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Abstract

This work is devoted to the numerical study of a composite under dynamic contact with friction loading, known as tribological
loading. A dynamic explicit finite element model is used and Lagrange multipliers allow determining the local forces due to contact
and friction. The convergence of numerical contact with friction models, achieved by using a regularized Coulomb friction law, is
presented first. This study also shows the equivalence between the results obtained with heterogeneous and homogeneous materials
under dynamical tribological loading. The homogeneous models are built by calling on classical homogenization theory because
the main wavelength of the loading is much higher than that of the heterogeneities and the contrast between elastic properties is
low. To cite this article: G. Peillex et al., C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Homogénéisation et sollicitations dynamiques tribologiques des composites. Ce travail est dédié à l’étude numérique d’un
composite sous sollicitations dynamiques de contact frottant appelées sollicitations tribologiques dynamiques. Un modèle éléments
finis en dynamique explicite est utilisé et l’usage de multiplicateurs de Lagrange permet la détermination des forces dues au
contact avec frottement. Dans un premier temps l’utilisation d’une loi de Coulomb régularisée permet de valider la convergence
des modèles numériques de contact frottant en dynamique. Cette étude montre aussi l’équivalence des résultats de dynamique du
contact obtenus entre des modèles hétérogènes et homogènes. Le comportement de ces derniers est calculé par la théorie classique
de l’homogénéisation sous réserve que les longueurs d’ondes des modes excités lors du chargement soient largement plus grandes
que la taille des hétérogénéités et que le contraste des propriétés élastiques des matériaux constituant le composite ne soit pas trop
élevé. Pour citer cet article : G. Peillex et al., C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Composite behavior under tribological loading is a difficult problem because it is a dynamic, multi-physical and
multi-scale problem. It is dynamic because vibrations can occur and multi-scale because of the particular structure of
the material. It has three scales: microscopic, composed of fibers (φfibre = 8 µm) and a matrix; mesoscopic (charac-
teristic length: 100 µm) composed of vertical layers (heterogeneities) embedded in a global matrix; and macroscopic
(characteristic length: 10 cm). The material is transversely isotropic at this last scale.

A model has been built that takes into account all the specificities of loading and the material, though from a purely
mechanical point of view. The physicochemical and thermal aspects of the problem are not taken into account in this
study. The model consists of a composite pin, modeled with finite elements, rubbing against a steel disk which is
replaced by a rigid surface as the stiffness of the steel is much greater than the stiffness of the composite. This is de-
scribed in the first part of the study, which also provides a brief presentation of the model and the numerical algorithm.
The second part of the study is devoted to the comparison between the mesoscopic scale and the macroscopic scale of
the material. In what follows mesoscopic scale stands for heterogeneous while homogeneous stands for macroscopic
scale. The second part illustrates that the homogeneous model obtained with static loading accurately represents the
behavior of the composite pin under dynamical tribological loading. Since the wavelengths of the eigenmodes ex-
cited by the loading are much higher than the size of the heterogeneities and the contrast of elastic properties of the
composite’s constituents is low, the classical homogenization process [1], is used.

2. Numerical model

2.1. The composite studied

Here we focus primarily on the mesoscopic scale. The model composite (shown in Fig. 1) consists of a collection of
heterogeneities embedded in a matrix. The volume rate of heterogeneities is ten percent. The properties of the matrix
and the heterogeneities are summarized in Table 1. The heterogeneities are vertical as this is a characteristic of the
real composite. They are about a hundred microns in width with a height from 1.2 to 3.6 millimeters.

The aim of this Note is to define a homogeneous model that represents the real behavior of the composite. The
homogeneous model takes into account the presence of heterogeneities by using homogenized properties.

2.2. Homogenization of the composite material’s properties

In order to determine the homogenized properties of the composite material (Table 1), six identical volumes
(8 mm × 28 mm) with six randomized morphologies (i.e. randomized distributions of heterogeneities), were mod-
eled in two dimensions with the commercial code Abaqus. The morphologies were assumed to be under plane strains
with static loading. The properties were determined by using the classical theory of homogenization. Two different
types of boundary conditions (stress or strain homogeneous on the contour Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4) (Fig. 2) were

Fig. 1. Morphology of the model composite.

Fig. 1. Morphologie du composite modèle.

Table 1
Mechanical properties of the models. (L and T stand for longitudinal (along
x) and transversal (along y), E stands for the Young modulus, ν for Poisson
coefficient, G for shear modulus and ρ is the density)

Tableau 1
Propriétés mécaniques des modèles. (L et T signifient longitudinal (selon x)
et transversal (selon y), E est le module de Young, ν est le coefficient de
Poisson, G le module de cisaillement et ρ la densité)

Mesoscopical model Homogeneous model

Heterogeneities Matrix Homogenized properties

E = 80 GPa E = 30 GPa EL = 31.9 GPa ET = 34 GPa
v = 0.2 v = 0.2 vLT = 0.2 vL = 0.2
G = E/2(1 + ν) G = E/2(1 + ν) GLT = 13.3 GPa
ρ = 1770 kg/m3 ρ = 1770 kg/m3 ρ = 1770 kg/m3
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Fig. 2. Boundary conditions applied on a deformable/rigid contact
model.

Fig. 2. Conditions aux limites appliquées sur un contact défor-
mable/rigide.

Fig. 3. Phase diagram of the central point in contact M for 2 differ-
ent meshes (h = 0.25 mm coarse mesh, h = 0.1 mm fine mesh) and
for 2 different time steps (�t = 5 ns and �t = 2 ns). Convergence
through grid size and time step reduction by using regularized
Coulomb friction law. (μ = 0.25, P = 0.5 MPa, V = −2 m s−1,
β = 1.1e−09, L∗

V
= 1500 ns).

Fig. 3. Diagramme de phase du point central au contact M pour
deux tailles de maille differentes et pour deux pas de temps diffe-
rents. Convergence en maillage et en temps par utilisation de la loi
de Coulomb régularisée.

applied in order to determine the five constants defining the behavior of a transversely isotropic material [2]. It was
shown [3] that the results given by these two types of boundary conditions limit the exact result. The very low standard
deviation between the results obtained with the two types of boundary conditions proves that the properties shown in
Table 1 are very close to the exact ones.

2.3. Numerical model

As the simulations had to take into account non linear dynamic effects, PlastD [4,5] 2D explicit dynamic finite
element laboratory code was used. This software uses the forward Lagrange multiplier (1) method to determine the
contact forces, λn, and a Newmark-β2 time integration scheme (2). Moreover it takes into account large deformations.

The equation of the forward increment Lagrange multiplier method is constructed using equations of motion de-
veloped via the principle of a virtual work equation at time tn (tn = n�t) and the displacement constraints acting on
the surfaces in contact at time tn+1⎧⎪⎨

⎪⎩
Mün + Cu̇n + Kun + GT

n+1λn = f ext
n

Gn+1{xn + un+1 − un} � 0

C = βK

(1)

where Gn+1 is the global matrix of the constraint, un and un+1 are the displacement vectors at time tn and tn+1,
xn and xn+1 are the position vectors respectively at time tn and tn+1. M , C and K are respectively the mass, damping
and stiffness matrices. β is a damping coefficient. f ext

n are the nodal vectors of external forces. The dot and double
dot superscript stands for first and second partial derivative with respect to time. At any time step, the velocity u̇n and
acceleration ün vectors are related to displacements and time step �t in accordance with the β2 method (β2 ∈ [0.5;1[)⎧⎪⎪⎨

⎪⎪⎩
u̇n = 1

1 + 2β2

[
u̇n−1 + �t(1 − β2)ün−1 + 2β2

�t
(un+1 − un)

]

ün = 2
(un+1 − un − �tu̇n)

(2)
�t2
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In order to achieve stability and convergence of the β2 method the time increment �t must conform to the Courant–
Friedrichs–Lewy condition

�t � lmini

cmax
(3)

lmini is the minimal element length and cmax is the maximal speed wave of the material. The time step �t is equal
to 5 ns throughout this study. The deformable/rigid model used is shown in Fig. 2. It consists of a rectangular pin
(	1), modeled with linear quadrilateral finite elements under plane strains assumption, rubbing against a rigid flat
surface which has a translation speed of −2 m s−1. A pressure, P, is applied on the top of the pin. The status of a node
on the contact surface was obtained by using a friction law (4). The loading due to dynamic contact with a constant
friction coefficient was neither uniform over the whole model nor constant [6,5,7]. Contact instabilities, coexisting
with the waves, could occur and propagate in the model and were observed experimentally [8]. A regularized friction
law, also known as ‘simplified Prakash–Clifton law’, was used (4) [9] in order to avoid convergence problems that can
occur when using a classical Coulomb law to model solids rubbing against one each other numerically [10,11]. This
regularized friction law links the tangential contact stress τ to the normal contact stress σ by way of the coefficient of
friction μ⎧⎨

⎩
|τ ∗| < μ|σ | ⇒ stick: [u̇] = 0; τ = τ ∗

|τ ∗| > μ|σ | ⇒
{

slip: τ̇ = −|V |/L∗(τ − αμ|σ |)
∃γ � 0 s.t. [u̇] = −γ τ

α =
{

1, τ ∗ � 0

−1, τ ∗ < 0

(4)

Here [u̇] stands for the relative tangential speed between a node at the interface and the rigid surface. τ ∗ is the
tangential contact stress calculated under the sticking assumption and V is the sliding speed of the surface. L∗ is
a length parameter and the dot superscript stands for partial derivative relative to time. Throughout this study the
friction coefficient μ is equal to 0.25 at every point of the model in contact with the rigid flat surface, and the ratio L∗

V
is equal to 300 times the time step. Convergence through grid size and time step reduction was achieved by using this
particular friction law and are shown in Fig. 3.

3. Comparison of two scales for modeling the tribological behavior of a composite

This section deals with a comparison between a homogeneous model, with the properties described in Table 1,
and a mesoscopic one, defined by heterogeneities embedded in the matrix whose properties are those of the two
first columns of Table 1. Chen et al. [12] showed that for homogenization problems with highly contrasting elastic
properties between the heterogeneities and matrix, it is necessary to take into account wave dispersion due to multiple
reflection of the waves at the interface between the different materials of the composite. In the case presented here
the elastic contrast is low and the dispersion phenomena is negligible. Moreover, the wavelengths of the eigenmodes
excited in the model are much higher than the size of heterogeneities. For example the main frequency, f , of the
normal stress in the contact zone is about 160 kHz. With a longitudinal wave speed, c, of the matrix equal to 4200
m/s1 it corresponds to a wavelength λ = c

f
of about 26.25 mm. This value is approximately 10 times greater than the

size of the heterogeneities. Furthermore, structural damping and regularized friction law allow the minimization of
the influence of high frequencies and so decrease the risk of high frequencies reflection on the heterogeneities. From a
purely dynamical point of view the material can be seen to be homogeneous [9]. The aim of this section is to establish
whether the same conclusion can be drown under tribological loading.

The homogenization process does not take into account the dynamical parameters of the model such as the damping
coefficient. To estimate the influence of this parameter on the calculations, simulations of the behavior of a composite
beam in free vibration were performed with laboratory software. It was established that the damping coefficient in
the homogeneous model had to be equal to that used in the mesoscopical model, Fig. 4. Throughout this study the
damping term β is equal to 1.1e−09.

The applied pressure P on the finite element model (Fig. 2) successively takes values 0.5 MPa, 2.5 MPa and 5 MPa.
These three cases correspond, for a friction coefficient μ equal to 0.25 (the same throughout this study), to three types
of instabilities occurring at the interface of contact. Under low pressure, an arbitrarily chosen contact node slides
on the rigid surface or is separated from it. This instability is called the ‘slip-separated’ instability. In the medium
pressure range the ‘stick-slip-separated’ instability appears [7]. Under high pressure, all the contact nodes slide on the
surface. A homogeneous and six randomized mesoscopic models were tested under each of these loading conditions.
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Fig. 4. Scheme and response of a composite beam and of the homogeneous equivalent beam subjected to free vibrations. The length of the beam is
28 mm and the volume fraction of heterogeneities is 10%. The elastic contrast is about 8/3. The damping term β is equal to 1.1e−09 everywhere
in the heterogeneous model and is the same in the homogeneous model.

Fig. 4. Schema et réponse d’une poutre composite et du modèle homogène équivalent en vibrations libres. La longueur de la poutre est de 28 mm
et la fraction volumique d’hétérogénéités est de 10%. Le contraste élastique est de 8/3. Le terme d’amortissement β est égal to 1.1e−09 partout
dans le modèle hétérogène et est identique dans le modèle homogène.

The results presented below concern the global friction coefficient (Table 2) which is the ratio of the sum of the
tangential forces (along x) at the upper face of the pin over the sum of the normal forces (along y) at the upper face of
the pin. The phase diagram (Fig. 5), i.e. tangential speed of the point versus its tangential displacement, of the central
point in contact, M (see Fig. 2) is also shown.

3.1. Low pressure; ‘slip-separated’ instabilities

In this section the applied pressure, P, has a value of 0.5 MPa which corresponds to a ‘slip-separated’ instability.
The results presented in Fig. 5(a) are obtained with six different morphologies each of them having ten percent
heterogeneity in volume. The six different morphologies give almost the same results, see Fig. 5(a). This means that,
for the contrast of properties shown in Table 1, the volume chosen is representative of the composite. In Fig. 5(b) the
results obtained with a homogeneous model with only matrix properties show that this model is not equivalent to the
mesoscopic ones. However if the homogenized properties described in the last column of Table 1 are introduced in
a homogeneous model then the results obtained are equivalent to those of the mesoscopic models. Consequently, an
equivalent homogeneous model with a dynamic contact with friction loading was obtained, see Fig. 5(b).

3.2. Medium and high pressure; ‘stick-slip-separated’ and ‘slip’ instabilities

Others values of applied pressure, P , have been introduced in the model. A value of P = 2.5 MPa corresponds to a
‘stick-slip-separated’ instability and a value of P = 5 MPa corresponds to a ‘slip’ instability. For these loading cases
two heterogeneous models have been compared to the homogeneous model. The results are not shown here but the
model with homogenized properties gave a result very close to those given by the two mesoscopic models and for the
two different types of instabilities occurring in the contact.

3.3. Conclusion

The work presented in this third part shows that, if the elastic contrast is low and if the wavelengths of the eigen-
modes excited by the loading are much higher than the size of heterogeneities, the behavior of the homogeneous
model, with homogenized properties obtained under static loading, is equivalent to that of the mesoscopic models,
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Fig. 5. P = 0.5 MPa; μ = 0.25; ‘slip-separated instabilities’. The top figure represents the phase diagram of the tangential movement of the central
point in contact, M . The bottom figure represents the spectrum of the global friction coefficient. Left: results for six different morphologies with a
volume rate of 10% of heterogeneities. Right: Results for two homogeneous models. Shaded: homogeneous with homogenized properties. Light:
homogeneous with only matrix properties.

Fig. 5. P = 0,5 MPa ; μ = 0,25 ; « instabilités de type glissement-décollement ». La figure du haut représente le diagramme de phase du mouvement
tangentiel du point central au contact, M . La figure du bas représente le spectre du coefficient de frottement global. Gauche : Résultats pour six
morphologies différentes ayant un taux volumique d’hétérogénéités de 10%. Droite : Résultats pour deux modèles homogènes. Foncé : homogène
avec des propriétés homogénéisées. Clair : homogène avec seulement les propriétés de la matrice.

Table 2
The global friction coefficient averaged through time for different models and different loadings. The Homo. matrix model, which is the homoge-
neous model with only matrix properties (see Fig. 5(b)) gives results quite different from those of the mesoscopic models, whereas the model with
homogenized properties gives results very close to those obtained with the mesoscopic models

Tableau 2
Le coefficient de frottement global moyenné au cours du temps pour différents modèles et différents chargements. Le modèle Homo. matrix, qui
est le modèle homogène avec les propriétés de la matrice (cf. Fig. 5(b)) donne des résultats différents de ceux des modèles mésoscopiques, alors
que le modèle homogène à propriétés homogénéisées donne des résultats proches de ceux obtenus avec les modèles mésoscopiques

Model μglobal averaged

P = 0.5 MPa P = 2.5 MPa P = 5 MPa

Homo. matrix 0.183 0.234 0.245
Homo. homogenized 0.173 0.213 0.247
Mean of the meso. 0.176 0.210 0.246

whatever the type of instability occurring in the contact zone. This fact is confirmed by Table 2, which shows more
quantitative results. The homogeneous model represents the macroscopic behavior of multiple mesoscopic models.

4. Conclusion

This numerical study demonstrated that a regularized Coulomb friction law allows good convergence of finite ele-
ment models under dynamic contact with friction loading. A multiscale approach for composites under this particular
loading is proposed and allows mapping two different scales. Thanks to a low contrast of elastic properties and a sig-
nificant difference between the size of heterogeneities and the wavelength of the eigenmodes excited by the loading,
mapping of the mesoscopic scale to the macroscopic one is performed by using the classical homogenization theory.
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