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Abstract

The dynamic generalization—in the presence of inertia forces—of Eshelby’s force on an elastic singularity is presented, where
the total change of the energy of the system in two different defect motions, differing by an infinitesimal displacement throughout
the history of the motion, is computed by considering the difference in the work of the tractions (with inertia forces considered as
body forces) on a cut-out surface in Eshelby’s thought ‘cut and re-insert’ experiment needed to realize the shift of the defect in the
different motions. This expression, which coincides with a surface-independent obtained by Fletcher (1976) by applying Noether’s
theorem applied on the Lagrangian, is defined as the dynamic J integral. Changes of the energy of the system as computed by
the changes in the work of the tractions (by the same thought experiment) needed to realize the rotation of the defect yield an
expression that coincides with another expression obtained by Fletcher, and is defined as the dynamic L integral with meaning of a
moment on an elastic singularity, while changes in the work of the tractions with respect to a self-similar scaling parameter coincide
with another conserved expression in Fletcher, which is defined as the dynamic M integral. To cite this article: X. Markenscoff,
C. R. Mecanique 334 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Généralisation d’Eshelby pour les intégrales dynamiques J , L et M . Nous présentons la généralisation dynamique de la
force d’Eshelby agissant sur une singularité élastique en présence des forces d’inertie. Dans le cas étudié, on évalue la variation
totale de l’énergie du système avec deux mouvements différents d’un défaut en considérant la différence du travail des forces de
traction (en tenant compte de forces inertielles considérées aussi comme des forces appliquées au corps) sur la surface d’un élément
découpé dans l’expérience imaginaire d’Eshelby (« découpage et la re-insertion ») permettant d’effectuer le déplacement du défaut
dans des mouvements différents. Cette expression, qui coïncide avec l’expression obtenue par Fletcher (1976) et qui ne dépend
pas du choix de la surface par l’application du théorème de Noether au Lagrangien du problème, est définie comme l’intégrale
dynamique J . Les variations de l’énergie du système considérées comme celles du travail des forces de traction nécessaires pour
effectuer une rotation infinitésimale du défaut donnent une expression coïncidant avec une autre formule obtenue par Fletcher, et
sont définies comme l’intégrale dynamique L correspondant au moment cinétique de la singularité élastique. Les variations du
travail des forces de traction produisant la variation du paramètre d’échelle coïncident avec une autre quantité conservée obtenue
dans Fletcher, définie comme l’intégrale dynamique M . Pour citer cet article : X. Markenscoff, C. R. Mecanique 334 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

In a history making paper with remarkable intuition and insight, Eshelby [1,2], defined the ‘force on an elastic
singularity’ as the change of the total energy of the system (in the whole body) due to an infinitesimal displacement
of the defect, in effect comparing the change of energies in two different configurations and, by a famous thought
experiment ingenuously implementing the Lagrangian formulation in which the material displacement is −δξl , with
the defect in effect not shifting, so that finally the defect in physical space shifts by +δξl . Eshelby’s genius was
to compute in static elasticity this difference in the work of the surface tractions needed to implement the shift of
the defect, which equals the change in the total energy of the body, as a surface integral surrounding the defect,
showing in addition that the resulting J surface integral is path independent. In two-dimensional deformation fields,
the same result is derived for moving cracks [3]. The physical meaning of the conserved integrals J,L,M has been
demonstrated by Budiansky and Rice [4] and Rice [5], for defects in static deformation fields.

Here we present a generalization of the static definition of the force on an elastic singularity for a moving defect,
within elastodynamics, by comparing the changes in the total energy of the system in two different defect motions,
the histories of which differ by a constant displacement δξl for all times. In fact, we follow exactly Eshelby’s [2]
celebrated cut and re-insert thought experiment (performed quasistatically at a fixed time t) and compute (in the
presence of inertia forces considered as body forces) the work of the tractions on the surface S′ enclosing the cut-out
volume of the replica (due to the incremental displacement because of the shift) from which we subtract the work
of the tractions needed to reinsert the cut-out material into the hole S. This is the net increment in the energy of the
system to have the defect (shifted in the two different defect motions) and, as in statics, where Eshelby showed that it
is independent of the choice of the surface S, we show here that it is “surface independent” in dynamics as well, since
the expression coincides with a conservation law obtained by Fletcher [6] on the basis of Noether’s theorem. Since the
additional volume integral that appears in dynamics contains singularities, it has to be considered as Principal Value
and each defect has to be analyzed separately.

By the same procedure of computing the work of the tractions in the thought experiment and comparing the changes
in the work of the tractions to cut and re-weld in two different defect motions, the histories of which differ by a
constant infinitesimal rotation of the defect, we obtain an expression which coincides with another one of Fletcher [6],
which we define as the dynamic L integral having the physical meaning of a ‘moment’ on an elastic singularity for
dynamics. By computing the total energy change of the body with respect to a self-similar scaling parameter in two
different defect motions, computed by the same thought experiment that computes the difference of the work of the
surface tractions needed to implement the new configuration, we obtain an expression which is shown to coincide
with another conserved expression of Fletcher [6], now defined as the dynamic M integral. Eischen and Herrmann [7]
stated that the balance laws derived for elastodynamics in [6] “are not directly related to the energy release rates for
defect motion”. Here, we give to these conservation laws physical meaning as changes of total energy of the system
with rotation of the defect (L integral) and a self-similar scaling parameter (M integral), by comparing two different
motions as described above. While this dynamic force on an elastic singularity as presented here is distinct in concept
from the energy-release rate through the tip of the crack [8–11], that considers energy balance through a given moving
mass of material (shrinking to zero at the singularity), indeed the two are shown to be equivalent for moving cracks
[11–13]. For other defects, such as dislocations, etc., and for the L and M integrals for cracks, separate analyses are
needed.

2. Extension of Eshelby’s construction of the force on an elastic singularity to elastodynamics

Our definition of the “force on an elastic singularity” in the dynamic case is based on comparing two energy
functionals of the system at a time t , for two different motions of the defect ξ(t) and ξ ′(t) related to each other by
a constant displacement δξ : ξ ′(t) = ξ(t) + δξ , where ξ(t) is a vector in three-dimensional space. The two defect
positions are separated initially (at time t = −∞) by δξ and follow identical paths thereafter for all t . The task is how
to compute at a time t the difference in the energy in the whole domain for the two different motions of the defect
ξ(t) and ξ ′(t). This is an interpretation that we give to the concept of configurational mechanics, namely, what is
the difference in the energies of two systems with different configurations, and by this definition the difference in
configuration is uniquely defined. A translation of the defect may be considered to be effected by a ‘force’, which is
defined as a ‘dynamic force on an elastic singularity’. The Eshelby thought experiment implements this in statics, by
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computing the energy change as the difference of work of tractions on a surface surrounding the defect (needed to
shift and re-insert a cut-out volume) during a thought experiment that results in the defect translating by δξ . In the
dynamic case, we repeat Eshelby’s thought experiment and compute the work of the same tractions in the presence of
inertia forces acting as body forces, performed quasistatically at time t .

We consider the dynamic elasticity equations, with linear momentum equation

σij,i = ∂(ρu̇j )/∂t (1)

in Lagrangian coordinates where σij denotes the first Piola–Kirchhoff stress tensor, σijnj the force per unit reference
area (‘natural traction’), ρ the density in the reference state, W the strain energy density per unit reference volume with
σij = ∂W

∂ui,j
, and ∂

∂t
the material derivative at constant Lagrangian coordinates. As in statics, the dynamic J integral is

valid for nonlinear elasticity, while the dynamic integral M is only for linear, and the dynamic L integral is not valid
for anisotropy [6].

We follow Eshelby’s [6] ‘cut and re-insert’ thought experiment which we repeat below in its generalization to
elastodynamics. These steps are happening quasistatically at time t . We have a loaded body containing a defect
enclosed by an arbitrary surface S which encloses a volume V . We also consider a replica of it with S marked out,
and also denoting the surface produced by giving S a vector displacement −δξl , in the underformed state (see figure
in [2]). This process is along the lines of ‘reverse motion’ [12]. We denote by V ′ the volume enclosed by S′which is
equal to V . We then do the following operations in the four steps as in Eshelby [2], in order to compute the energy of
a system in which the defect has been displaced by +δξl :

(i) In the original system, cut-out the material inside S and discard it. Apply suitable tractions to the surface of the
resulting hole to prevent relaxation.

(ii) Cut out the piece of material inside in the replica and apply surface tractions to prevent relaxation. We denote by
u′

i the displacement in the replica and by ui in the original body, so that the difference for a translation by −δξl is

u′
i − ui = δui = −ui,lδξl + O

(
δξ2) (2)

We will next compute
∫
S
niσij δuj dS, the work of the surface tractions on the surface S′ enclosing the cut-out

volume V ′ = V due to the displacement δuj . We start from the equation of conservation of linear momentum (1),
multiply (1) by δuj and integrate in the volume V (e.g., [14, p. 316]) to obtain∫

V

σij,iδuj dV =
∫
V

∂

∂t
(ρu̇j )δuj dV (3)

We use differentiation properties, and make use of (3) to obtain∫
V

[
(δujσij ),i −δuj,iσij

]
dV = −

∫
V

ρu̇j δu̇j dV −
∫
V

∂

∂t
(ρu̇juj,l)δξl dV (4)

from which follows, by Gauss’ theorem on the first term of the L.H.S. of Eq. (4),∫
S

niσij δuj dS =
∫
V

σij δuj,i dV −
∫
V

ρu̇j δu̇j dV −
∫
V

∂

∂t
(ρu̇juj,l)δξl dV (5)

This is the desired expression, but the first two volume integrals in (6), can be further reduced to surface integrals
as in Eshelby’s articles [1,2]:∫

V

σij δuj,i dV = −
∫
V

σijuj,ilδξl dV = −δξl

∫
S

W dSl (6)

∫
V

ρu̇j δu̇j dV = −δξl

∫
V

ρu̇j u̇j,l dV = −δξl

∫
S

T dSl (7)

Eq. (7) may be seen if we consider the difference of the kinetic energies in the volume enclosed by and S′ and S:
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∫
V ′

1

2
ρu̇′

j u̇
′
j dV −

∫
V

1

2
ρu̇j u̇j dV =

∫
V ′

1

2
ρ(u̇j − u̇j,lδξl)(u̇j − u̇j,lδξl)dV −

∫
V

1

2
ρu̇j u̇j dV + O

(
δξ2

l

)

= −δξl

∫
V

ρu̇j u̇j,l dV + O
(
δξ2

l

)
(8)

because V = V ′. Eq. (5) is thus written∫
S

niσij δuj dS = −δξl

∫
S

W dSl + δξl

∫
S

T dSl − δξl

∫
V

∂

∂t
(ρu̇juj,l)dV (9)

The last integral in (9) is called pseudomomentum, and the time derivative may be taken outside the integral in
Lagrangian coordinates ([12, p. 82], [14], also [6]). This order of differentiation and integration is allowed to be
interchanged (and the derivative allowed to be taken outside the volume integral) if in the neighborhood of t the
volume integral converges uniformly. As stated by Eshelby [15], when a cut-off radius needs to be introduced
because of singularities, atomistics are needed, so for dislocations, separate analysis is required.

(iii) We try to fit the body bounded by S′ into the hole S, where nj is the outward normal to S. For that purpose,
since the shape of the surface S′ was changed by δui we give a displacement δui = −ui,lδξl to the surface of the
hole S, which requires expenditure of work, so that from (9) and (10)

−
∫
S

δuiσij dSj = δξl

∫
S

ui,lσij nj dS (10)

δETotal = −δξl

∫
S

W dSl + δξl

∫
S

T dSl − δξl

d

dt

∫
V

ρu̇juj,l dV + δξl

∫
S

ui,lσij nj dS (11)

If there is no singularity, then the difference in the work of the tractions
∫
S
niσij δuj dS to shift and reinsert would

have been zero. However, if there is an elastic singularity, then this difference, which is given by Eq. (11), is
defined as a configurational force on the defect:

F
dyn
1 =

∫
S

[
(W − T )δlj − σijui,l

]
dSj + d

dt

∫
V

ρu̇juj,l dV (12)

If V is a region of analyticity, expression (12) coincides with the one given by Fletcher [6], in integral form, derived
from the local one [6]

∂

∂xj

[
(W − T )δlj − σijui,l

] + ∂

∂t
(ρu̇iui,l) = 0 (13)

which is obtained by application of Noether’s theorem on the Lagrangian. If the integral of the pseudomomentum
in a volume surrounding the defect as a Cauchy Principal Value, or in the sense of distributions—according to the
particular defect—is added to the volume integral obtained from integrating (13) in the region of analyticity between
two different surfaces surrounding the defect, then expression (11) is obtained from (13) as ‘surface independent’.
Each defect has to be analyzed separately.

The relation of expression (11) to the energy release rate for moving cracks has been indicated by Eshelby [15]
(by use of the ‘transport assumption’ at the tip, and the reduction of the volume integral to a surface one of twice
the kinetic energy), and analytically treated in [11–13] where it is shown that (12) coincides with the energy-release
rate through a surface ∂D surrounding the defect, as ∂D → 0. Indeed, for the near field asymptotic steady-state
approximation ∂

∂t
= −ξ̇l

∂
∂xl

we have

lim
Dl,∂Dl→0

d

dt

∫
Dl

ρu̇iui,l dV = − lim
Dl,∂Dl→0

d

ξ̇l dt

∫
Dl

ρu̇iui,l dV = lim
Dl,∂S→0

∫
∂S

ρu̇iuinl dS

so that Eq. (12) yields

F
dyn
l = lim

∂D→0

∫ [
(W + T )nl − uj,lσjknk

]
dS (14)
∂D
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which is the energy release rate as defined by [8–10].

3. The dynamic “Moment on an Elastic Singularity”

We define the effective ‘moment’ on the singularity as − ∂E
∂ωi

, i.e., the change of the total energy of the system with
change of angle of rotation δωi of the defect by comparing two different motions as differing by a rotation of the
defect about a point at a distance �r so that

δξl = εljkxkδωj . (15)

We compute again the work of the surface tractions on S′ with displacement δuj (given by (2)), and subtract the
work of the tractions needed to re-insert the replica into the hole. But these expressions, will be in terms of δωl rather
than δξj , and we proceed as before, by writing Eqs. (3) and (4) with δξl given by Eq. (15). Now, instead of (5), we
have ∫

V

[
(δujσij ),i −δuj,iσij

]
dV = −

∫
V

ρ
∂u̇j

∂t
uj,lεlkmxmδωk dV

= −
∫
V

∂

∂t
(ρu̇juj,lεlkmxm)δωk dV −

∫
V

ρu̇j δu̇j dV (16)

By performing the indicated calculations in (16) and adding (10), the incremental work of the tractions on the
surface surrounding the defect (in the cut and re-insert experiment), when the singularity rotates by δωi , is obtained
and is equated to the difference of the energies in the two different configurations, so that we define as the moment on
an elastic singularity

Mi = − ∂E

∂ωi

= d

dt

∫
V

(ρεijkuku̇j + ρεijkxj u̇mum,k)dV

+
∫
S

(
εimjumσjk − εimjxjul,mσlk + εimkxm(W − T )

)
dSk ≡ Li (17)

which now gives physical meaning to the dynamic L integral. In (17) the time derivative is again taken outside
the integral ([12,6]). Expression (17) obtained by the Eshelby thought experiment (by computing the work of the
tractions) coincides indeed with the corresponding conservation integral obtained on the basis of Noether’s theorem
by Fletcher [6].

4. The physical meaning of the dynamic M integral

We proceed in an analogous way as with the L integral. In this case

δui = −ui,lxlδγ (18)

where γ is a self-similar scaling parameter, and we make use of the relations:∫
V

σij δuj,i dV = −δγ

∫
V

σijuj,ilxl dV = −δγ

∫
Cijrsur,suj,ilxl dV

= −δγ

∫
V

∂

∂xl

(
1

2
Cijrsur,suj,ixl

)
dV + δγ

∫
V

1

2
Cijklur,suj,ixl,l dV (19)

and the identity [7]

L + ρu̇i u̇i = ∂

∂t
[L + ρtu̇i u̇i] − t (σij u̇i),j

with L ≡ W − T .
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Proceeding with the calculation of the change of the work of the tractions while performing the cut and re-insert
experiment, as before, according to the Eshelby steps (i) through (iv), and using the identities above, after a semi-
involved calculation, which we omit here as straightforward, we obtain in 3-D space (xl,l = 3) the dynamic M integral:

M ≡ −∂E

∂γ
= d

dt

∫
V

[
ρu̇j (uj + xmuj,m + t u̇j ) + tL

]
dX −

∫
S

[
σjknk(ujxmuj,m + t u̇j ) − nkxkL

]
dS (20)

which coincides with corresponding expression obtained according to Noether’s theorem in [6], valid in the region of
analyticity.
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