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Abstract

This work undertakes an analysis of parameters defining the rate of chemical reactions in turbulent premixed combustion with
particular emphasis on the strong turbulence case. Experimental data show that not only the laminar flame speed and rms turbulent
velocity but also both the details of chemical kinetics and the molecular transport coefficients are important in this case. Deter-
mination of the molecular transport rates inside a turbulent flame requires a two-point statistical description. In order to construct
such a description the transport equation for the two-point joint velocity and scalars probability density function is considered. It
proved possible to achieve a closure of the unclosed terms in this equation, including the micromixing terms, following Ievlev’s
method. To cite this article: A.A. Burluka, C. R. Mecanique 334 (2006).
© 2006 Published by Elsevier SAS on behalf of Académie des sciences.

Résumé

Raison d’être et formulation générale d’une description statistique en deux-point pour une combustion turbulente
pré-mélangée. Ce travail considère les paramètres définissant les taux de réactions chimiques dans une combustion turbulente
pré-mélangée en insistant sur le cas d’une turbulence forte. Les données expérimentales montrent que non seulement la vitesse de
flamme laminaire et l’écart type de la vitesse turbulente mais aussi à la fois les détails de la cinétique chimique et les coefficients de
transport moléculaire sont impotants dans ce cas. La détermination des taux de transport moléculaire dans une flamme turbulente
nécessite une description statistique en deux points. Afin de construire une telle approche on considère l’équation de transport de la
fonction densité de probalité conjointe en deux points de la vitesse et des scalaires. Il s’avère qu’il est possible d’obtenir une ferme-
ture de cette équation, incluant les termes de micro-mélange, à partir de la méthode de Ievlev. Pour citer cet article : A.A. Burluka,
C. R. Mecanique 334 (2006).
© 2006 Published by Elsevier SAS on behalf of Académie des sciences.
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1. Introduction

Conversion of fuel chemical bonds energy into thermal energy of the medium is made by means of turbulent
premixed flames in a number of circumstances. Most important, from an applied point of view, instances of premixed
combustion occur in spark-ignition engines, certain gas turbine combustion chambers and explosions of concern for
fire and hazard control. Generally speaking, flame in a turbulent medium composed of initially mixed reactants is
a propagating exothermic wave, however, the structure of this wave and its response to variation of turbulence or
reacting medium properties are not yet perfectly understood despite a large number of research papers devoted to the
subject. However, one very important step to understanding turbulent premixed combustion has been accomplished
with the classification [1,2] of different regimes of turbulent premixed combustion in terms of ratios of turbulence
rms velocity u′ to the laminar flame speed un and turbulent integral length scale lt to the laminar flame thickness δn.
Graphical representation of these dependencies has become known as a “Borghi diagram” and its extensive recent
discussion can be found in, e.g., [3, Chapter 7]. At the same time, while providing a useful insight into the nature of
turbulent combustion, the Borghi diagram does not give an immediate answer about the rate of combustion which is
the primary quantity of applied interest.

Two types of approaches have so far been developed for determination of the average heat release rate or chemical
reaction rates in premixed turbulent combustion. The first type is based on solution of transport equations for several
first moments of the fluctuating velocity and concentration fields, and the reaction rates are found from some a priori
assumptions, more or less according to the Borghi diagram, about the structure of the reaction fronts. Among these
one can cite the Eddy-Break-Up type models, e.g., [4], which assume that the reactions occur in infinitesimally thin
flame fronts, laminar flamelet models, e.g., [5,6] presuming that the local reactions rates equal those in (strained and
curved) laminar flames, as well as various models based on the concept of average flame surface, e.g., [7] or related to
it quantity of the average scalar dissipation, e.g., [8,9]. This type of model is usually related to only one of combustion
regimes identified in the Borghi diagram.

The possibility of describing several combustion regimes within the same model is offered, at least in principle,
by the second type of models, commonly referred to as ‘statistical’ or ‘probabilistic’. A model of this type aims
at the calculation of statistical properties, such as probability density functions (pdf’s), of reacting scalar, such as
a species concentration or temperature, fields and the reactions rates are calculated from their ‘exact’ instantaneous
rates (if those are known) taking into account the fluctuation statistics. This type of model was pioneered in 1960
by a then second-year PhD student V.A. Frost [10] who suggested a transport equation for a progress variable pdf.
While the original proposal [10] did consider both one and two-point statistics, most subsequent work has been
limited to one-point pdf’s only. Following the work [11], the Monte Carlo method is commonly employed for solution
of the pdf transport equation which is reformulated in terms of equations for properties of a discrete ensemble of
statistical particles. Alternatives to pdf’s concepts in this class include the Linear-Eddy model [12], reference scalar
field model [13,14] and recent attempts [15] to adapt the Conditional Moment Closure for the premixed combustion.
As compared with models of the first type which employ presumed formula(ae) for the mean reaction rate(s), the
models of the second class are invariably more complicated, heavier in required computational resources and the
question then arises as to whether this additional complexity is justified by their wider generality and applicability.

Very recently, two papers of monumental proportions [16,17] (featuring 350 and 571 referenced papers, respec-
tively) presented a comprehensive review of turbulent premixed flame properties and physical agents defining these
properties. These reviews also considered to what extent the models of the first group are capable of describing the
experimental data on turbulent flame speed and thickness. A number of critical factors, e.g., molecular transport rates
or unsteady character of a flame, have been highlighted in the analysis of [16,17] where it was found that the turbulent
burning rate strongly correlates with an extremum of the chemical time scale for curved developing laminar flames.
This chemical time scale depends not only upon the elementary reaction rates but also on the molecular heat and mass
diffusivities.

The probabilistic models capable of incorporating instantaneous rates of elementary chemical reactions have not
been considered in [16,17] and this provides the rationale for the present work. Departing from the conclusion of [16,
17] that the molecular transport coefficients are important, this work attempts to clarify what requirements have to be
satisfied by a probabilistic model in order to compete successfully against simpler models of the first group. Some
experimental data on burning rates are first discussed with a special emphasis on stronger turbulence where, according
to the Borghi diagram [2] one can expect a change in the combustion regime. Following this review an attempt is
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made to construct a model free of any presumptions about turbulent reactive zones structure and capable of taking
into account the molecular diffusivities explicitly. With this aim, the two-point joint velocity-scalars pdf is necessary
and a novel closure for its transport equation is developed here following the technique envisaged in [18].

2. Main factors determining the rate of turbulent premixed combustion

There exists a large number of variables which may affect the average rate of heat release in a turbulent premixed
flame. Some of these variables, such as the laminar flame speed un or molecular heat diffusivity κ are determined by
the mixture composition, pressure and temperature; some, such as turbulence properties, are dependent on flow and
flame geometry. A brief summary of how a particular variable can affect the average reaction rates is presented below;
the emphasis is put here on changing combustion regime which is usually associated with strong turbulence.

2.1. Turbulence parameters

In any ‘practical’ combustion chamber, e.g., an internal combustion spark-ignition (IC SI) engine, the turbulence
is neither homogeneous nor isotropic, so different velocity components ui have unequal rms values and nine different
integral length scales can be defined at any given point x→ from correlations 〈u′

i ( x→, t)u′
j ( x→+ r→, t)〉, i, j = 1,2,3.

While this may be true in theory, in reality measurements of turbulence inhomogeneity are scarce and most often the
turbulence description is given in terms of a single rms velocity u′ and either longitudinal or lateral integral length-
scale lt thus presuming local homogeneity and isotropy. Moreover, very often, the spectral properties of turbulence
are assumed to be given by Kolmogorov’s laws [19], thus assuming a steady velocity fluctuation spectrum. This may
not necessarily be true in non-steady flames, e.g., in explosions, however, while there is an experimental evidence [20]
that combustion modifies the turbulence spectrum, no assessment of applicability of Kolmogorov’s laws to combustion
flows is known. As far as this can affect the burning rate, there exists an early experimental evidence [21] that the rate
of combustion depends upon the spectral characteristics of the turbulence upstream of the flame paribus cæteris.
While this observation must not be discarded because of the lack of published follow-up research, a further study
with modern techniques is needed to clarify the influence of turbulence spectrum on combustion rate. In the absence
of measurements of the effects of turbulence inhomogeneity and spectral characteristics on combustion, the data
analysis has to be confined solely to the effects of u′ and lt .

The review [16] concluded that dependency of the burning rate Ut upon the integral length-scale lt cannot be es-
tablished without ambiguity because of controversy and paucity of available experimental data. It is also appropriate
to mention that the remarkable success of the Zimont–Lipatnikov model applied for very diverse flame configura-
tions [16], indicates that the effects of the integral scale are likely to be weak, because this model assumes that
Ut ∼ l

1/4
t . Herein the burning rate Ut is defined as the mass rate of the fresh mixture consumption, sometimes referred

to as ‘the consumption speed’. Use of the mass burning rate rather than the visible flame speed is chosen because the
latter is affected by the thermal expansion of the burnt gases differently, for different flame configurations.

For moderate turbulence the same model assumes that Ut ∼ u′3/4, and this dependency is well supported by the
data shown in Fig. 1 which were obtained in high pressure methane-air explosions. It can be seen that the power-
law dependency Ut = Const · u′3/4 used in the Zimont–Lipatnikov model provides quite a good approximation to
these data over the entire range of u′ achievable in the experiment, clearly demonstrating applicability of the model
advocated in the [16] for these conditions. However, this simple dependency of Ut upon u′ is no longer valid when
u′ is increased beyond a certain value u′

m [24,25]. When u′ is increased beyond u′
m the corresponding increase of

Ut with u′ slows down and, under certain conditions, it may even be negative, see Fig. 2. Finally, the combustion is
extinguished when u′ exceeds another threshold value u′

q [24,25]. This situation is illustrated on Fig. 2 presenting the
burning rates in explosions in the same mixtures as used in Fig. 1 but performed at the atmospheric pressure [23]. One
can see that for the mixtures with φ = 0.7, 0.8 and 1.0 u′

m ≈ 1.8, 2.5 and 3.0 m/s, respectively, while u′
q ≈ 3.0,5.7

for the former two mixtures while no quenching was observed for the stoichiometric mixtures [23]. It must be stressed
that the assessment of various models in [16,17] has been performed for u′ � u′

m while it has been remarked that the
stronger turbulence case with u′ � u′

m cannot, as a general rule, be adequately described with the models analysed
therein without invoking additional assumptions.

It should be noted that a general rule for calculating u′
m has not so far been proposed, perhaps partly because all the

changes in flame behaviour are gradual rather than sudden. Similarly, much uncertainty exists about the rms velocity
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Fig. 1. Mass burning rate in CH4-air spherical explosions for different
rms velocities measured at flame radius rfl = 6 cm at initial temper-
ature and pressures T0 = 358 K and p0 = 5 and 10 bar. Lines show
fitted dependency of the form Ut = Const · u′3/4 for explosions at
p0 = 5 bar. The experimental points are taken from [22].

Fig. 1. Taux de consommation de masse dans des explosions sphè-
riques de CH4-air pour plusieurs écarts types de vitesses mesurées
au rayon de flamme rfl = 6 cm aux température et pressions initiales
T0 = 358 K et p0 = 5 et 10 bar. Les courbes montrent une dépendance
de la forme Ut = Const · u′3/4 pour des explosions à p0 = 5 bar. Les
points expérimentaux proviennent de [22].

Fig. 2. Mass burning rate in CH4-air spherical explosions for the dif-
ferent rms velocities averaged over the flame radii rfl = 1.5–4.5 cm at
the initial temperature of T0 = 20 ◦C and atmospheric pressure. The
data are re-plotted from [23].

Fig. 2. Taux de consommation de masse dans des explosions sphè-
riques de CH4-air écarts types de vitesses moyennées sur les rayons
de flamme rfl = 1.5–4.5 cm à la température initiale T0 = 20 ◦C et à
la pression atmosphèrique. Les données proviennent de [23].

u′
q at which the flame is extinguished, and proposed expressions for u′

q [26] predicts that u′
q should decrease with the

pressure and this trend is contradicted by all available experimental evidence, as can be seen from comparison of the
curves for φ = 0.7 in Figs. 1 and 2, see also [20]. The pressure rise decreases the laminar burning velocity un and
greatly increases u′

q and the flame resistance to quenching by turbulence; the decrease in the mixture equivalence ratio
decreases both un and u′

q , therefore u′
q cannot be expressed solely in terms of un. Lack of general rules for predicting

u′
m and u′

q translates into an uncertainty about the validity domain of the simpler models such as those developed
in [16,17], and this provides a justification for further research with the probabilistic models in which both u′

m and u′
q

are outcomes rather that external input. In other words, use of more complicated models is justified provided any such
model must, firstly, describe adequately reaction rates at u′ � u′

m and reproduce the trends analysed in [16,17] and,
secondly, yield burning rate Ut dependency on u′ up to and including the extinction.

2.2. Mixture properties

The combustion regime in the Borghi diagram is characterised in terms of two variables defined by the mixture,
namely the laminar flame mass burning rate un and the laminar flame thickness δn. The latter is usually calculated
as δn = κ/un where κ is the molecular heat diffusivity in the cold reactants. Hence, the question about the influence
of the mixture properties is whether the burning rate in turbulent flow can be expressed in terms of only these two
parameters, especially for strong turbulence, u′

m � u′ � u′
q . An answer to this question, among other things, requires

a study of dependency of u′
m and u′

q on mixture properties.
Fig. 3 presents the burning rates measured [27] for diluted lean hydrogen–oxygen–nitrogen mixtures having equal

laminar flame speed of un = 17 cm/s and very close values of the Lewis number (defined as Le = κ/DH2 where DH2

is the hydrogen mass diffusivity), but different adiabatic flame temperature. The values of κ in the cold reactants is
approximately the same for these three mixtures, and so is the laminar flame thickness. While for moderately strong
turbulence, u′ � 3 m/sec, the burning rates do not differ appreciably, the flame behaviour is very different for stronger
turbulence. The 2H2 + 4.2(O2 + 3.76N2) mixture burns faster than that of 2H2 + 4.5(O2 + 3.76N2) at u′ = 3.5 m/s
but the quenching of these mixtures occurs at approximately the same conditions. Decrease of the oxygen content
in the mixture increases the flame adiabatic temperature; while this does not seem to affect the burning rates, the
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Fig. 3. Mass burning rate for atmospheric explosions of diluted lean
hydrogen–oxygen–nitrogen mixtures. The data are taken from [27].

Fig. 3. Taux de consommation de masse pour des explosions at-
mosphèriques de mélanges pauvres d’hydrogène–oxygène–nitrogène.
Les données proviennent de [27].

Fig. 4. Comparison of the mass burning rate versus rms turbulence in
the DTBP decomposition flame with the literature values reported for
the flames with the same Un and Le (taken from [28]).

Fig. 4. Comparison des taux de consommation de masse en fonction
de l’écart type dans la flamme de decomposition thérmique de DTBP
avec les données de la literature reportées pour des flammes de mêmes
Un et Le (prises dans [28]).

quenching limit is greatly enhanced. Therefore, the data presented in Fig. 3 indicate that, in addition to un and δn,
or κ , some additional factors must be considered. For the case of Fig. 3, because different degrees of dilution were
used, the rates of reactions involving the nitrogen as a third body may be different, however, it is most likely that the
observed differences are caused by variation in the adiabatic flame temperature.

The fact that the influence of mixture composition, temperature and pressure cannot be reduced to effects of the
laminar flame speed alone can as well be inferred from a comparison of any curve in Fig. 3 with the data for the
methane-air flame at the equivalence ratio φ = 0.8 shown in Fig. 1. This flame has approximately the same laminar
flame speed un ≈ 16 cm/s as the mixtures in Fig. 3 but its turbulent burning rates for u′ � 3 m/s and resistance to
extinction are distinctly different from theirs.

An attempt to explore to which extent the details of the flame chemical kinetics mechanism affect the burning rates
was undertaken in [28]. In contrast to commonly employed hydrocarbon and hydrogen oxidation flames which are
characterised with multi-step chain-branching chemical kinetics, this work reports a study of di-tert-butyl-peroxide
(DTBP) thermal decomposition flame. This DTBP thermal decomposition flame in an inert gas atmosphere is de-
scribed [28] with a single first-order reaction of which the rate constant is:

W = 2 × 1015 exp

(
−18282

T

) [
1

s

]
(1)

Fig. 4 presents comparison of the flame mass burning rates measured in the fan-stirred ‘bomb’ [28] for this simple
kinetics flame with the literature [29,30] values reported for the mixtures having the same values of un and Le. While
the inspection of Fig. 4 shows the effects of unsteady flame development, especially important in comparison between
the freely propagating flames [28,30] and Bunsen burner ones [29], it also indicates that the Ut(u

′) curves for DTBP
decomposition flames barely have any saturation effects, that is for this mixture the definition of an exact value for
u′

m is rather ambiguous. At the same time, for u′ � 1 m/s there is no noticeable difference in the burning rates
for all freely propagating flames regardless of their chemistry. This observation indicates that the chemical kinetics
mechanism details should be accounted for in determination of the average reaction rates for ‘strong’, i.e., u′ � u′

m,
turbulence, while their effects for ‘moderate’ u′ � u′

m are most likely to be encapsulated in terms of un, κ and Le, in
full agreement with the analysis of [17].

As a summary of the experimental observations presented above, as well as from the extensive analysis of data per-
formed in [16,17], one can state that the average reaction rates in turbulent premixed combustion depend, in addition
to commonly considered turbulence rms velocity u′, length-scale lt and laminar flame speed un, upon the molecular
transport coefficients, such as heat diffusivity κ and the Lewis number Le. The arguments presented above shows that
when u′ exceeds a certain value u′

m then, in addition to these factors, the adiabatic flame temperature and the details of
chemical kinetics mechanism become important. Because un itself is a function of elementary reactions rates and the
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molecular transport properties, a model of turbulent premixed combustion should take these into account in order to be
applicable across entire range of u′ from weak to strong turbulence. For strong turbulence the available experimental
data indicate that the dependency of the turbulent burning rate upon the molecular transport coefficients cannot be
expressed solely in terms of un, κ and Le.

3. Statistical model with the explicit account of molecular transport and details of the chemical kinetics

A turbulent combustion model valid across several combustion regimes must be capable of taking into account
both the molecular transport and the chemical kinetics in the flame. Molecular transport rate of a variable is defined
by the instantaneous values of its gradient, and its description therefore requires knowledge of a two-point statistics
of this variable. An additional advantage of the two-point statistical model is that, unlike the majority of existing
turbulent combustion models, it is self-contained, in a sense that it does not require any external information about
the turbulence length-scales. Below follows an attempt to develop such a model, taking as a departure the method
proposed by Ievlev in [18,32].

Let Ân = (aj , j = 1, . . . n) be a set of values of variables describing the reacting flow field: ( u→, ρ,Yα, α = 1, . . . l)

at points x→
k, k = 1,2, . . . n. Here u→ is the velocity field, ρ is the density and Y→ is the concentration vector. Let Pn(Ân)

be a joint n-point probability density function for the set Ân. Following [18,32], the ‘balance’, or transport equation
for Pn(Ân) can be written as:

∂Pn(Ân)

∂t
+ ûk

i

∂Pn(Ân)

∂xk
i

= − ∂

∂âk
i

〈
Fk

i

〉
Ân

Pn

(
Ân

)
(2)

where conditional rate of change (acceleration for a velocity component) 〈Fk
i 〉

Ân
= 〈 dai

dt
〉
Ân

of variable ak
i is expressed

in terms of pdf Pn+1(Ân+1) taken at n+ 1 points, because they are defined by conditions at n points and derivatives at
the kth point. To obtain 〈Fk

i 〉
Ân

, the usual set of equations of motion (Navier–Stokes), continuity and scalar transport
should be used:

〈
Fk

i

〉
Ân

=
〈
− 1

ρk
· ∂p

∂xk
i

+ ∂

ρk∂xk
j

ρkν∂uk
i

∂xk
j

〉
Ân

for âk
i = ûk

i (3)

〈
Fk

i

〉
Ân

=
〈
−∂uk

j

∂xk
j

〉
Ân

for âk
i = ρ̂k (4)

〈
Fk

i

〉
Ân

=
〈
− ∂

ρk∂xk
l

ρkDj∂Y k
j

∂xk
l

〉
Ân

+ Wj

(
Y→

k
)

for âk
i = Ŷ k

j (5)

where ν is the viscosity, Dj is the mass diffusivity of the j th species and Wj is its rate of conversion in chemical
reactions. Because 〈Fk

i 〉
Ân

depend upon the (n + 1)-point pdf Eqs. (3)–(5) require the so-called closure hypothesis

expressing these conditional rates of change in terms of n-point pdf’s and 〈Fk
i 〉

Ân−1
. For the scalar values pdf such

closure hypothesis for Eq. (5) are known as the micro- (or small-) scale mixing models. A considerable number
of small-scale mixing models have been proposed [31], but they are restricted to one-point pdf’s and the effects of
molecular diffusivities cannot be, as a matter of principle, described in such models [33].

3.1. Closed two-point joint velocity-scalars pdf equation

In 1970, V.M. Ievlev [18,32] extended the derivation of Eq. (2) to the case of joint velocity-scalars pdf and proposed
a general method of expressing the 〈Fk

i 〉
Ân

terms through n-point pdf’s using exclusively the formal mathematical
constraints such as normalisation and reduction properties. This methods allows one to achieve a closed description of
a turbulent flow for n � 2 without resorting to any a priori ideas about structure of the turbulent vortices, spectra, etc.
However, the proposed method was sufficiently complicated and the only application of Ievlev’s closure had so far
been made for studying the mixing of one non-reacting scalar in a homogeneous and isotropic turbulence [33], where
it was shown that the Ievlev’s method predicts correct physical trends in the evolution of an initially bi-modal pdf.
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The method [18] is based on an observation that the following properties of reduction, separation and coincidence
which should be satisfied by any Pn(Ân) can be expressed as a following set of integral equations for 〈Fk

i 〉
Ân

:

– Separation:∫ 〈
F

j
i

〉
Ân

Pn(Ân)d a→
k = 〈

F
j
i

〉
Â

(k)
n−1

Pn−1
(
Â

(k)
n−1

)
, j 	= k

– Coincidence and reduction:

lim
x→k→∞, x→j

〈
Fm

i

〉
Ân

→ 〈
Fm

i

〉
Â

(k)
n−1

Here Â
(k)
n−1 is the set of a→ values in all points except the kth one. Henceforth, one may attempt construction of

expression for 〈Fk
i 〉

Ân
as:

〈
Fk

i

〉
Ân

=
∑
j

g
k,j
i

(
Â

(k)
n−1

)〈
Fk

i

〉
Â

(j)
n−1

+ u
j
i · ∂ξk

j

∂x
j
i

(6)

where ξk
j are arbitrary functions of A

(k)
n−1 and the weight coefficients gj depend as well on the coordinates of all n

points. Eq. (6) is the original Ievlev’s formulation, and unfortunately it does not provide an explicit expression for gj

functions and one has to resort to numerical quadratures as was done in [33].
At the same time, for the two-point statistics a remarkable simplification can be obtained if one considers an

expression slightly more general than the original Ievlev approximation equation (6), namely:〈
Fk

i

〉
Â1,2

= g
k,1
i

(
x→

1, x→
2, Â1

)〈
Fk

i

〉
Â2

+ g
k,2
i

(
x→

1, x→
2, Â2

)〈
Fk

i

〉
Â1

(7)

It is easy to see that the generalisation is simply the postulated dependency of g
k,1
i on Â1. In writing Eq. (7) the

condition ξk
j = 0 has been used, and it is trivial to show that this condition corresponds to a constant density case.

The next step is to multiply Eq. (7) by P2(Â1, Â2) and integrate with respect to dÂ1:〈
Fk

i

〉
Â2

= 〈
g

k,1
i

〉(
x→

1, x→
2)〈Fk

i

〉
Â2

+ g
k,2
i

(
x→

1, x→
2, Â2

)〈
Fk

i

〉

Similarly, integration with respect to dÂ2 yields:〈
Fk

i

〉
Â1

= g
k,1
i

(
x→

1, x→
2, Â1

)〈
Fk

i

〉 + 〈
g

k,2
i

〉(
x→

1, x→
2)〈Fk

i

〉
Â1

Multiplying either of the above equations by P2 and integrating leads to〈
g

k,1
i

〉(
x→

1, x→
2) + 〈

g
k,2
i

〉(
x→

1, x→
2) = 1

Expressing g
k,1
i and g

k,2
i from the above three equations and substituting them back into Eq. (7) results in the sought

closure model:

〈
Fk

i

〉
Â1,2

= 〈Fk
i 〉

Â1
· 〈Fk

i 〉
Â2

〈Fk
i 〉 (8)

It is straightforward to see that this closure indeed satisfies re-numbering, reduction, coincidence and separation
properties. Its physical meaning is that the accelerations, or rates of change, averaged with simultaneous conditions at
two points can be expressed in terms of product of accelerations averaged with conditions at only one point.

Resulting from this closure Eq. (8) equations are best illustrated on the example of velocity pdf for an incom-
pressible flow. In this case, the pressure gradient can be expressed from solution of a Poisson equation as, e.g., for an
infinite unbounded flow, the averaging of which results in a clearly non-local term:

〈
− 1

ρ

∂p(x→)

∂xi

〉
ˆ

= 1

4π

∫
d3x→

′ · x′
i − xi

‖ x − x ′ ‖3

∫
d3 û→

′
û′
j û

′
k

∂2P2( x→
′, x→

m, Â′, Âm)

∂x′ ∂x′

Am → → j k
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At the same time the small-scale mixing term is local and contains explicitly the molecular viscosity:
〈
ν

∂2uk
i

∂xk
j ∂xk

j

〉
Âm

= ν

∫
d3 û→

′
û′

i lim
x→′→x→k

∂2P2( x→
′, x→

m, Â′, Âm)

∂x′
j ∂x′

j

Using the reduction property for a two-point pdf f2:

lim
x→2→x→1

P2
(
u→

1, u→
2, x→

1, x→
2, t

) = δ
(
u→

1 − u→
2)P1

(
u→

1, x→
1, t

)

the small-scale mixing terms can be further simplified to the sum:

−ν
∑
k,j

(∫
dûk

j · ûk
j

∫
dA(k) ∂2P2

∂xk
l ∂xk

l

)−1(∫
dûk

j · ûk
j

∂2P2

∂xk
l ∂xk

l

)
∂

∂ûk
j

((∫
dûk

j · ûk
j

∂2P1( û→
k
, x→

k, t)

∂xk
l ∂xk

l

)
P2

)

Similar terms proportional to the molecular diffusivities will arise in the micro-scale mixing description for the scalars
within the same framework.

The resulting set of Eqs. (2), (3), (8) form a closed set of non-linear equations, solution of which is, as was shown
in [18], the best possible approximation for the two-point statistical properties. At the same time, it is formulated in
terms of 15 + 2 × (number of scalars) dimensional functions and because of its high dimensionality the numerical
solution may be challenging. For a single reacting scalar problem, its numerical solution with grid discretisation tech-
nique would require approximately 1035 bytes which is way beyond any foreseeable computer capacity. Problematic
with alternatives to grid discretisation methods, such as Monte Carlo or discrete particles methods, is the representa-
tion of the non-linear terms involving various derivatives in Eq. (2). Therefore an obvious direction of study consists
in exploring whether a solution to Eqs. (2), (3), (8) can be found as a truncated series expansion in some suitable
function set.

4. Conclusions

Reviews [16,17] have demonstrated that the account of molecular transport properties is essential for an accurate
calculation of the rate of combustion. Those arguments are supplemented here with the observation that the details of
chemical kinetics also become important for stronger turbulence, in addition to all the factors reviewed in [16,17]. The
present work explores a possible framework for including both molecular transport properties and details of chemical
kinetics into a mathematical model of a reactive turbulent flow. This required the consideration of the two-point
fluctuation statistics and this work presents a closure for the two-point joint velocity-scalars pdf transport equations.
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