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Abstract

A new closed version of the transport equation for the flame surface density in premixed turbulent combustion is derived, on the
basis of an equation for the scalar dissipation that has previously been proposed by the present authors. As in this earlier work,
volume expansion due to heat release is found to have an important role in determining the flame surface density. An algebraic
approximation to the transport equation is obtained, on the basis of an order-of-magnitude analysis, and is found to be in good
agreement with data from DNS. Finally, laminar flame calculations are used to estimate a key parameter in the new model. To cite
this article: K.N.C. Bray, N. Swaminathan, C. R. Mecanique 334 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Dissipation du scalaire et densité de surface de flamme en combustion turbulente prémélangée. Une nouvelle version mo-
délisée de l’équation de transport pour la densité de surface de flamme en combustion turbulente prémélangée est obtenue, sur
la base d’une équation pour la dissipation du scalaire qui avait été préalablement obtenue par les mêmes auteurs. Comme pour
ce précédent travail, l’expansion volumique due au dégagement de chaleur est trouvée jouer un rôle important dans la détermina-
tion de la densité de surface de flamme. Une approximation algébrique de l’équation de transport est obtenue, sur la base d’une
analyse d’ordre de grandeur, qui se révèle être en très bon accord avec des données obtenues par DNS. Finalement, des calculs de
flamme laminaire sont utilisés pour estimer l’un des paramètres principaux du nouveau modèle. Pour citer cet article : K.N.C. Bray,
N. Swaminathan, C. R. Mecanique 334 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Roland Borghi was among the first to understand the importance of the relationship between scalar dissipation and
mean reaction rates in premixed turbulent combustion. This important insight led him, with co-workers, to derive and
propose closure approximations for the transport equation for the scalar dissipation [1–4]. The mean scalar dissipation

* Corresponding author.
E-mail address: kncb@eng.cam.ac.uk (K.N.C. Bray).
1631-0721/$ – see front matter © 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crme.2006.07.005



K.N.C. Bray, N. Swaminathan / C. R. Mecanique 334 (2006) 466–473 467
is ρ̄ε̃c = ρα(∇c′′ · ∇c′′), where α is the molecular diffusivity of the reaction progress variable c(x, t), which is defined
as a normalised temperature. The overbar implies an appropriate averaging. The Favre average or density weighted
average of c is c̃ and its fluctuation is c′′. With the above definition, ε̃c is one half of the molecular dissipation term
in the transport equation for the scalar variance, c̃′′2, and represents the reciprocal of a time scale for the mean rate
of small-scale mixing between cold reactants and hot products. In one form or another, scalar dissipation plays a
central role in most mean reaction rate formulations for premixed systems, including transported and presumed pdfs,
conditional moment closure, and flame surface density methods.

In deriving their governing equation for ε̃c, Borghi et al. [1–4] introduce the simplifying assumption of constant
density and consequently neglect volume expansion due to heat release. More recently, Swaminathan and Bray [5]
revisited this problem, taking into account effects of volume expansion, which are shown to be significant. Comparison
with DNS data provides support for the analysis.

The aim of the present work is to apply the results of Swaminathan and Bray [5] to the flame surface density
Σ(x, t). A closed version of the transport equation is presented for this quantity in the context of RANS methodology.
An order-of-magnitude analysis leads to an algebraic expression for Σ . This simple expression is used to discuss the
choice of an appropriate length scale to normalise Σ . Also, the prediction of the flame surface density by this model is
compared to previous models [6,7] and direct numerical simulation (DNS) results. The derivation of a closed transport
equation for ε̃c is reviewed first.

2. Transport equation for ε̃c [5]

The unclosed transport equation for ε̃c, including effects of volume expansion due to heat release, may be written
as [5]
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where ejk = 0.5(uj,k + uk,j ) represents a component of the rate of strain and T2 describes effects due to dilatation.
If this latter term is set equal to zero, and density is held constant, Eq. (1) reduces to the equation of Mura and
Borghi [4].

An order-of-magnitude analysis [5] establishes the relative magnitude of terms in this equation. The turbulence
Reynolds and Damköhler numbers are respectively defined as Re ≡ u′Λ/νu and Da ≡ (τf /τc) = Λso

L/(u′δo
L), where

u′ is the root mean square value of turbulence velocity, Λ is the integral length scale of the turbulence field, δo
L is the

thermal thickness of unstrained laminar flame propagating at speed so
L and νu is the kinematic viscosity of reactant

mixture. Also, it is assumed that νu � αu. In the case of thin flamelets, the gradient of c is zero outside the flamelet.
Thus, the laminar flame scales are used to scale the quantities involving or multiplied by the gradient of c in the
order of magnitude analysis. The spatial derivatives of mean quantities are scaled by the integral length scale and
the evolution time t is scaled by the eddy turn over time. Dropping some small terms, adopting models from Borghi
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et al. [3,4], and introducing laminar flamelet assumptions to model T2 [5], Eq. (1) may be written in modelled form,
for conditions where Da and Re are both large, as
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where Cpc,Ae,Cpu,Cεc and β are model constants introduced by Borghi and colleagues [1–4], while Kc and Cm

can be evaluated from the properties of a planar unstrained laminar flame. sL is the local laminar flame speed and
T ∗

4 is defined below. The Favre mean of turbulence kinetic energy and its dissipation rate are denoted by k̃ and ε̃

respectively. The dynamic viscosity of the turbulence is μt .
The order-of-magnitude estimates [5] show that the three dominant terms in Eq. (1) are T2, T32 and T ∗

4 , where
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Hence, Eq. (1) can be approximated by T2 + T32 + T ∗

4 � 0. A simple model for the dissipation rate can now be
obtained by retaining only these three leading order terms from Eq. (2), leading to
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where CD = Ae/β and it has been assumed that (
√

k̃/so
L) > 2Cεc/3; CDc is a constant for a given thermochemistry

and it is equal to the ratio of 4Kc to (2Cm − 1)β . If Cεc and CDc are both set to zero, the classical scalar dissipation
model for nonreactive turbulent flows is recovered. The term containing Cεc describes effect of flamelet curvature,
while the factor including CDc introduces a chemical time scale. The local laminar flame speed sL is taken to be
approximately equal to so

L in this study. Strictly, sL is related to so
L via an appropriate Markstein number.

3. Flame surface density

If the Damköhler number Da is sufficiently large, combustion occurs in the so-called laminar flamelets regime [8,9],
in which burning is confined to thin reaction surfaces, whose internal structure is similar to that of a laminar flame.
The surface area per unit volume or surface density function of an isosurface on which c = ζ is denoted by Σ(ζ ;x, t).
If Da � 1, Σ(ζ ;x, t) is essentially independent of ζ and we may define a flame surface density either as the value of
Σ at a specified value of ζ or from

Σ(x, t) =
1∫

0

�(ζ ;x, t)dζ (4)

The mean heat release rate, ω̇, which appears as a source term in the transport equation for c̃, can be calculated as the
product of the flame surface density, Σ , and the rate of conversion of reactants into products per unit flame area, i.e.,
ω̇ = ρusLΣ . In the limit Da � 1, ω̇ is also related to ε̃c by equation [10]

ω̇ = 2ρ̄ε̃c

2Cm − 1
(5)

where Cm = cω̇/ω̇, and it follows that Σ is proportional to ε̃c. We also have

Σ(x, t) = ρ̄ε̃c (6)

KΣsL
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with KΣ = ρu(2Cm − 1)/2. By substituting for ε̃c in Eq. (2), one gets
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as a transport equation for Σ . This equation with Kc = 0 is exactly the same as summarized in [11]. It is also worth
noting that the above equation is closed in the context of RANS calculation. However, a simple algebraic expression is
attractive for Large Eddy Simulation (LES) of turbulent premixed flames. The derivation of a simple algebraic model
for Σ is attempted next.

3.1. Algebraic approximation

An algebraic expression for Σ can be derived by taking the three dominant terms from the transport equation for
ε̃c . It follows from Eqs. (3) and (6) that
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Also, if one uses the data in [5] then
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It follows that CD

CDcDa
� 1 under conditions of present interest. Hence, Eq. (9) states that the flame surface density

scales with δo
L rather than Λ. Chen and Bilger [12] showed this while analysing their experimental data on turbulent

premixed flames. Earlier algebraic models for the flame surface density generally assume that Σ scales with the
integral length scale, Λ, of turbulence—see, for example [6,7,13].

Using Eq. (162) of [7] an algebraic model, which is referred to as VV-model in the following discussion, for the
flame surface density can be written as
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in our notations. Also the model of Bray and Peters [6], referred to as BP model below, can be written as
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where τ = (Tb/Tu) − 1, is the heat release parameter and K is a constant of order unity.
It is interesting to note the similarity in the models given by Eqs. (9)–(11) for the flame surface density although

their starting points of derivation are different. The VV and BP models include the effect of turbulence on the flame
surface density. But the model derived in this study includes the effects of flame propagation, dilatation and turbulence
on the flame surface density. The terms inside the first bracket in Eq. (9) represent the effect of flame propagation while
the terms inside the second bracket represent the combined effects of turbulence and dilatation. If effects of flame
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propagation and dilatation are ignored by setting Cεc and Kc to zero and expressing the variance as c̃(1 − c̃), one get
an expression for Σ which is the same as in Eq. (10) except for the constant CD . We will compare the predictions of
the above algebraic models with results from a direct numerical simulation (DNS) of turbulent premixed flame [14].
The pertinent details of the DNS data are given below.

4. Attributes of DNS data

The problem of premixed flame propagating inside a cubic computational domain containing homogeneous
isotropic turbulence in the unburnt mixture was directly simulated by Rutland and Cant [14]. The computational
domain had turbulence inflow and outflow boundary conditions in the mean flame propagation direction while the
other two directions had periodic boundary condition (see Fig. 1). The turbulence was decaying spatially as the sim-
ulation progressed and the fluid transport properties are treated to be invariant in space and time. The combustion
kinetics was simulated using a single irreversible reaction with large activation energy. However, to make the sim-
ulation practical the temperature rise across the flame front was set to be 3.3 while its typical value is about six to
seven. The simulation was initialized with a planar laminar flame having these attributes and the conditions chosen for
turbulence were to be representative of flamelet combustion. The value of the ratio of root mean square of turbulence
velocity, u′, to the planar laminar flame speed, so

l , is about 1.4. The length scale ratio between Λ and δo
L is about 6.1.

Fig. 1 shows the three-dimensional iso-surface of c = 0.5 at t+ = 19.4. This value of t+ corresponds to about 4.4
initial eddy turn over time. Hence, one can say that a considerable interaction of the turbulence with the scalar field and
the initial laminar flame has happened. This is also clear from the level of corrugation and contortion of c = 0.5 iso-
surface shown in Fig. 1. The turbulent flame brush is statistically planar because of the periodic boundary conditions
in the cross stream and spanwise directions. Thus one can obtain average quantities of interest by ensemble averaging
the data collected from a sample volume shown in Fig. 1 using the thin lines. The Favre average of c constructed thus
is uniquely related to x. Hence, in the following discussion c̃ is used to denote the spatial position inside the turbulent
flame brush.

Fig. 1. Iso-surface of c = 0.5 at t+ = 19.5 from the DNS [14]. The turbulent flow of cold reactants enters the domain via the left boundary and
leaves through the right boundary. The flow is periodic in y and z directions. The thin slab represents the sample volume.

Fig. 1. Iso-surfaces de c = 0,5 à t+ = 19,5 obtenues par DNS par [14]. L’écoulement turbulent de réactifs froids entre dans le domaine par sa
frontière gauche et le quitte par sa frontière droite. L’écoulement est périodique selon les directions y et z. La tranche fine indique le volume
échantillon.
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5. Results and discussion

The flame surface density, Σ(ζ ;x, t), can be obtained by two methods. In the first method, the area of an iso-
surface can be calculated by tracking the particular iso-surface c = ζ . In the second method, Σ is calculated via
Σ(ζ ;x) = 〈|∇c||c = ζ 〉Pζ [15]. The conditional average, which is defined as the average of the ensemble satisfying
the condition c = ζ , of the magnitude of the progress variable gradient is denoted as 〈|∇c||c = ζ 〉. The marginal pdf
of c is Pζ . Here, we follow the second approach to obtain Σ because of its inherent accuracy. The typical variation of
normalised Σ(ζ ;x) with ζ in the DNS is shown in Fig. 2. The results are shown for five different locations inside the
turbulent flame brush as marked in Fig. 2. Since the combustion occurs in the thin flamelets regime one would expect
Σ+ to be independent of ζ . The results in Fig. 2 indeed show this behavior except for ζ near zero and unity. The sharp
increase in Σ+ near ζ = 0 and 1 is because a very small number, the conditional dissipation rate, multiplies a very
large number, the marginal pdf of c. Also, at all the locations inside the flame brush considered here Σ+ is insensitive
to ζ . Such an observation was also made in an experimental investigation [12] of turbulent premixed flame.

Because of the insensitivity of Σ+ to the value of ζ observed in Fig. 2, we will consider ζ = 0.75 for further
analysis. This value of ζ corresponds to the location of peak reaction rate. A close study of Fig. 2 also shows that
Σ+ varies with the location inside the flame brush. This variation is shown in Fig. 3 for ζ equal to 0.75. The line
with circles denote the DNS results. The width of the vertical bars on the circles corresponds to twice the standard

Fig. 2. Behavior of Σ+ with ζ at various locations inside the flame brush simulated in the DNS.

Fig. 2. Comportement de Σ+ avec ζ en différentes positions à l’intérieur de la flamme simulée par DNS.

Fig. 3. Variation of Σ+ with c̃ in the DNS (—◦ ) and the model predictions. The size of vertical bars denote two standard deviation in the DNS result.

Fig. 3. Variation de Σ+ avec c̃ dans la DNS (—◦ ) et les prédictions du modèle. La taille des barres verticales correspond à deux écarts–types pour
les résultats obtenus par DNS.
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Fig. 4. Variation of κ , defined by Eq. (13), with τ .

Fig. 4. Variation de κ , défini par l’Éq. (13), avec τ .

deviation in Σ+ observed in the DNS results. The values of normalised flame surface density predicted by the three
models are also shown in Fig. 3. It is important to note that only the one fourth of the predicted values are shown in
Fig. 3 for VV and BP models. It is clear that these models over predict the DNS results. A value of K = 1 is used
for BP model given in Eq. (11). For the model obtained here, see Eq. (9), the values of model constants given in [5]
are used and its prediction is very good. The values of these constants are CD = 0.05, CDc = 0.24, Cεc = 0.1 and
Cm = 0.7. The value of CD is obtained from the DNS as explained in [5].

As one can see in Fig. 3, including the effects of dilatation and flame propagation is important. Since the flame
propagation phenomenon depends on the Damköhler and Karlovitz numbers, it is possible that some of the constants
in the present model will have some dependence on them. As pointed out earlier, the constant related to dilatation is
an important one and we explore its behavior next.

5.1. Scaling of Kc

We now consider the scaling of CDc which is the most important model parameter in Eq. (9). It is defined [5] as
4Kc/(2Cm − 1)β where

Kc = δo
L

so
L
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0 [ρN(∇.u)]oLf (c)dc∫ 1

0 ωo
Lf (c)dc

(12)

In the laminar flamelet burning regime the internal pdf f (c) is inversely proportional to the gradient of c in a planar
unstrained laminar flame. Thus, f (c) = C1/y, where y is the gradient of c normalised using the Zeldovich flame
thickness, δ ≡ αu/s

o
l . Also, ∇ · u = τso

Ly/δ and
∫

ωf dc = ρus
o
LC1 in a planar laminar flame with a thermal thickness

of δo
L. The scalar dissipation rate in the laminar flame can be written as N = αy2/δ2. Substituting these expression

into Eq. (12) and assuming ρα = ρuαu, one gets

Kc

τ

(
δ

δo
L

)2

= δ

δo
L

1∫
0

y2 dc ≡ κ (13)

where C−1
1 = ∫

dc/y and one should be cautious in obtaining C1 because of the singularity at the cold and hot
boundaries. Also, one can expect κ to be a weak function of τ . Fig. 4 shows the variation of κ with τ for activation
energy parameter β∗ = τ(Ta/Tb)/(1 + τ) of 6. The value of κ remains almost constant for meaningful values of τ . It
is not surprising that Kc and hence also CDc are proportional to τ as these coefficients represent effects of dilatation
which is zero when τ = 0. However, the above modelling also suggests that Kc and CDc will be less sensitive to
changes in the laminar flame and turbulence time scales and this remains to be explored.



K.N.C. Bray, N. Swaminathan / C. R. Mecanique 334 (2006) 466–473 473
6. Summary

The proposed transport equation for the flame surface density Σ is Eq. (7). The term containing Kc represents the
influence of volume expansion due to heat release and, if this term is absent, Eq. (7) reduces to an equation previously
summarised in [11]. The three dominant terms in Eq. (7) provide an algebraic approximation for Σ , namely Eq. (9),
and this is shown to have features in common with earlier algebraic models [6,7], which describe effects of turbulence
and spatial inhomogeneity. However, unlike these earlier models, Eq. (9) also includes terms describing influences
due to volume expansion and flame propagation that are found to be essential in order to obtain agreement with the
DNS data of Rutland and Cant [14]. Predictions from the new model depend crucially on a parameter, Kc , describing
the influence of heat release which appears in the flame surface density equation and also in the algebraic closure for
the flame surface density through the ratio CD/CDc . The parameter Kc is shown to be proportional to the heat release
parameter, τ . It is also shown that flame surface density scales with the laminar flame thermal thickness rather than
the integral length scale of turbulence when combustion occurs in the flamelets regime.
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