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Abstract

Secondary and oscillatory instabilities in thermal gravitational convection have been the focus of intensive studies over recent
years due to their relevance in materials science, and in particular, in the field of crystal growth from the melt. The purpose of
the present discussion is to provide a comparative and critical review of the subject through examination of existing studies and
very recent contributions. It complements earlier reviews (Lappa, 2005) that were limited to the survey of steady three-dimensional
symmetry breaking effects and/or the primary bifurcation of the flow. To cite this article: M. Lappa, C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Instabilités secondaires et oscillatoires dans des modèles 3D canoniques pour la croissance cristalline. 1ère partie : des
systèmes Rayleigh–Bénard. Les instabilités secondaires et oscillatoires pour la convection gravitationnelle thermique ont fait
l’objet d’études intensives durant les dernières années du fait de leur pertinence en science des matériaux, et plus particulièrement
dans le domaine de la croissance cristalline. Le but de la présente discussion est de fournir une revue comparative et critique du
sujet par l’examen des études existantes et de contributions très récentes. Il complète les précédentes revues (Lappa, 2005) qui ont
été restreintes à la brisure de symétrie tridimensionnelle dans le cas stationnaire et/ou à la première bifurcation de l’écoulement.
Pour citer cet article : M. Lappa, C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

There has been an explosive growth in the development of new materials and processing techniques in recent years
to meet the challenges posed by new applications arising in electronics, telecommunications, aerospace, and other new
and traditional areas. New approaches have been developed to improve product quality, reduce cost, achieve essen-
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Fig. 1. Canonical geometrical models: (a) cylinder, (b) parallelepipedic enclosure.

Fig. 1. Modèles géométriques : (a) cylindrique, (b) parallélépipédique.

tially custom-made material properties and current trends indicate continued research effort in materials processing as
demand for specialized materials continues to increase.

It is well known that in many circumstances the quality of the final product implicitly depends on the process of
solidification. For example, during crystal growth, heat flux fluctuations from the melt to the crystal produce a cycle
of crystallization and remelting at the interface. This cycle produces dislocations and other microscopic defects in the
crystal (see the detailed discussion below).

For terrestrial crystal growth from a body of liquid (melt) without a magnetic field, the buoyant convection in
the melt is generally oscillatory. The associated oscillations in the heat flux from the melt to the crystal produce
fluctuations in the local growth rate, with alternating periods of growth and remelting in severe situations.

The elements or dopants which give the crystal the desired properties, are generally rejected during crystallization,
so that there is a large dopant concentration in the melt adjacent to the growth interface. When the local growth rate
decreases, dopant can diffuse away from the growth interface, leading to a lower local concentration in the crystal, and
when the local growth rate increases, the crystal overtakes the rejected dopant, leading to a higher local concentration
in the crystal (the spatial oscillations of the dopant concentration in the crystal are usually referred to as ‘striations’).

For these reasons, this article is devoted to a critical and concise analysis of thermal gravitational convection.
Some effort is provided to illustrate its genesis, the governing non-dimensional parameters, the scaling properties, its
structure (under various heating conditions and in different geometrical configurations, see Fig. 1) and, in particular,
the stability behavior and the possible bifurcations to oscillatory regimes. Thus, the present discussion can be regarded
as a necessary extension of earlier reviews (Lappa [1,2]), that were focused on primary instabilities and symmetry
breaking effects.

Many existing studies are reviewed and discussed through a comparison of experimental and numerical results and
theoretical arguments introduced over the years by investigators to explain the observed trends. Some up-until-now
unpublished results are also used for a better presentation of some cases of interest (Figs. 2 and 3). The final goal is to
clarify still unresolved controversies pertaining to the physical nature of the dominating flow instability responsible
for asymmetric/oscillatory convection in various technologically important processes.

An obvious justification for the long lasting (and continuing) efforts in this field can be found, as mentioned
above, in the relevance that these dynamics have in several industrial applications. However, it is rather clear that
these problems have also exerted an appeal on scientists and engineers as a consequence of the complexity of the
possible stages of evolution and of the nonlinear behavior. This complexity is shared with other systems in nature and
constitutes a remarkable challenge for any theoretical model.

2. Relevant non-dimensional numbers

The non-dimensional numbers relevant to thermogravitational convection are the well-known Prandtl and Rayleigh
numbers
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Fig. 2. Snapshots of 3D Rayleigh–Bénard convection (vertical velocity component in the horizontal midplane) in an enclosure heated from below
with adiabatic lateral walls and Lx = 4, Ly = 1, Lz = 4 (Pr = 0.01, silicon, Ra = 3 × 103, oscillatory convection) at two different times during a
period of the oscillations: (a) disturbance mode with four straight rolls along the x coordinate; (b) diagonal mode with soft rolls.

Fig. 2. Convection de Rayleigh–Bénard 3D (composante verticale de la vitesse dans le plan median horizontal) dans une cavité chauffée par le
bas avec des parois Lx = 4, Ly = 1, Lz = 4 (Pr = 0,01, silicon, Ra = 3 × 103, convection oscillatoire) à deux differents instants d’un periode
d’oscillations : (a) quatre cellules rotatives le long de la coordonnée x ; (b) mode diagonal.

Fig. 3. Example of temperature (contour map) and velocity (streamlines) fields for various possible regimes of plume evolution (the plume is
obtained by placing a line heat source at the center of the bottom surface of a box of colder fluid): (a) viscous-nondiffusive regime (VND) Pr = 15
and Ra = 107; (b) Inviscid-diffusive regime (IVD) Pr = 0.01 and Ra = 107; (c) Inviscid-nondiffusive regime (IVND) Pr = 1 and Ra = 108.

Fig. 3. Exemples des champs thermique (isothermes) et dynamique (lignes de courant) pour différents régimes possibles d’évolution de plumes (la
plume est obtenue en plaçant une source de chaleur linéique au centre de la base d’une cavité de fluide froid) : (a) régime visqueux-nondiffusif
(VND) Pr = 15 et Ra = 107 ; (b) régime non visqueux-diffusif (IVD) Pr = 0,01 et Ra = 107 ; (c) régime non visqueux-non diffusif (IVND) Pr = 1
et Ra = 108.

Pr = υ

α
(1)

Ra = gβT �T L3

υα
(2)

where υ is the kinematic viscosity, α the thermal diffusivity, g the gravity acceleration, βT the thermal expansion
coefficient, �T a reference temperature gradient and L a reference length for the geometrical configuration of interest.

Gr = Ra/Pr = gβT �T L3

(3)

υ2
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is the Grashof number which represents the ratio of buoyant to molecular viscous transport (only two of the Gr, Ra
and Pr numbers are independent).

3. Systems heated from below: the Rayleigh–Bénard problem

For the past century, Rayleigh–Bénard convection has been the subject of very intensive theoretical, experimental
and numerical studies. This problem presents, during the evolution from the stationary state to the fully developed
turbulent regime, such a rich scenario of different structures and sequences of bifurcations that it is widely regarded
as a reference problem for the study of different transition mechanisms in fluid dynamics.

It is known that the primary bifurcation from the quiescent condition is caused by two-dimensional perturbations
of the diffusive state (see, e.g., the discussions in Gelfgat [3]) and that the threshold value of the Rayleigh number
does not depend on the Prandtl number, i.e. on the model liquid used for the experiments (as shown by Luijkx and
Platten [4], for rectangular containers Racr is essentially a function of the aspect ratio). For a laterally unlimited
domain, the fluid motion is regular and organized as a set of horizontal parallel rolls (quasi-two-dimensional motion,
Busse [5]).

An increase of Ra can cause the loss of stability of these configurations, which are replaced by fully-three-
dimensional flow. As shown by many authors, for the case of parallelepipedic enclosures there are several possible
instability mechanisms, such as ‘cross-roll’, bimodal convection, and ‘soft-roll’, according to the Prandtl number and
the wave number (the number of rolls). Under the same conditions, the Navier-Stokes equations may have more than
one solution. The several solutions can be categorized according to the following classification:

(i) Quasi two-dimensional patterns in the form of rectilinear rolls consisting of (a) n transverse rolls (nT regime,
n being an integer), which are orthogonal to the longest side of the parallelepipedic box (see, e.g., the exper-
iments of Gollub and Benson [6] and Mukutmoni and Yang [7] and the numerical investigation of Stella and
Bucchignani [8]); (b) n longitudinal rolls (nL regime), which are parallel to the longest side wall of the box.

(ii) Fully three-dimensional flow caused by: (a) bimodal convection, consisting of a base flow superimposed with
cross rolls of approximately the same strength as the base flow (these rolls emerge at right angles to the original
rolls, see, e.g., the numerical investigation of Edwards [9]); (b) distortion of the original rolls into an L shape
(this configuration, called soft-roll since it is given by the superposition of two rolls whose axes are not parallel,
allows a continuous transition between different wave number flow patterns, has been experimentally observed
by Kolodner et al. [10] and numerically modeled by Stella et al. [11] in relatively shallow enclosures).

Within such a context it is also worth citing the recent numerical investigation (finite element method) of Tang
and Tsang [12] who have found several physical phenomena, such as multicellular flow pattern, oscillatory transient
solution, ‘T-shaped’ rolls at the ends of a rectangular box (see also Mukutmoni and Yang [13]), and roll alignment.

In these systems typically time-dependent periodic behaviors occur as a secondary bifurcation. The oscillatory
instabilities of long straight parallel rolls (in shallow cavities) calculated by Clever and Busse [14] appear, e.g., as
traveling waves along the rolls. The flow is characterized by a sinusoidal wave traveling the axes of the rolls, moving
them alternately left and right (see also the experiments of Gollub and Benson [6]; Mukutmoni and Yang [7,15] for
other possible oscillatory behaviors).

The Rayleigh number for the onset of this time-dependent flow strongly depends on the aspect ratio of the en-
closure. While, as illustrated before, the first critical Rayleigh number (Racr) depends only on the cell geometry, the
critical value for the appearance of the time dependent behavior, however, is also strongly dependent on the Prandtl
number (Busse [16]; Busse and Whitehead [17]). This instability occurs in low-Prandtl fluids at smaller Rayleigh
than in high-Prandtl fluids. The same result was obtained by Krishnamurti [18] who investigated the time-dependent
transition in a fluid layer for a wide range of Prandtl numbers (0.025 < Pr < 8500) and found a systematic lowering
of all the critical Rayleigh numbers (except for the first, Racr) when the Prandtl number was decreased.

The onset of oscillatory flow in three-dimensional parallelepipedic enclosures heated from below for sufficiently
high values of the Rayleigh number has been recently considered (numerical simulations) by Tomita and Abe [19] and
Stella and Bucchignani [8], and by Xia and Murthy [20] for different shallow and deep configurations, respectively.
Bucchignani and Stella [21], in particular, have focused on the route to chaos (see also Xia and Murthy [20]).
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Because of the light shed on the problem by these and earlier studies, most of the scientific community is currently
aware of the importance that the control of the boundary conditions and the geometry of the container may have
on the threshold values and observed flow patterns. Nonlinear effects, geometrical constraints and, in particular, the
‘multiplicity of solutions’ are all essential ingredients of this type of flow; the last aspect, in particular, deserves
special attention. It is known, in fact, that in three-dimensional configurations several different perturbations of the
basic quiescent state can become critical at close values of the Rayleigh number; this means that in a supercritical
state any of these perturbations can grow possibly competing with the others.

As an example, Fig. 2, shows time-dependent convection in a shallow enclosure (4 × 1 × 4) filled with silicon melt
(Pr = 0.01) induced for relatively small values of the Rayleigh number by ‘competition’ between a diagonal mode
and a mode with straight rolls parallel to the sidewalls (z direction) of the shallow enclosure (the solution undergoes
a continuous ‘jumping’ from one mode to the other).

Like the case of low parallelepipedic enclosures, a rich variety of patterns is possible in shallow cylindrical do-
mains. Some initial studies dealing with the primary instability of the motionless thermal diffusive state are due to
Charlson and Sani [22] and Buell and Catton [23]. According to these studies, the flow structure that appears after
the first bifurcation from the diffusive state depends strongly on the aspect ratio and whether the lateral boundary is
adiabatic or conductive.

Other authors have studied, in particular, the possible steady solutions appearing when the Rayleigh number is
further increased.

Varying the Rayleigh number through different sequences of values, for a fixed aspect ratio (A = height/diameter)
A = 0.25 and Pr = 6.7, Hof et al. [24] experimentally obtained several different stable steady patterns for the same
final Rayleigh number (that they categorized in terms of their symmetry properties as “rolls with hot fluid rising along
the center”, “rolls with cold fluid falling along the center”, “spoke patterns with cold fluid falling along the spokes”,
“spoke patterns with hot fluid rising along the spokes”, “axisymmetric pattern with hot fluid rising in the center”).

Similarly, Leong [25] computed several steady convective solutions (four main types of flow structure: concentric,
radial, parallel and cross-rolls) for Ra > Racr (Ra based on the height of the cylinder), all of which were stable in the
range 6250 � Ra � 37500 (for aspect ratios A = 0.125 and A = 0.25 with Pr = 7).

In cylinders with moderate aspect ratio, the flow structure that appears after the first bifurcation from the diffusive
state depends strongly on the aspect ratio and type of lateral boundary conditions. For the case of adiabatic sidewalls,
in particular, the flow is axisymmetric for A < 0.55 (m = 0) and asymmetric for larger values of A (m = 1, where m

is the number of disturbance nodes in the azimuthal direction). The transition between axisymmetric and asymmetric
modes occurs around A = 0.72 if conductive lateral boundaries instead of adiabatic walls are considered.

In agreement with the results for other geometrical models, the thresholds for this primary (steady) instability are
independent of the Prandtl number; for the adiabatic case and 0.32 < A < 0.55, the primary bifurcation to convection
occurs at Racr ∼= 2000 (the critical Rayleigh number behaves merely as an increasing function of the aspect ratio, e.g.,
Racr ∼= 3700 for A = 1 and Racr ∼= 2250 for A = 0.5, with Racr decreasing asymptotically towards 1707 for A → 0,
see, e.g., Touihri et al. [26]).

The system evolution when Ra is increased beyond Racr has been the subject of many investigations (see, e.g.,
Muller et al. [27], Figliola [28], Crespo Del Arco and Bontoux [29] and Neumann [30]). Some authors have clearly
observed the existence of a secondary steady bifurcation. Recently, Touihri et al. [26] have investigated such possible
sequence of transitions showing that for A < 0.55, convection sets in with the mode m = 0 followed by m = 2 and
m = 1, whereas for 0.55 < A < 0.63, the first mode is m = 1 and the next are m = 0 and m = 2, and finally for
A > 0.63 the order of appearance is m = 1, m = 2 and m = 0. In such analysis the critical Rayleigh number for the
secondary steady bifurcation was found to increase with the Prandtl number quadratically at low Pr and linearly at
larger Pr (the considered values of the Prandtl number were 0.02, 1 and 6.7). Similar results were obtained in the
earlier investigation of Crespo del Arco and Bontoux [29] who found that for A = 2 at low Rayleigh number the core
flow exhibits characteristic features of the m = 1 dominant mode, whereas at elevated Rayleigh numbers secondary
vortices corresponding to the m = 0 mode appear and develop differently in both size and magnitude according to the
considered Prandtl number (Pr = 0.02 or 6.7 in their analysis).

Important studies also have appeared where attention was specially focused on the transition to oscillatory behav-
iors. In the case of very shallow cylinders the richness of possible oscillatory dynamics of the system is quite well
known. For instance, the onset of ‘rotating spirals’ has been clearly observed in the experimental investigation for
Pr ∼= 1 and A = O(10−2) of Plapp et al. [31] and in the numerical studies of Rudiger and Feudel [32]; earlier studies,
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e.g., Croquette et al. [33] and Tuckerman and Barkley [34] reported on the existence of radially propagating patterns
of concentric rolls.

The nature and structure of possible oscillatory flow for O(10−1) � A � O(1) is still an interesting subject of
investigation. Wanschura et al. [35] predicted the secondary flow to be steady except over a narrow aspect ratio range
for relatively shallow cylinders (0.32 � A � 0.34) at Pr = 1, where they found oscillatory instabilities at Ra = 25 000
in the form of traveling waves. More recently, Boronska and Tuckerman [36] have shown that for such parameters the
bifurcation scenario guarantees that branches of standing waves and of travelling waves are created at the bifurcation,
but that at most one of these branches is stable (in practice, according to nonlinear simulations the supercritical
bifurcation leading to long-lived standing waves is eventually succeeded by travelling waves, both as time progresses
and as the Rayleigh number is increased). Rotating and pulsating regimes (with features different with respect to those
described by Boronska and Tuckerman [36] were also observed in the experiments of Hof et al. [24] in the case of
Pr = 6.7 and A = 0.25.

For the case of liquid metals, in particular, complex (steady and time-dependent) supercritical regimes were sim-
ulated in cylinders of aspect ratios A = 1 and A = 2 for Pr = 0.02 and in ranges of Ra up to 8Rac and 6Rac,
respectively, by Crespo del Arco et al. [37]. Transition to fully developed turbulence for a similar configuration (A = 1
and Pr = 0.022, mercury) has been considered through three-dimensional numerical simulations by Verzicco and Ca-
mussi [38] for values of the Rayleigh number Ra < 106 and via experimental analysis by Takeshita et al. [39] for
106 < Ra < 108 and Cioni et al. [40] for 5 × 106 < Ra < 5 × 109, respectively.

Marked oscillatory phenomena have been also detected in the experiments of Kamotani et al. [41] dealing with tall
cylinders (A = 3) and Gallium.

Within this context it is also worth citing the recent computations by Kaenton et al. [42] and Bennacer et al. [43]
where the investigation of the flow instabilities has been carried out focusing on effective crystal growth configurations
(Vertical Bridgman).

When the Rayleigh number is increased to relatively large values, it is known that in all these finite-size sys-
tems well-defined boundary layers develop along the solid walls and that, in general, ensuing turbulent convection
is characterized by the time-dependent (often chaotic) ‘release’ of unsteady thermal plumes which ‘detach’ from the
aforementioned boundary layers (see, e.g., Vincent and Yuen [44], Kadanoff [45], Qiu and Tong [46], Xi et al. [47]).
In practice, there are two coherent structures, which are found to coexist in an enclosure for turbulent convection; one
is the large-scale circulation (usually referred to as ‘wind’ or ‘flywheel’ that spans the height of the container, and the
other is intermittent bursts of thermal plumes from the upper and lower thermal boundary layers.

The dynamics of these plumes plays a crucial role in the development of the turbulent regime and its features.
For these reasons the next section is devoted to a brief survey of the properties of these plumes and of the additional
instabilities which they can undergo transition to.

4. Turbulent Rayleigh–Bénard convection: plume dynamics

The theory for steady laminar plumes is well established. Scaling arguments indicate that the vertical velocity is
constant (see, e.g., Batchelor [48]). Such analyses are valid for the plume stem far from the leading edge (the cap) and
do not specify the cap behavior.

Recent studies about the starting (cap) behavior of thermal plumes are due to Kaminski and Jaupart [49].
It is well known since 1954, however, that as a plume rises, it widens due to the diffusion of both heat and momen-

tum in the lateral plane (Batchelor [48]). A line source plume forms a wedge, with the angle controlled by the rate of
entrainment.

Recently, Hier Majumder et al. [50], in particular, have extended these investigations to Prandtl numbers ranging
from 10−2 up to 104, illustrating the possible existence of different regimes of plume growth (categorized in terms of
relative thickness of thermal and velocity boundary layers along the plume body) in the Prandtl–Rayleigh space:

The viscous-nondiffusive regime (VND) is defined by thin temperature boundary layers and thick velocity boundary
layers. It has thin plumes with sharp features and no strong vortices. Fig. 3(a) shows that the plume shape is clear and
distinct with a thin stem. The plume has a well-defined head with side lobes. With time the plume lobes remain
relatively distinct and are not significantly deformed by vortex structures. The vorticity field is featured by two broad
regions of opposing vorticity on each side of the plume without sharp vortices. The thick velocity boundary layers
seen in this flow result in the velocity being dissipated by viscous friction rather than by vortices.
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This regime occurs at a moderate Rayleigh number (Ra = O(107)) and relatively high Prandtl number (Pr =
O(10)).

The inviscid-diffusive regime (IVD) is defined by thin velocity and thick temperature boundary layers. The plume
has a thick, flame-shaped stem (Fig. 3(b)). In the temperature map, it has a weakly developed head area with no lobes.
The head tends to merge with the plume stem over time due to the high thermal diffusion. The head region, however,
is well defined in the vorticity field by strong vortices. Vortices develop in the head region of the plume because the
low viscosity does not allow viscous dissipation by diffusion.

This regime occurs at small Prandtl (Pr = O(10−2)) and moderate Rayleigh numbers (Ra = O(106)).
The inviscid-nondiffusive (IVND) regime is defined by both thin temperature and velocity boundary layers. The

nondiffusive nature of the regime can be clearly observed in the temperature field. The plume has a thin, sharp stem
with a well-defined cap and lobes that are significantly deformed by vortex structures.

This regime takes place for high Rayleigh numbers (Ra > O(106)) and Prandtl numbers near 1.
This is the most turbulent of the possible regimes. It is characterized by fine, turbulent structures that cover a wide

range of small scales. This makes the regime the most difficult one from a computational point of view. The IVND
plume with Pr = 1 and Ra = 108 is shown in Fig. 3(c).

The plumes in all these situations are susceptible to the sinuous instabilities created by horizontal shear, which are
characteristic of turbulent plumes. With time the plumes develop a sinuous, snake-like appearance due to horizontal
shear. This shear can cause the plume stem to become so distorted that the local Rayleigh number becomes supercrit-
ical. This causes the original plume to collapse, and new plumes to develop from the original plume stem (see, e.g.,
Cortese and Balachandar [51]).
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