinuités de conductivité dans l’enveloppe de l’écoulement d’une dynamo cinématique. Cette Note
présente de nouveaux résultats sur l’influence de couches de conducteur sur le seuil de l’instabilité dynamo dans un écoulement
simulant l’expérience Von Kármán Sodium (VKS) menée au CEA-Cadarache. Nous montrons que les effets d’une enveloppe
statique sur le seuil d’instabilité sont amplifiés lorsque le rapport de conductivité de l’enveloppe sur celle du sodium passe de 1 à 5.
Pour citer cet article : R. Laguerre et al., C. R. Mecanique 334 (2006).
© 2006 Published by Elsevier Masson SAS on behalf of Académie des sciences.
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Version française abrégée

Les dynamos expérimentales au sodium liquide en cours de développement utilisent des containeurs métalliques
dont la conductivité est supérieure à celle du sodium. L’objet de cette Note est de montrer que l’épaisseur et le rapport
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de conductivité de l’enveloppe métallique sur celle du sodium ont des effets très importants sur le nombre de Reynolds
magnétique critique de déclenchement de l’instabilité dynamo. Nos simulations numériques dans des configurations
proches de l’expérience VKS de Cadarache montrent que le saut de conductivité est favorable en présence d’une
enveloppe latérale, mais est défavorable en présence de couvercles (voir Tableau 1). Une interprétation physique est
proposée pour comparer trois cas typiques. Cet effet de conductivité d’enveloppe pourrait affecter les performances
des dynamos fluides expérimentales en cours d’étude.

1. Introduction

The Earth’s magnetic field is generated by the so-called dynamo effect. Two experiments have successfully re-
produced this phenomenon in laboratories so far [1,2]. The first experiment is based on a helical flow in a vertical
pipe (Ponomarenko’s flow) and generates a time-dependent magnetic field when the magnetic Reynolds number
Rm = μσLV is larger than the dynamo threshold Rc

m (here μ is the magnetic diffusivity of the fluid, σ the con-
ductivity, and L, V are typical length and velocity scales). In the second experiment, the flow is divided into several
cells where a helical flow is maintained (Robert’s flow) and gives rise to a stationary magnetic field above criticality.

Among other recent experiments, the Von Kármán Sodium (VKS) experiment seems promising. This experiment
is based on a flow generated by two counter-rotating impellers located at the top and bottom of a cylindrical vessel.
In the counter-rotating regime, the flow is divided into two toroidal cells by an azimuthal shear layer in the median
plane. In each cell, the rotating disk acts as a centrifugal pump and mass conservation yields a recirculation. For more
details on the flow, see [3] in laminar regime and [4] in turbulent regime. No dynamo action was observed in the first
experimental device (VKS1), where the maximum achievable magnetic Reynolds number was below the threshold
calculated in [5]. The optimization of the previous device has led to a second set-up (VKS2) which is currently tested.

Numerical simulations on VKS2-like set-ups have been carried out in [4,7] to evaluate the influence of the thickness
of the vessel containing the sodium. Due to methodological reasons, in these computations the ratio of the conductivity
of the vessel to that of the fluid is assumed to be 1, which is not realistic. It has been shown in [4,7] that accounting
for the thickness of the side walls of the vessel (see case S in Fig. 3) decreases the critical magnetic Reynolds number.
It has also been shown that accounting for the thickness of the bottom and top lids of the vessel (see case SL in Fig. 3)
increases the critical magnetic Reynolds number. A small decrease in Rc

m is crucial from the experimental point of
view, since the power needed in the experiment scales like O(R3

m). These results have led us to redo the computations
with a more realistic copper vessel, with conductivity ratio σcopper/σsodium � 5, using a new finite element code that
we recently developed to account for discontinuous conductivities. The purpose of this Note is to report our findings.

2. Overview of the approximation method

In this section we give a brief overview of the numerical method which is used. The problem is modeled by the
MHD equations in the eddy current approximation with no retroaction of the magnetic field on the velocity field
(kinematic dynamo approximation):

μ∂tH = −∇ × E; ∇ × H = σ(E + u × μH), boundary and initial data E × n|Γ = a; H|t=0 = H0 (1)

where H is the magnetic field, E the electric field, u an imposed velocity field, σ the electric conductivity, μ the
magnetic permeability, and Γ is the boundary of the computational domain. This system is solved in a heterogeneous
domain composed of conducting regions of different conductivities (σ1 > 0, σ2 > 0, . . .) and an insulating region
(vacuum, σ0 = 0). Since the magnetic field is curl free in vacuum, it can be expressed as the gradient of a scalar
potential φ, as long as the insulating domain is simply connected. E can then be eliminated and (1) can be re-written
in term of H and φ only. Enforcing continuity of H and ∇φ across interfaces is a significant numerical difficulty. In our
Finite Element approximation, continuity is not enforced in the function spaces as in [8], where Nédélec elements are
used, but is rather weakly imposed using an Interior Penalty Galerkin method (IPG) together with Lagrange elements.
This method has been shown to be stable and convergent in [9,10].

Since the geometry is axisymmetric, the equations are written in cylindrical coordinates and the approximate
solution is expanded in Fourier series in the azimuthal direction and nodal Lagrange finite elements in the meridian
plane. The magnetic field is approximated using piecewise linear elements and the scalar potential is approximated
using piecewise quadratic elements. The time is discretized by means of a semi-implicit Backward Finite Difference
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method of second order (BDF2). At the boundary of the computational domain, we can impose Robin, Neumann, or
Dirichlet boundary conditions on φ.

The computations reported hereafter are carried out with the following discretization characteristics: the conducting
domain, composed of a finite cylinder (fluid) and an additional external layer (vessel), is discretized using a quasi-
uniform grid of meshsize δx = 1/40. The conducting region is embedded in a spherical insulating domain of radius
10 whose meshsize varies from δx = 1/40 at the inner interface to δx = 1 at the outer boundary of the sphere. The
fluid flow is modeled by the following so-called MND velocity field [6] expressed in cylindrical coordinates (r, z, θ):
for 0 � r � 1 and −1 � z � 1:

vr = −π

2
r(1 − r)2(1 + 2r) cos(πz); vθ = 4εr(1 − r) sin

(
π

2
z

)
; vz = (1 − r)

(
1 + r − 5r2) sin(πz) (2)

The parameter ε is the toroidal to poloidal flow ratio. We use ε = 0.7259 which yields near optimal dynamo action,
as shown in [6]. Since the flow is axisymmetric, the magnetic azimuthal modes evolve independently; as a result, we
restrict ourselves to the azimuthal mode 1 which is the most unstable. Hereafter, we use the following definition of the
magnetic Reynolds number: Rm = μσfluidr0vmax, where r0 is the radius of the inner cylinder and vmax the maximum
of the velocity. The vessel containing the fluid is a hollow cylinder (see Fig. 3). The nondimensional thickness of the
side wall is denoted by w and that of the top and bottom lids is denoted by l. The conductivity ratio σvessel/σfluid is
denoted by X.

3. Case 1: influence of conducting annuli

We first consider a vessel having the shape of cylindrical annulus, i.e., the thickness of the lids l is assumed to
be infinitely thin (l = 0) (see case S in Fig. 3). Two cases are considered: w = 1 and w = 0 (no annulus). When the
conductivities of the fluid and the vessel are identical, X = 1, our code predicts critical magnetic Reynolds numbers
that agree with previous studies [4,7] whether w = 0 or w = 1. In Fig. 1(a) we compare the magnetic field growth rates
γH for the cases (w = 0), (w = 1, X = 1) and (w = 1, X = 5). When there is no conductivity jump, Rc

m = 63.5 ± 0.5
for w = 0 and Rc

m = 45 ± 0.5 for w = 1. When X = 5, the critical magnetic Reynolds number decreases to Rc
m =

40±0.5 for w = 1. These results confirm that adding a conducting annulus lowers Rc
m as already shown in [11,12,4,7].

The novelty that we emphasize in this Note is that increasing the conductivity of the annulus significantly amplifies this
effect. This result points in the same direction as those obtained by Dobler et al. [13] for the Ponomarenko dynamo.
Note however that when w = 1, the growth rate for X = 5 becomes smaller than that for X = 1 when Rm � 50.

Fig. 1(b) shows Rc
m(w) as a function of w for X = 1 and X = 5. We observe that Rc

m decreases quasi-exponentially
with respect to w at X = 1 with the typical lengthscale 0.2, thus confirming results from [4], then Rc

m reaches an
asymptote for large w. In order to analyze the impact of a conducting annulus w on Rc

m, we consider the energy
balance:

1

2

d

dt
E = [RmP − D]E

Fig. 1. (a) Growth rates γH for annuli of characteristics (w = 0), (w = 1, X = 1), (w = 1, X = 5). (b) Critical magnetic Reynolds number Rc
m as a

function of w, for X = 1 and X = 5. (c) Ratios D/D0 and P/P0 for X = 1 and X = 5.
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where, upon denoting by Ωi
c the conducting domain of conductivity σi and by Ω the computational domain, the total

energy is

E =
∫
Ω

H2

the nondimensionalized dissipation is

D = E−1
{∑

i

X−1
i

∫

Ωi
c

[∇ × H]2
}

and the nondimensionalized production is

P = E−1
∫

Ωfluid
c

[
H × (∇ × H)

] · U

This balance can be rewritten as: γH = RmP − D where γH , P , and D depend on Rm and w (and l with lid layers,
see next section). At criticality (γ c

H = 0), we have verified that

Rc
m(w) = D

(
Rc

m(w),w
)
/P

(
Rc

m(w),w
)

for all w. Upon denoting by D0 and P0 the value of D and P at w = 0, l = 0, and Rm = Rc
m(0), it is interesting to

study the variation of the normalized dissipation D(Rc
m(w),w)/D0 and production P(Rc

m(w),w)/P0 with respect
to w. For both values of X = 1 and X = 5, the ratio

Rc
m(w)/Rc

m(0) = [D/D0]/[P/P0]
is driven more by the decrease of D/D0 than by that of P/P0 when w increases.

4. Case 2: influence of conducting top and bottom lids

We now set the thickness of the annulus to w = 0.5, and we analyze the effect of top and bottom lids of thickness l.
This case has been studied in [7] with no conductivity jump, i.e., X = 1, the main result being that Rc

m dramatically
increases with respect to l. We display in Fig. 2(a) Rc

m(w = 0.5, l) as a function of l for X = 1 and X = 5. For X = 1,
our results differ from those of Stefani et al. [7] by 10%; this might be explained by the difference in resolutions
used in the two numerical methods. We observe that Rc

m increases with l and that this effect is again amplified by
the conductivity jump, the variation being the largest in the range 0 � l � 0.2. We display in Fig. 2(b) the normalized
dissipation and production terms D(Rc

m(w = 0.5, l), l)/D0 and P(Rc
m(w = 0.5, l), l)/P0 as functions of l, where D0

and P0 denote the values of D(Rc
m(w = 0.5, l), l) and P(Rc

m(w = 0.5, l), l) at l = 0 (note that D0 and P0 depend
on X). For both values of X, the ratio Rc

m(w = 0.5, l)/Rc
m(w = 0.5,0) = [D/D0]/[P/P0] is driven more by the

increase of D/D0 than by that of P/P0 when l increases. When computing the total dissipation and the partial
dissipations induced by each component of the current for X = 5 as a function of l (data not shown), we have observed
that the dissipation is dominated by its azimuthal and radial components, which suggests that strong azimuthal and
radial currents are generated (see discussion below).

Fig. 2. (a) Rc
m as functions of l, for X = 1 and X = 5 (w = 0.5). (b) Ratios D(Rc

m(w = 0.5, l), l)/D0 and P(Rc
m(w = 0.5, l), l)/P0 for X = 1 and

X = 5 as indicated.
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Fig. 3. Isosurface of 50% of the total dissipation and current lines for (Case N) X = 5, w = 0, l = 0 and Rm = 65 > Rc
m = 63.5 (Case S) X = 5,

w = 0.5, l = 0 and Rm = 42 > Rc
m = 41 (Case SL) X = 5, w = 0.5, l = 0.8 and Rm = 65 > Rc

m = 63.

Table 1
Critical magnetic Reynolds numbers Rc

m for different geometries and conductivities

w = 0, l = 0 w = 1, l = 0 w = 0.5, l = 0 w = 0.5, l = 1

X = 1 63.5 45 47 61
X = 5 63.5 40 41 65

5. Interpretation and conclusions

To better understand the behavior of Rc
m with respect to w and l, we now compare the spatial distribution of dissi-

pation and currents in three typical cases (see also [7]). The cases considered are (i) case N: no envelope; (ii) case S:
an annulus of thickness w = 0.5 with X = 5 and no lids l = 0; (iii) case SL: an annulus of thickness w = 0.5 and two
lids of thickness l = 0.8 with X = 5. The results are reported in Fig. 3. For the cases N and S, most of the dissipation is
concentrated in the fluid, close to the cylinder axis, whereas in the SL case, new dissipation patterns occur within the
lids. The figure shows some characteristic lines of the current vector field. The spatial distribution of the lines close to
the axis is pretty similar in the three cases, but it significantly differs in regions close to the envelope. Going from the
case N to the case S, the currents formerly constrained in the flow volume are deformed and expand to fill the annulus
on large scales, suggesting that the dissipation decreases as indeed observed. Going from the case S to the case SL,
additional current loops at small scales appear within the top and bottom lids leading to more Ohmic dissipation. The
decrease of dissipation when going from the case N to the case S is compatible with the observations of Avalos and
Plunian [12] made on the Karlsruhe dynamo.

Although a predictive explanation of the variation of the dynamo threshold is still lacking at the present time, the
impact of an envelope seems crucial for the design of experimental fluid dynamos. The increase of Rc

m from the S to
the SL configuration suggests to diminish the influence of the lid by lowering its conductivity. In the near future, we
plan to optimize the geometry of the envelope of the VKS set-up by using the experimental mean flow [4] and the
actual sizes and conductivities of the materials that are used (sodium, copper, stainless steel).

The main results of this Note are summarized in Table 1. An annulus of characteristics (w = 0.5, l = 0) decreases
Rc

m by 26% when the conductivity is uniform, X = 1, and by 35% when the conductivity ratio is X = 5. In contrast,
adding a lid, l = 1, to the annulus, w = 0.5, increases Rc

m by 30% when the conductivity is uniform and by 59% when
the conductivity ratio is X = 5.
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