
C. R. Mecanique 334 (2006) 545–554

http://france.elsevier.com/direct/CRAS2B/

Observation, analysis and modelling in complex fluid media

Modelling and simulation of powder-snow avalanches

Jocelyn Étienne a,1, Marie Rastello b, Emil J. Hopfinger c,∗

a LMC IMAG, BP 53, 38041 Grenoble cedex 9, France
b LMFA-ECL, 36, avenue Guy de Collongue, 69134 Ecully cedex, France

c LEGI/CNRS, B.P. 53, 38041 Grenoble cedex 9, France

Available online 6 September 2006

Abstract

Finite volume release gravity currents of large density contrast on steep slopes, representing powder-snow avalanches, are sim-
ulated numerically using a dynamic mesh adaptation technique. This technique allows to treat large Reynolds numbers and large
density contrast flows, but it is (presently) restricted to two dimensions. Comparison of numerical results with experiments in
the Boussinesq limit shows that 2D simulations capture the essential flow dynamics. The physics of powder-snow avalanches is
analysed on hand of the similarity model developed by Rastello and Hopfinger (2004) and briefly reproduced here. The numerical
simulations provide the closure parameters required in this model and give access to the flow structure. The non-Boussinesq effect
is to decrease substantially the spatial growth in height and to increase the aspect ratio, hence the overall flow structure. To cite this
article: J. Étienne et al., C. R. Mecanique 334 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Modélisation et simulation d’avalanches de neige poudreuse. Des courants gravitaires formés par le déversement d’un volume
fini de fluide de densité élevée sur des pentes abruptes, représentant des avalanches de neige poudreuse, sont simulées numérique-
ment en utilisant une technique de maillage adaptatif dynamique. Cette technique permet de traiter des nombres de Reynolds élevés
et des écoulements à fortes différences de densité mais elle est (actuellement) limitée au cas bidimensionnel. Une comparaison entre
résultats numériques et expérimentaux dans la limite de Boussinesq montre que les simulations 2D capturent l’essentiel de la dy-
namique. La physique des avalanches de neige poudreuse est analysée à l’aide du modèle de similarité développé par Rastello and
Hopfinger (2004) et brièvement reproduit ici. Les simulations numériques fournissent les paramètres de fermeture nécessaires à ce
modèle et donnent accès à la structure de l’écoulement. L’effet non-Boussinesq est de diminuer substantiellement l’accroissement
spatial de la hauteur et d’accroître le rapport d’aspect, donc toute la structure de l’écoulement. Pour citer cet article : J. Étienne et
al., C. R. Mecanique 334 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Keywords: Computational fluid mechanics; Avalanches; Gravity effects; Modelling; Numerical simulations

Mots-clés : Mécanique des fluides numérique ; Avalanches ; Effets dus à la gravité ; Modélisation ; Simulations numériques

* Corresponding author.
E-mail addresses: j.etienne@damtp.cam.ac.uk (J. Étienne), marie.rastello@ec-lyon.fr (M. Rastello), emil.hopfinger@hmg.inpg.fr

(E.J. Hopfinger).
1 Present address: DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.
1631-0721/$ – see front matter © 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crme.2006.07.010



546 J. Étienne et al. / C. R. Mecanique 334 (2006) 545–554
1. Introduction

Powder-snow avalanches are dense clouds moving down steep slopes. The extra weight of the cloud is due to the
suspended snow particles in air of volume concentration 0.4 to 4%. This results in a bulk density of about 2 to 30 times
the air density. During the motion, air is entrained which leads to a dilution and growth of the cloud and, depending
on the flow conditions, snow can also be picked-up from the underlying snow cover which may cause a continuous
acceleration of the avalanche. In order to reach velocities of the order of 100 m/s, a value often quoted for powder-
snow avalanches [1,2], a continuous down-slope acceleration is required. This large front velocity and, consequently,
the large turbulent velocity, assures that the snow particles of diameter dp ≈ 0.5 to 1 mm and density ρp ≈ 400 to
900 kg/m3 remain suspended and that an avalanche is capable of picking up further snow from the snow cover as long
as the volume concentration is less than the saturation concentration. Furthermore, the Stokes number St = τp/τf ,
expressing the characteristic particle time scale τp to flow time scale τf ≈ H/Uf , where Uf is the avalanche front
velocity and H its height, is less than 0.1, noting that because of the relatively large particle Reynolds numbers,
τp is evaluated for a particle drag larger than the Stokes drag. For the case of a particle stratified shear layer Meiburg
et al. [3] showed that when the Stokes number is about 0.1 the particle loading has an effect similar to that of a single
phase stratified fluid. Therefore, it can be assumed that the suspension cloud behaves like a single phase gravity flow
of large density difference.

Beghin et al. [4] conducted laboratory experiments with finite volume release gravity currents, forming dense
clouds on slopes, using small density ratio (Boussinesq) saline solutions. Rastello and Hopfinger [5] (from here on
referred to as RH) made similar experiments with saline solutions and in addition with finite volume release turbidity
currents moving over a sediment layer on slopes. The turbidity clouds showed a similar behaviour to the single phase
saline clouds. A similarity model has been developed by RH which contains as closure parameters an air (ambient
fluid) entrainment coefficient Ec and a sediment entrainment coefficient Es . An additional parameter is the aspect
ratio of cloud length to height k. These coefficients were obtained from the experiments in the Boussinesq limit and
used in the model to predict avalanche velocity variation, noting that the avalanche velocity depends on Ec and Es

but not on k.
Further insight can be gained from direct numerical simulations especially in the case of large density ratios. It

has been shown by Étienne et al. [6] that large Reynolds number simulations of large density ratio gravity flows are
possible by using a dynamic grid adaptation technique. The drawback is that these techniques are presently limited to
two-dimensions. Although the turbulence structure is three-dimensional, it can be assumed that the dynamics of the
cloud movement is a two-dimensional process, controlled by the large scale structures of principal vorticity component
normal to flow direction. Two-dimensional simulations of gravity currents [7] and of lock-exchange flows [8,6] for
instance are in good agreement with experiments although the turbulence structure is three-dimensional.

In Section 2 the similarity model is presented and compared with measurements of the front velocity reported
for the Sion Valley avalanche by Dufour et al. [9]. In Section 3 the 2D numerical simulations are first applied to
Boussinesq clouds for conditions corresponding to the experiments of RH. Then, numerical results are presented for
the same conditions but with the density ratio increased to 20. These results show clearly the non-Boussinesq effect
on the flow structure; the acceleration length is substantially larger and the growth rate is reduced.

2. Similarity model

To a good approximation a powder-snow avalanche can be considered as a single phase dense cloud moving down
steep slopes. Arguments supporting this assumption are developed above in Section 1. During the motion the size
increases and, for a given slope angle, the shape remains similar, that is the aspect ratio of height to length remains
constant.2 Fig. 1 shows a schematic representation of the cloud shape with the definition of the relevant variables.

The momentum, mass and volume per unit width conservation equations are respectively:

d(ρakv + ρ)AU

dt
= �ρAg sin θ − Cf ρbU

2L (1)

2 This is a first approximation because, as the present numerical simulations indicate, the aspect ratio depends on density ratio which decreases
with distance.
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Fig. 1. Definition sketch.

Fig. 1. Schéma de définition.

d�ρA

dt
= β�ρshsU = Es�ρsLU (2)

dA

dt
= EcU

√
A = Ec

√
S1

S2
UP (3)

where ρ = ρpC + ρa(1 − C), �ρ = ρ − ρa , A = S1kH 2, P = S2
√

HL, k(θ) = L/H , Cf is the bottom friction
coefficient, hs the snow cover depth, β is the fraction of the snow cover entrained along the avalanche path, S1 and
S2 are shape factors, kv is the added mass coefficient and Ec and Es are air (ambient fluid) and snow (sediment)
entrainment coefficients respectively. The subscript a stands for air or ambient fluid, p for particles, s for snow cover
(sediment) and b for bed. After transforming time into space by setting U = dx/dt , Eq. (1) can be integrated (see [5])
in the form:

U =
√

2KMx + (KB + GM)x2 + 2
3 (KN + GB)x3 + 1

2GNx4

M + Bx + Nx2
(4)

where

K = (�ρ0A0)g sin θ

M = (kv + 1)ρaA0 + �ρ0A0

N = (1 + kv)
ρa

4
E2

c

B = β�ρshs+(1 + kv)ρaEcA
1/2
0

G = β�ρshsg sin θ

In the integration of Eq. (1) it was assumed that at x = 0, U = 0 but A = A0 and L0/H0 = k.
Eq. (3) gives (keeping S1 constant):

H = H0 + Ec

2
√

kS1
x (5)

and from Eq. (2) the buoyancy variation with distance is obtained in the form:

�ρA = �ρ0A0 + β�ρshsx (6)

Typical values for a powder-snow avalanche, the Sion Valley avalanche for instance [9] are: A0 = 200 m2, �ρ0 =
150 kg/m3, average slope angle θ = 25◦, �ρs = 150 kg/m3, hs = 1 m. The shape factors are closely approximated
by an elliptic shape, namely S1 ∼= 0.8 and S2 ∼= 2.4, while kv is taken constant, equal to 0.5. It has been shown by RH
that the velocity predicted by this similarity model is in good agreement with measured avalanche velocities when
taking for the closure parameters Ec and β , respectively the values Ec ≈ 0.25 (for θ = 25◦) and β = 1, i.e., the whole
snow cover is incorporated along the avalanche path. Bottom friction is practically unimportant on steep slopes. This
is demonstrated by integrating equation (1) numerically with and without bottom friction. It is, however, the principal
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Fig. 2. Avalanche front velocity Uf = U(1 + Eck
1/2/4S

1/2
1 ) as a function of front position. -1-, measured avalanche front velocity [9]; —, model

prediction for θ = 25◦,Ec = 0.25, β = 1 and Cf = 0; - - -, model prediction for β = 0 (no snow entrainment).

Fig. 2. Vitesse du front d’avalanche Uf = U(1 +Eck
1/2/4S

1/2
1 ) en fonction de la position du front. -1-, vitesse du front d’avalanche mesurée [9] ;

—, prédiction du modèle pour θ = 25◦ , Ec = 0.25, β = 1 et Cf = 0 ; - - -, prédiction du modèle pour β = 0 (sans entrainement de neige).

retarding force when the avalanche moves onto nearly horizontal ground. Fig. 2 shows a comparison of the model
predictions (neglecting bottom friction) with measurements. In this figure the front velocity Uf rather than the mass
centre velocity is plotted because this velocity is directly accessible to measurements. The two are related by the
spatial growth in cloud length. For the prediction of this spatial growth of an avalanche, it is necessary to know, in
addition to the air entrainment coefficient Ec, the aspect ratio k. Observations suggest that k ≈ 6 for the Sion Valley
avalanche.

Field observations of powder-snow avalanches are difficult and rare and measurements of the variation of the front
velocity with distance became available only recently [9]. Measurements of velocity and density distributions inside
an avalanche are, however, nearly impossible, although some attempts were made using radar. Turbulence closure
models (turbulent energy-dissipation models in particular), are used for practical applications and give useful infor-
mation for quasi-steady flows [10] but give no information about the time dependency of local quantities (density
and velocity variations). For this reason, and in order to understand the avalanche dynamics in more detail, we turn
to laboratory experiments and numerical simulations. Laboratory experiments are, unfortunately, limited to Boussi-
nesq flows [11,4,5]. Only lock-exchange flow experiments have been performed for density ratios of about 20 using
gases [12]. It is hardly feasible to use gases for gravity current or dense cloud experiments on slopes because of the
large gas volumes needed. Direct numerical simulations or large eddy simulations are, therefore, necessary tools of
research in this area.

By using the automatic mesh adaptation technique, developed for gravitational flows by Étienne et al. [6], it is
possible to reach large Reynolds numbers (order 105) and large density differences in direct numerical simulation.
Since direct numerical simulations of dense clouds on steep slopes seem not to have been conducted previously it is
necessary to validate numerical results by experiments at least in the Boussinesq limit. For this reason the conditions
of the numerical simulations presented in the following Section 3.3 are the same as in the experiments of RH. The
simulations are then extended to a density ratio of 20 to quantify the non-Boussinesq effect.

3. Numerical simulations

3.1. Governing equations

We consider the isothermal flow of a single phase fluid with large density variations, and equal, constant dynamic
viscosity η under the conditions described above. For a perfect mixture of two incompressible fluids, of density ρd

(the heavier one) and of density ρa (the lighter one), the local density is ρ = ρdΦ + ρa(1 − Φ), where Φ is the local
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volume fraction of the fluid of density ρd . The density contrast is defined as α = (ρd − ρa)/ρa , and the density can
be rewritten as ρ = ρa(1 +αΦ). Lengths are non-dimensionalized according to the scale Lr = √

A0 of initial release,
x̃ = x/Lr and velocities by the terminal velocity Ur = √

αgLr of a fluid element of density ρd in the ambient fluid
of density ρa , ũ = u/Ur . Times are non-dimensionalized as t̃ = tUr/Lr . Momentum and mass conservation of the
cloud and ambient air are given by the Navier–Stokes equations,

(1 + αΦ)
Dũ
Dt̃

= −∇p + 1

Re
div

(
2 Dũ − 2

3
div ũI

)
− 1 + αΦ

α
k (7)

α
DΦ

Dt̃
+ (1 + αΦ)div ũ = 0 (8)

where the Reynolds number is defined as Re = ρaUrLr/η, and Dũ = (∇ũ + ∇ũT)/2. Since the fluids are miscible,
we cannot assume Dρ/Dt = 0, but rather that there are mass diffusion fluxes in the flow governed by Fick’s law. This
yields [6]:

DΦ

Dt̃
+ Φ div ũ = 1

Re Sc
∇2Φ (9)

where the Schmidt number is defined as Sc = η/ρaD, with D a reference diffusivity. Initial conditions consist of given
distribution of ρ initially, the velocity being set to zero everywhere. No inflow or outflow across the boundaries of
the flow domain has been considered, thus boundary conditions are always ∇Φ · n = 0, with either no-slip boundary
conditions (ũ|∂� = 0) or zero wall friction (ũ · n = 0 and σ · n − [(σ · n) · n]n = 0, where n is the wall normal and
σ = 2Dũ − (2/3)div ũI ).

System (7)–(9) was proposed by Étienne et al. [6] for the simulation of gas mixtures of high density contrast. An
algorithm was devised for its resolution in the framework of finite elements and used for simulations of lock-exchange
flows in two dimensions. These flows are a good test for high density contrast flow simulation, because there have
been experimental and theoretical studies, and measurements for density contrasts up to α ≈ 20 are available [12].
Numerical results are shown to be in good agreement with these measurements.

3.2. Numerical technique

Due to high Reynolds numbers and the flow structure, the flow of the buoyant clouds considered in this article
present features of very different spatial scales (time-dependent strong local velocity and density gradients), which
make dynamic mesh adaptation a necessity, although this technique is still poorly developed in 3D [13]. The very high
computational cost of three-dimensional DNS limits other approaches to Reynolds number lower than 103 [7]. The
numerical simulations presented here are thus restricted to the two dimensions x and z, and make use of the dynamic
mesh adaptation features of the mesh generator BAMG [14].

The remaining difficulty is to simulate efficiently both the transport and viscous terms on a general mesh. This
is done by the Lagrange–Galerkin method [15], which consists in using the method of characteristics to discretise
directly the material derivative along with finite elements for the discretisation in space. Étienne and Saramito [16]
have designed an algorithm for Eqs. (7)–(9) and shown optimal error estimates, and have implemented it in the open
source free software RHEOLEF [17]. The finite element spaces are continuous, piecewise quadratic for the velocity
and volume fraction, and continuous, piecewise linear for the pressure. The mesh refinement is an iterative process
at each time step: a first estimate of the solution is calculated on a coarse mesh, and then the mesh is repeatedly
refined and the solution recalculated until some mesh invariance is achieved. This is usually done in four re-meshing
iterations, with the final mesh having refinement ratios of order 103 between the coarsest triangle size and the finest
one, with an approximate total of 5 × 105 degrees of freedom.

3.3. Results for Boussinesq clouds

The simulations are first performed for a Boussinesq cloud which allows comparison with experiments. A volume
of fluid of density ρd and length l0 = 20 cm and h0 = 6.5 cm, A0 = h0l0 = 130 cm2 and reference length Lr =√

A0 = 11.4 cm, is suddenly released in a stagnant fluid of density ρa , α = (ρd − ρa)/ρa = 0.02, and of depth 6Lr

and length 20Lr . The slope angle is θ = 32◦.
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Fig. 3. Aspect of the cloud, (a) numerical simulation with α = 0.02 and Re = 105, (b) experiments [5]. In the experiments the grid spacing is 5 cm
and in (a) the coordinates are non-dimensionalized by Lr = 11.4 cm.

Fig. 3. Aspect du nuage, (a) simulation numérique avec α = 0,02 et Re = 105, (b) expériences [5]. Dans l’expérience la taille des mailles est 5 cm
et dans (a) les coordonnées sont normalisées par Lr = 11,4 cm.

Fig. 3 shows a qualitative comparison of the density contours. What is of interest here is the similar shape indicating
a length to height ratio k of about 3. It should be noted, however, that there are large fluctuations in k (about ±10%)
due to the time variations of the large eddy structure.

In Fig. 4 the simulated front velocity is compared with the experimental values of RH. There is a good agreement
when Re = UrLrρa/η = 105, where Ur = √

αgLr . In the simulation free slip conditions on the bottom were used
(this corresponds to Cf = 0 in the model). The calculated and experimentally determined spatial growth rates are
compared in Fig. 5. There is a reasonably good agreement in a range around the velocity maximum (2 < xf /Lr < 9).
At large distances the 2D simulations give a larger growth rate. This is to be expected since in 2D the large eddies are
more persistent than in 3D. Note that xf is measured from the gate of release of the dense fluid. The virtual origin
was taken as x0 = −3Lr in all the plots presented here.

3.4. Results for non-Boussinesq clouds

The non-Boussinesq flow simulations were conducted for α = 19 and a Reynolds number Re = 105. The flow
domain was increased to 50Lr , while the depth is reduced to 4Lr . The initial volume released and the slope angle
were kept the same as in the Boussinesq case allowing a direct comparison. Fig. 6 shows an image of the density
contrast of the flow; the change in flow structure is clearly seen by comparing this image with Fig. 3.

In Fig. 7 the calculated mass centre velocity is plotted as a function of the position of the mass centre, non-
dimensionalized by Lr . The calculated velocity for α = 0.02 as well as the solution of Eqs. (1)–(3), taking β =
0,Cf = 0 and Ec = 0.26 are presented for comparison. There is good agreement with the model but the calculated
velocity decreases more rapidly than is predicted by the model. This may be due to a larger entrainment of ambient
fluid in the 2D simulations.
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Fig. 4. Front velocity vs. front position, —, numerical simulation with α = 0.02 and Re = 105, - -, numerical simulation with α = 0.02 and
Re = 104, − + −, experimental results of RH, with Reexp = ρaLr

√
αgLr/μa ≈ 3 × 104.

Fig. 4. Vitesse du front en fonction de la position du front, —, simulation numérique avec α = 0.02 et Re = 105, - -, simulation numérique avec
α = 0,02 et Re = 104, − + −, résultats de RH, avec Reexp = ρaLr

√
αgLr/μa ≈ 3 × 104.

Fig. 5. Height of the cloud vs. front position, —, numerical simulation with α = 0.02, θ = 32◦ and Re = 105, - - - -, numerical simulation with
α = 0.02 and Re = 104, – –, experimental results of RH approximated by dH

dxf
= 3.6 × 10−3θ + 0.013 (H is determined with respect to the virtual

origin at xf = −3Lr).

Fig. 5. Hauteur du nuage en fonction de la position du front, —, simulation numérique avec α = 0,02, θ = 32◦ et Re = 105, - - - -, simulation
numérique avec α = 0,02 et Re = 104, – –, résultats expérimentaux de RH approchés par dH

dxf
= 3.6×10−3θ +0.013 (H est déterminé par rapport

à l’origine virtuelle en xf = −3Lr).

In Fig. 8 the non-dimensional height is plotted versus front position for α = 0.02 and α = 19. There is clearly
a substantial decrease in the spatial growth rate of the cloud when the density ratio is large. The dashed straight
line represents the experimentally determined growth rate approximated by H = (3.6 × 10−3θ + 0.013)(xf − x0),
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Fig. 6. Aspect of the cloud in a numerical simulation with α = 19 and Re = 105: excess density Φ in colour code as a function of the space variables
x and z; coordinates are non-dimensionalized by Lr .

Fig. 6. Aspect du nuage simulé numériquement avec α = 19 et Re = 105 : excès de densité Φ en couleur en fonction des variables spatiales x et z ;
les coordonnées sont normalisées par Lr .

Fig. 7. Mass centre velocity of the cloud versus non-dimensional mass centre position, -·-, numerical simulation for α = 19, θ = 32◦ and Re = 105;
—, numerical simulation for α = 0.02 and Re = 105; · · ·, integrated model equation (1) for no snow-entrainment, β = 0 and Ec = 0.26, kv = 0.5,
Cf = 0. The velocity is non-dimensionalized by Ur = √

αgLr .

Fig. 7. Vitesse du centre de masse du nuage en fonction de la position sans dimension du centre de masse, -·-, simulation numérique pour α = 19,
θ = 32◦ et Re = 105 ; —, simulation numérique pour α = 0,02 et Re = 105 ; · · ·, equation modèle intégrée (1) sans entraînement de neige, β = 0
et Ec = 0,26, kv = 0,5, Cf = 0. La vitesse est normalisée par Ur = √

αgLr .

and the dotted line corresponds to the extrapolation to a non-Boussinesq cloud proposed by RH given by dH
dx

∣∣
NB =

dH
dx

∣∣
B

1+√
ρa/ρb

2 , where subscripts NB and B stand for non-Boussinesq and Boussinesq. The model predicts reasonably
well the decrease in growth rate when the density ratio is large (note that for the bed density ρb the value of the
initial density was used, ρb/ρa = 20). RH assumed that the spatial growth in cloud length does not depend on density
ratio. The numerical simulations confirm this assumption (Fig. 9). The aspect ratio of the avalanche (cloud), k = L/H

is, therefore, larger for large density difference clouds and is approximated by kNB = kB
2

1+√
ρa/ρb

. Consequently the

entrainment coefficient Ec is reduced by EcNB = EcB

√
(1 + √

ρa/ρb)/2. For a Boussinesq cloud on a slope of 32◦
the value of Ec is approximately 0.32, which gives for the non-Boussinesq cloud with α = 19 a value of Ec ≈ 0.25.
This justifies the value used for calculating the front velocity in Fig. 7.

It may be noted that the numerical simulations indicate a decrease in the spatial growth in height and an increase in
the growth in length when xf /Lr > 12. The reason for this is that the stratification causes the large eddies to collapse
when the eddy Froude number falls below about 1. In the similarity model, where it is assumed that the density of
the cloud is inversely proportional to the cloud volume, the overall Froude number is always larger than 1. In the
simulated flow (and probably in reality) this is not the case.
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Fig. 8. Non-dimensional height of the cloud versus front position. —, numerical simulation with α = 0.02 and Re = 105, -·-, numerical simulation
with α = 19 and Re = 105, – –, experimental results of RH for Boussinesq clouds, · · ·, extrapolation of experimental results to non-Boussinesq
conditions.

Fig. 8. Hauteur sans dimension du nuage en fonction de la position du front. —, simulation numérique avec α = 0,02 et Re = 105, -·-, simu-
lation numérique avec α = 19 et Re = 105, – –, résultats expérimentaux de RH pour des nuages de Boussinesq, · · ·, extrapolation des résultats
expérimentaux aux conditions non-Boussinesq.

Fig. 9. Non-dimensional length of the cloud versus front position. —, numerical results for α = 0.02; -·-, α = 19. The dashed straight line corre-
sponds to L = kH with kNB = kB

2
1+√

ρa/ρb
.

Fig. 9. Longueur sans dimension du nuage en fonction de la position du front. —, résultats numérique pour α = 0,02 ; -·-, α = 19. La ligne droite
en trait discontinu correspond à L = kH avec kNB = kB

2
1+√

ρa/ρb
.

4. Conclusions

To our knowledge the simulations presented in this paper are the first numerical simulations of large density dif-
ference, finite volume release gravity currents on steep slopes forming dense clouds. The finite element scheme used
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with dynamic mesh adaptation allows to reach sufficiently large Reynolds numbers but simulations are limited to
two dimensions. A comparison of numerical results with experiments in the Boussinesq limit shows that the essential
physics is well captured by 2D such simulations. The simulations apply to powder-snow avalanches under the assump-
tion that avalanches can be treated as a single phase, large density difference flow. This assumption is justified by the
value of the Stokes number (St < 0.1) and is further supported by the similarity model presented in Section 2 which
compares well with measured avalanche velocities. The closure parameters in this similarity model were determined
from laboratory experiments in the Boussinesq limit and extrapolated to non-Boussinesq clouds by RH. To a good
approximation the present numerical simulations support these theoretical extrapolations.
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