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Abstract

This Note presents an experimental vibro-acoustic set-up that aims to reproduce the energy pumping phenomenon between an
acoustic medium and an essentially nonlinear oscillator. It shows a one-way irreversible transfer of energy between the first acoustic
mode in a tube and a thin visco-elastic membrane. To cite this article: B. Cochelin et al., C. R. Mecanique 334 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Mise en évidence expérimentale de pompage énergétique en acoustique. Cette Note décrit un montage expérimental destiné
à reproduire le phénomène de pompage énergétique entre un milieu acoustique et un oscillateur purement non linéaire. Il montre
un transfert irréversible d’énergie entre le premier mode acoustique d’un tube et une membrane visco-élastique mince. Pour citer
cet article : B. Cochelin et al., C. R. Mecanique 334 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

This Note deals with the energy pumping phenomenon for acoustic applications. The energy pumping concept
has been introduced by Vakakis and Gendelman [1–3] in 2001: the idea is to passively reduce the vibrations in a
linear system (discrete or continuous) by attaching to it an essentially nonlinear damped oscillator. Under suitable
conditions, a one-way irreversible transfer of energy occurs from the linear system to the nonlinear one, leading to
an efficient cancellation of the oscillations in the linear system. Many recent papers have been published around this
interesting new concept,1 and to its application to various fields. For instance, the idea of using several nonlinear
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1 Because the attached nonlinear oscillator has no linear stiffness, the concept differs significantly from the classical tuned linear dynamic
absorber.
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oscillators to improve the pumping has been investigated in [4], and a first experimental validation of pumping has
been demonstrated in [5] on a two d.o.f. mechanical system.

In this Note, we describe an experimental set-up that permits us to obtain an irreversible transfer of energy between
an acoustic medium and a thin visco-elastic membrane. The membrane has been designed to perform large amplitude
oscillations in order to exhibit an essentially nonlinear stiffening behavior. This first academic verification of pumping
in acoustics is a first step toward the design of new generation of passive acoustic absorbers that would be efficient in
the low frequency range.

2. The theory of pumping: a brief overview

We consider a two degrees of freedom system consisting of two oscillators connected by mean of a small stiffness
coupling spring (Fig. 1). The first oscillator is a classical linear spring-mass system. The second one is composed by
a mass, a nonlinear cubic spring (without linear stiffness), and a damper. Rescaling time with the natural frequency of
the linear oscillator, the nondimensional equations for the positions u1(t) and u2(t) of the masses are

ü1 + u1 + β(u1 − u2) = 0

γ ü2 + μu̇2 + α3u
3
2 + β(u2 − u1) = 0

(1)

with γ the mass ratio of the two masses, β the small coupling coefficient, μ the damping factor in the nonlinear
oscillator and α3 the cubic stiffness coefficient.

The curves in Fig. 2 show the free oscillations of such a system when an initial velocity is given to the linear mass,
i.e. the mass of the linear oscillator. For small initial velocity, the motion looks like that obtained for u̇1(0) = 3: after
a transient phase, the two masses perform (almost) out of phase damped oscillations with a very slow (exponential)
decrease of the amplitude. For high initial velocity, the motion looks like the one for u̇1(0) = 4. We can see a first
transient zone, a pumping zone where a fast decrease of the linear mass amplitude occurs, another transient zone,
and again a slow decrease of both amplitudes. In the pumping zone, the decrease of the linear mass amplitude is

Fig. 1. A simple two d.o.f. vibrating system for illustrating the pumping phenomenon.

Fig. 1. Un système vibrant simple à deux degrés de liberté pour illustrer le phénomène de pompage.

Fig. 2. Free oscillations for the initial condition u̇1(0) = 3 (left) and u̇1(0) = 4 (right). The parameters are γ = 1, β = 0.1, μ = 0.1 , α3 = 1.

Fig. 2. Oscillations libre à partir de la condition initiale u̇1(0) = 3 (à gauche) et u̇1(0) = 4 (à droite).
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Fig. 3. Periodic solutions of the undamped system: solution curves A1(ω) and A2(ω) for β = 0.1, γ = 1, α3 = 1.

Fig. 3. Solutions périodiques du système non amorti : courbes de solutions A1(ω) et A2(ω) pour β = 0,1, γ = 1, α3 = 1.

linear with respect to time, the nonlinear mass keeps an almost constant amplitude, and the two masses oscillate
(almost) in phase. A one-way irreversible transfer of energy occurs from the linear system to the nonlinear one, where
it is finally dissipated. The pumping phenomenon can only occur when the initial velocity is over a threshold value
which is found to be around u̇(0) = 3.1 in this example. We want to insist on the unusual fact that a bigger impulse
(above the threshold) is more rapidly cancelled than a smaller one (below the threshold). The pumping phenomenon
is caused by a 1:1 resonance capture [2]. It can be enlighted by looking at the structure of the nonlinear modes
of vibrations of the system [1]. Hereafter, we look at the periodic solutions of the system (1) when the damping
coefficient μ is null. Following the harmonic balance method, we seek the motion under the form u1(t) = A1 cos(ωt)

and u2(t) = A2 cos(ωt). Introducing into (1) and neglecting the higher harmonics, we get the following algebraic
system for the amplitudes A1 and A2. It can be easily solved in closed-form.

(
1 + β − ω2

)
A1 + (−β)A2 = 0

(−β)A1 + (
β − γω2

)
A2 + 3

4
α3A

3
2 = 0

(2)

The solution curves A1(ω),A2(ω) are reported in Fig. 3. The two branches correspond to the (approximated) un-
damped nonlinear modes of the two d.o.f. systems. It can be seen that the two masses move in phase on the first
nonlinear mode and out of phase on the second one. It should be noticed that when β = 0 (no coupling), the solution

curves are the straight lines ω = 1 for the linear system and A2 = ±2
√

γ
3α3

ω for the nonlinear one (an essentially non-

linear oscillator has no natural frequency: it can oscillate at any frequency). If we now account for a small damping
μ, the free motion of the system occurs in the neighborhood of these nonlinear modes, but with a slow decrease of the
amplitude A1 and A2 with respect to time.

The numerical simulation shown in Fig. 2 can now be reconsidered. All the free motions occur on the branches
near the natural frequency of the linear oscillator. The (almost) out of phase motion with a slow decrease of amplitude
corresponds to the second nonlinear modes at low amplitude. The (almost) in phase motion, where the pumping effect
occurs, corresponds to the first nonlinear mode at large amplitude. A minimal initial velocity (or energy) has to be
given for the motion to take place on this first mode. The second transient zone in the simulation with u̇(0) = 4
corresponds to a jump from the first mode to the second one.

An insight of the irreversible transfer of energy and of the linear decrease of the linear mass amplitude that occur
in the pumping zone can be illustrated by considering a linear oscillator submitted to a sinusoidal force acting at
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the natural frequency of the system. The solution of ü + ω2u = f sin(ωt) with the initial conditions u(0) = A and
u̇(0) = 0, is

u(t) =
(

A − f

2ω
t

)
cos(ωt) +

(
f

2ω2

)
sin(ωt)

The velocity is u̇(t) = (−Aω + f
2 t) sin(ωt) and the power of the applied forces is always negative (one-way transfer).

It is this situation that occurs in the first equation of the system (1) during the pumping. The nonlinear mass oscillation
u2(t) is synchronized with u1(t), but with a small phase lag which produces the sinusoidal forcing mentioned above.

3. Design of the experimental set-up

The experimental set-up shown on Fig. 4 aims to reproduce the pumping phenomenon between an acoustic medium
and a thin visco-elastic membrane. The linear oscillator is here the first acoustic mode of the air contained in a tube.
The nonlinear damped oscillator is a thin membrane that performs large amplitude oscillations. The damping in the
nonlinear oscillator is due to the viscosity of the membrane. The two systems are slightly coupled by the air contained
in the box between the tube and the membrane.

A continuous model of this set up can be obtained by taking Helmholtz equation for the air contained in the tube,
and the nonlinear plate equation of the Von Kármán type for the thin membrane. A Kelvin–Voigt model is adopted to
account for the viscosity in the membrane: the stress tensor is related to the strain tensor and the strain velocity tensor
by σ = D(E,ν) : (ε + ηε̇), where D is a classical fourth order elastic tensor. As a first approximation, the continuous
model can be reduced to a two degrees of freedom system by taking u(x, t) = u(t) cos(πx

L
) for the air in the tube (first

undamped mode), and w(r, t) = q(t)(1 − ( r
R

)2) for the transversal displacement of the circular membrane (parabolic
shape function). The two coordinates u(t) and q(t) correspond to the displacement at the end of the tube and at
the center of the membrane. In the box, the acoustic velocity is supposed to be negligible and the pressure is thus
considered as spatially uniform. It is related to the volume variation by p = ρairc

2 �V
V

with �V = u(t)St − q(t) hSm

2 .
Applying a classical Galerkin method, we get the following reduced system

ü + u + β(u − q) = 0

γ q̈ + α3
(
2ηωq2q̇ + q3

) + β(q − u) = 0
(3)

which looks like (1) except for the dissipative term which is here nonlinear, because of the geometrical nonlinearity
in the membrane. Since the membrane performs large amplitude oscillations, the linear stiffness of the membrane has
been neglected in (3). This model reduction yields to explicit formulas for the coefficients β , γ and α3 with respect to
the physical characteristics of the set-up. The natural frequency of the linear oscillator being ω = πc

L
, we have

β = 2

π2

StL

V
, γ = 8

3

h

L

St

Sm

ρm

ρair
, α3 = 32

3(1 − ν2)π2

E

ρairc2

h3L

R4

St

Sm

(4)

Fig. 4. The experimental set-up consists in a tube, a box and a visco-elastic membrane.

Fig. 4. Le montage expérimental est constitué d’un tube, d’une boite, et d’une membrane visco-élastique.
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where h, R, Sm, ρm are the membrane thickness, radius, section and density, L, St are the tube length and section,
V is the volume of the coupling box, E the Young modulus of the membrane, ρair the density of the air and c the
sound speed.

The set-up has been designed to get ω ≈ 580 rd/s (≈92 Hz) β ≈ 0.1, γ ≈ 1, α3 ≈ 10−2. With these values, and
with η = 0.002, the threshold on the initial velocity (initial energy) is found to be compatible with the experimental
conditions. The physical parameters are L = 2 m, R = 0.03 m, St = 0.0069 m2, h = 0.00046 m, E = 1.3 × 106 Pa,
ν = 0.49, ρm = 1000 kg m−3, ρair = 1.2 kg m−3, c = 340 m s−1, V = 0.028 m3.

4. Results and comments

To start the motion in the system, we use a generator and a loudspeaker connected to the tube by mean of a coupling
box. Experimentally, we cannot use a single impulse to start the motion. Instead, we use a sinusoidal forcing at the
natural frequency of the set-up. This signal is suddenly turned off, and from that time, we observe the free oscillations
of the system. The curve in Fig. 5 has been obtained for an initial oscillating pressure of 380 Pa in the middle of the
tube. In that case, we are below the energy threshold for the pumping, and we can observe a classical exponential
decrease of the pressure in the tube. It should be noticed that the decrease is more pronounced than that in Fig. 2
because, experimentally, the linear oscillator is damped. For an initial value of 680 Pa, we have obtained the pumping
phenomenon as it can be seen in Fig. 6. We can see a linear decrease of the pressure amplitude in the tube, whilst

Fig. 5. Experimental results for an initial pressure of 380 Pa in the tube, showing a classical exponential decay: pressure in the tube (line); velocity
of the center of the membrane (dash). Both signals have been normalized to unity.

Fig. 5. Résultats expérimentaux pour une pression initiale de 380 Pa dans le tube : pression dans le tube (ligne continue) ; vitesse au centre de la
membrane (pointillé). Les signaux ont été normalisés a un.

Fig. 6. Experimental results showing the pumping effect. The initial pressure amplitude is 680 Pa. The pressure amplitude (continuous line) shows
a rapid linear decrease with respect to time, whilst the membrane keeps a constant velocity amplitude.

Fig. 6. Résultats expérimentaux montrant le phénomène de pompage. L’amplitude de la pression (ligne continue) présente une décroissance linéaire
rapide, pendant que la vitesse de la membrane garde une amplitude quasi-constante.
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the velocity of the membrane is almost constant. It should be noticed that the pumping occurs until the complete
cancellation of the oscillations in the tube (this is not the case in the simulation shown in Fig. 2).

This experimental device permits to show an irreversible transfer of energy from an acoustic medium to a visco-
elastic membrane, acting as an energy sink. It is a first step toward a more complete understanding of low frequency
noise reduction by using essentially nonlinear oscillators. Parametric optimisation is now scheduled, together with an
insight of potential acoustic applications.
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