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Abstract

The crystallization of InxGa1−xSb for x = 0.06 by the AHP-method (Axial Heat flux, close to the Phase interface) is considered.
Heavy indium is rejected during crystal growth close to the interface. Indium significantly decreases the crystallization temperature,
and has an influence on the melt convection. The AHP-heater serves as a partition; due to this partition a small well-mixed liquid
zone with high In concentration exists and causes a stable crystal growth with high composition after the crucible is moved down.
The grown crystal is very homogeneous. Numerical modelling has also been performed, using finite difference schemes. To cite
this article: M. Marchenko, C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Confirmation théorique de la cristallisation d’un alliage composite utilisant la méthode AHP. La croissance cristalline du
InxGa1−xSb pour x = 0,06 par la méthode AHP (flux de chaleur axial proche de l’interface) est considérée. L’indium lourd est
rejeté près de l’interface pendant la croissance du cristal. L’indium réduit de manière significative la température de cristallisation, et
influence la convection dans le bain fondu. Le réchauffeur-AHP agit comme une cloison. En raison de cette cloison une zone réduite
de liquide bien mélangé avec une haute concentration d’In existe et assure la croissance stable du cristal avec une composition
élevée après déplacement du creuset vers le bas. Le cristal obtenu est très homogène. Un modèle numérique basé sur la méthode
des différences finies a été également développé. Pour citer cet article : M. Marchenko, C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Conventional ternary compound semiconductor alloys are traditionally grown epitaxially on single crystal sub-
strates of binary compounds (such as GaAs, GaSb, InP, GaP) with discrete lattice constants, so there is a detrimental
lattice mismatch between the substrate and the device layers. Bulk substrates of ternary compound semiconductors
could solve this problem and also open up numerous possibilities of interesting band gap engineering in homo- and
hetero-epitaxial devices. In [1] it was mentioned that the main problem in the growth of InxGa1−xSb crystals is a
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Fig. 1. (a) Phase diagram, upper curve is liquid composition, lower curve—solid composition; (b) the schematic of the AHP-method, where the
points marked T1–T7 are positions of the thermocouple placements; (c) the physical domain for numerical modeling.

Fig. 1. (a) Diagramme de phase, courbes de dessus composition liquide, courbes de dessous—composition solide ; (b) schéma de la méthode AHP,
T1–T7 placements des thermocouples ; (c) domaine de calcul.

combination of high concentration and the large liquid/solid interval in the phase diagram (Fig. 1(a), see also [2]).
Experiments described in [1] demonstrate strong axial and radial chemical segregation: grown crystals are generally
heterogeneous and cracked (even for an initial melt composition x = 0.06 and internal radius 6 mm). The diffusion
coefficient is practically unknown for this type of material, but some approximation for the dependence of the diffu-
sion coefficient on melt concentration has been suggested [3]. The temperature regime, system geometry and initial
melt composition of the experiment from [1] were used for numerical modeling in [4], where the dependence of the
diffusion coefficient on concentration used was similar that of [3]. As was shown in [4], numerical results and experi-
mental data concerning shape and interface positions, and the grown crystal composition, are in good agreement. The
mathematical model presented in this article has been applied to the crystallization of InGaSb [4].

The AHP-method [5,6] is a modification of the Bridgman growth, where an additional heater (or baffle) is sub-
merged into the melt. As usual, thermocouples are placed into the crucible side wall, in the crucible bottom and in
the AHP-heater. It is expedient to consider, in mathematical model, a geometrical region enclosed between the ther-
mocouples. The experiment of InGaSb crystal growth by the AHP-method without seed from a compound melt and
its numerical simulation were presented in [7,8], where a very homogeneous crystal was grown with radius equal to
23 mm. In the present article, the test case problems are considered. Therefore, some idealized boundary conditions
close to the experimental data are taken into account in order to investigate features of crystal growth. The graphite
crucible was modeled with an internal radius of 10 and 30 mm. The influence of submerged heater and temperature
regimes on melt flow and concentration distribution in grown crystal was shown in [9]. The radius of 10 mm was
chosen in order to have some comparison between numerical results (AHP- and Bridgman methods) and the results
of the experimental Bridgman crystal growth process [1]. The temperature distribution was changed with gradient of
60 K/cm along the crucible side wall (close to conditions of the experiment from [1]). When the crucible is moved
down with velocity V , the melt from the upper part (W2) above the AHP moved down through the gap between
AHP-heater and crucible (see Fig. 1(b)). The computational region is presented at Fig. 1(c). The lower part, together
with the crucible and the grown crystal were increased during the growth process.

Transient crystal growth problems are considered in the axisymmetrical configuration. The movement of the in-
compressible viscous liquid in the melt zone, driven by both temperature and concentration gradients, was considered
by solving the Navier–Stokes equations written in a vorticity–stream function formulation, using the Boussinesq ap-
proximation. In the melt zone, both heat and solute transport were considered. At the melt/crystal (m/c) interface, the
equilibrium temperature, liquid and solid compositions were connected by the phase change diagram. A small super-
cooling effect from the equilibrium temperature was allowed at the interface for the case of the phase diagram [4,10].
The kinetic coefficient of rough growth has been chosen at a large value as was described in [11]. The instantaneous
solidification velocity was calculated, proportional to interface supercooling. The temperature equation was solved in
the zones of crystal; crucible wall and bottom of AHP-heater (see Fig. 1(c)). The boundary condition of the vertical
component of the flow velocity in a gap was defined by mass balance. It is implied that the upper melt zone was well
mixed and had a concentration equal initially to one, and that return flow to the upper zone was absent. The symmetry
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condition was considered for concentration at the axis, the equality to zero for the flow of concentration was imposed
on the crucible wall and on the bottom of AHP heater.

The software tool ‘KARMA1’ [12] with some modifications was used for the numerical simulation as in [4]
and [10]. At each time step both liquid and solid areas are mapped into square blocks. Finite-difference schemes
were used for approximation of equations [12]. A non-uniform mesh was used for all blocks. In each block the mesh
was clustered near the boundaries, especially near the liquid zone boundaries. An implicit, conservative, monotonic,
unconditionally stable different schemes, based on extended stencils with monotonizing regularizers of the third order,
were used to approximate the equations and boundary conditions [13]. All algebraic equations were combined into
two systems. One of these consists of the vorticity and stream function, together with boundary conditions; another is
temperature and concentration equations with boundary conditions and conditions at the m/c interface. Due to such a
combination it is possible to uniformly solve any kind of crystal growth problem: either from a pure melt or one with
dopant added, or from a high compound alloy [14], or facet growth [15]. In [12] all equations had been combined into
three systems: vorticity and stream function, temperature, and concentrations. Such partitions were required because
of the shortage of computer capacity a few years ago. Now this weakness has been overcome.

In the present article it is numerically demonstrated that it is possible to grow an InxGa1−xSb crystal with com-
position close to x = 0.06 with good quality: very homogeneous both in lateral and in longitudinal directions. Such
results are based on the analysis of the crystallization dynamics and on the study of melt convection.

2. Crystal growth

In this article, a numerical investigation of bulk InxGa1−xSb crystal growth by the AHP method [5,6] is reported. As
mentioned earlier, experiments from [1] showed that even for a small radius of 6 mm and melt composition x = 0.06,
the crystals grown are very heterogeneous. During crystallization, the heavy indium was rejected and accumulated
close to melt/crystal (m/c) interface. The intensity of melt convection was decreased due to the influence of a solute
convection. Also the crystallization temperature was decreased and varied along the radius. A heavy concentration of
In was accumulated close to the axis of the interface. The m/c interface concavity inside the crystal reached as high
as 8 mm (see [1,3,4]). The diffusion coefficient is not well known [3]. The dependency of the diffusion coefficient on
concentration, used in [3] and [4], is very similar; it decreased with increasing indium concentration under conditions
of low diffusivity, and the slow convection heterogeneity of grown crystal increased.

Fig. 1(b) represents the schematic of the AHP method: an additional heater (or baffle) is submerged into the crucible
with the melt. The seed is placed in the crucible bottom. The zone W1 between the seed and the AHP-heater has an
initial concentration c1. It is implied that the melt in the upper zone W2 is well mixed and that its composition is equal
to c2. When the crucible is moved down with a velocity V , the fresh melt flows into the crystallization zone (W1)
through the small gap of 0.5 mm between the AHP-heater and the crucible. The AHP-heater can also move up with
velocity V . Thermocouples are placed at the crucible side wall, at the crucible bottom and inside the AHP-heater’s
bottom. The geometrical region subjected to mathematical modeling is shown in Fig. 1(c).

The transient crystal growth problem is considered in an axisymmetrical configuration. The movement of the
incompressible viscous liquid in the melt zone, driven by both temperature and the concentration gradient, was consid-
ered by solving the Navier–Stokes equations written in a vorticity–stream function formulation, using the Boussinesq
approximation. In the melt zone both heat and solute transport were considered. At the m/c interface the equilibrium
temperature, the liquid compositions and the solid compositions were connected by a phase change diagram. A small
supercooling effect from the equilibrium temperature was allowed at the interface for the case of the phase diagram
[4,10]. The kinetic coefficient of the rough growth has been chosen as a large value, as was described in [11]. The
instantaneous solidification velocity was calculated, proportional to the interface supercooling. The temperature equa-
tion was solved in the zones of the crystal, in crucible wall and at the bottom of the AHP-heater (see Fig. 1(c)). The
boundary condition of the vertical component of the flow velocity in a gap was defined by mass balance. It was implied
that the upper melt zone was well mixed and had a concentration equal to the initial one, and return flow to the upper
zone was absent. The symmetry condition was considered for concentration at the axis, zero flow of concentration
was imposed on the crucible wall, and on the bottom of AHP heater.

In the present study, the crystallization dynamics and features of flow convection have been investigated for
problems of growing InxGa1−xSb crystals by the AHP method and the Bridgman technique. The possibility of het-
erogeneous crystal growth by the AHP-method is demonstrated.
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3. Mathematical model and method

The geometrical domain of simulation is presented in Fig. 1(c). The left boundary of the geometrical region is the
z-axis; the crystal regions and the melt regions, together with the phase change boundary, were calculated at each time
step. The crystal growth experiment was modeled using a two-dimensional cylindrical (r, z) coordinate system with
the origin located at the bottom of the crucible.

The non-dimensional numbers Grasshoff (Gr), Prandtl (Pr), Schmidt (Sc), Stephan (St) and Peclet (Pe) numbers
are defined as:

Gr = βTgR3
c�T/ν2, Grd = βcgR3

c�c/ν2, Pr = ν/χL, Sc = ν/DL, St = γρs/(ρLcpL�T )

Re = max
(√

Gr,
√|Grd|

)
, Pe = Pr Re, Ped = Sc Re

where βT and βc are the coefficients of thermal and concentration volumetric expansion; g is the gravitational con-
stant; χL is the thermal diffusivity of the melt, D the diffusion coefficient in the melt, and ν is the viscosity. Thermal
conductivity λ, heat capacity cp , density ρ are non-dimensionalized by their value in the melt λL, cpL, ρL:

λ = λ/λL, cp = cp/cpL, ρ = ρ/ρL

Rc is the crystal radius, and γ the heat of fusion. �T = 185, the temperature drop, corresponds to the following
phase change diagram: T = 985 K at c = 0, i.e. pure GaSb, and T = 800 K at c = 1, i.e. pure InSb (see Fig. 1(a)) so
�c = 1. The equations were non-dimensionalized using the following scaling factors: Rc for length; to = Rc/uo for
time, where uo = νRe/Rc for the velocity. Instead of the temperature we will consider the deviation of the temperature
from T ∗ = 985 K, divided by �T . In the melt zone the Navier–Stokes equations for an incompressible viscous liquid
in which the Boussinesq approximation, written in vorticity-stream function form, is applied are:
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The following equations for heat and mass transfer are solved in the melt zone:
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In the above equations, the operator for the convective terms (φ = ω,T , c) is defined as:
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The equation for heat conduction is considered within the area occupied by the crystal and crucible walls:

c̄pρ̄
∂T

∂t
= 1

Pe
∇ · (λ∇T

)
(6)

The temperature distribution imposed at the external boundaries is describe below. The discontinuity of the proper-
ties λ, (cpρ), and the continuity of the heat flow are imposed at the crystal-crucible and melt-crucible boundaries:

[T ] = 0,

[
λ

Pe

∂T

∂n

]
= 0 (7)

Here and below, the symbol “[ ]” denotes the change of the function inside the brackets across the surface. A sym-
metry condition is imposed at the axis for temperature, concentration and velocity. For the melt flow at the solid
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boundaries there are conditions of non-penetration and of adhesion. For the vertical velocity in the gap the condition
of mass balance was imposed. At the m/c interface, the temperature is continuous. As in [4,10,14], the instantaneous
solidification velocity at the m/c interface was calculated as being proportional to the supercooling of the m/c interface
(the last part of Eq. (8)).

[T ]ls = 0, T∗(c) = f (c),

[
1

Pe

∂T

∂n

]l

s

= St vn,
1

Ped

∂c

∂n
+ vnc = vncs

cs = k(c)c, vn = β
(
T∗(c) − T

)
(8)

where f (c), the phase change diagram, and k(c), the segregation coefficient, depend on concentration. The coefficient
of proportionality β , called the kinetic factor, is chosen as the value for rough crystallization [11], and is large, [11],
so that the supercooling really is negligible (less than thousandths of one degree). As calculations had shown, the so-
lutions are both classical Stephan problems, and the non-classical one for large kinetic coefficient values is practically
identical.

The solution was obtained by the finite-difference method with a preliminary mapping of the melt areas and the
solid areas into computational square blocks. A non-uniform mesh was used for all blocks. In each block, the mesh
clustered near the boundaries, especially near the liquid zone boundaries [12]. An implicit conservative, monotonic,
unconditionally, stable difference scheme, based on extended stencils with monotonizing regularizers of the third order
was used to approximate the equations and boundary conditions [13]. The stream function, vorticity, temperature and
concentration were determined for each time step. The source term depending on the interface supercooling, on the
kinetic factor and on the heat of fusion has been used in the grid temperature equation at the m/c interface. Thus the
temperature also was defined at the m/c interface. The m/c interface velocity was calculated with use of the kinetic
factor and of interface supercooling. Thus, a new m/c interface position was also calculated.

Due to the transformation of the physical domain into a mathematical region consisting of unit squares, the explicit
tracking of the m/c interface has always a constant number of non-uniform grid nodes in each square. The mesh is
condensed to the boundary of each region, so the melt boundary layer is always covered by a fine mesh. By using
additional fixed-sign regularizers, convective terms became monotonic. This regularizer prevents the appearance of
grid oscillations in time [13]. It contains approximations of fourth derivatives with the factor O(h3) (where h is a step
with respect to the spatial variables) and eliminates ‘sawtooth’ solutions with respect to r and z. Total supplementary
dissipation of a solution has the order of h3. The regualizer’s values are really small in the boundary melt layer even
for large changes in the melt velocity, because the spatial step in the boundary layer is chosen very small. Far from
the m/c interface, the regularizer’s values are also small due to small changes in the melt movement velocity in these
zones. Therefore, the grid steps are chosen small closed to boundaries, particularly to the melt/crystal interface, and
bigger far from boundaries. Thus, the total number of grid nodes can be chosen sufficiently small. The limitation on the
time step depends only on the physical problem [13]. In the present article, as in [4,10,14], all equations are combined
into two algebraic systems. One of these contains the temperature and concentration equations together with boundary
conditions and conditions given by Eq. (8). A second contains the equations for vorticity and stream functions. This
is unlike the numerical method of work [12], where three systems of equations, temperature, concentration, vorticity
and stream function, were considered. The Gauss method was applied to solve the systems of algebraic equations,
nonlinear terms were taken from previous time step. The combination in one system of Eqs. (4), (6)–(8) and of
boundary conditions (the non-classical Stephan problem consideration) is very useful from a numerical point of view
as this scheme may be applied to crystal growth problems regardless of which melt crystal growth occurs: pure
alloys, or dopant melt, or binary ones. This approach has become a more stable solution than it was in [12]. Also this
numerical method enables one to solve the facet crystal growth problem, based on the mathematical model and the
method from [9].

For numerical modeling a grid with 61 nodes in the z-direction was chosen, including 43 points in the liquid zone.
The grid step was equal to 0.001 in the boundary layer. Far from the m/c interface it was increased to 0.03. Along
radius a non-uniform grid was chosen, with 22 points.

4. Numerical results

Calculations were performed for a crystal radius Rc = 10 mm and Rc = 30 mm, a graphite crucible thickness equal
to 2 mm, and the thickness of AHP-heater bottom of 2.8 mm. The initial seed height was equal to 15 mm. The seed
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composition was chosen small (cs = 0.02), because of the difficulty of having a high crystal composition (and it is
very expensive). The initial height of the W1 zone H was equal to 5 mm. The pulling velocity was assumed V = 1 and
3 mm/h (the last value is close to the value used in [1]). The initial melt composition: c1 = 0.3, c2 = 0.06. The initial
position of the T6 point was equal to the initial seed position, 15 mm. At this point the temperature corresponded
to a liquid concentration, c1, in accordance with the phase change diagram: T6(0.3) = 944.46 K, Fig. 1(a). The
temperature along the crucible side wall was changed with a gradient of 60 K/cm (this is a parameter value close
to that from the experiment described in [1]). After one hour stationary (V = 0) the AHP-heater was moved up, the
points (Fig. 1(c)) T7, T6, T5 (the last one was below T6 at 10 mm) moved with the same velocity. Upper temperatures
T 1 = T 2 = T 7, temperatures T6 and T5 were not changed in time, T 3 = T 4, and was changed in time according to the
side wall temperature gradient, because the crystal length was changed due to its growth. The following parameters
were used for the Bridgman growth: Rc = 10 mm, V = 1 and 3 mm/h, cs = 0.02, c1 = 0.06, melt length H =
200 mm.

Concentration distributions in the crystals grown for different test case problems are presented in Fig. 2. The black
curves are the axis distribution, the blue ones, the side wall. The curves obtained at V = 1 mm/h and at different
radii Rc = 10 mm, 30 mm by the AHP-method were marked by ‘1’ and by ‘2’ respectively in Fig. 2(a). The curves
obtained at V = 1 mm/h and at Rc = 10 mm by the Bridgman method were marked ‘3’ (Fig. 2(a)). The grown crystal
composition for the fourth case (V = 3 mm/h and Rc = 10 mm, AHP-growth, ‘4’) and for the fifth case (the same
as fourth one but without solute convection (Grd = 0), ‘5’) are shown in Fig. 2(b). The sixth case corresponds to the
Bridgman growth at V = 3 mm/h and Rc = 10 mm, see Fig. 2(c).

During the holding process the seed was melted a little; therefore the melt composition always was decreased at the
beginning. The grown crystal composition reached stationary regime in the cases of AHP-growth (curves marked ‘1’,
‘2’, ‘4’, ‘5’, Fig. 2). Furthermore, the r-average crystal composition is exactly equaled to the desired 0.06 value at the
stationary regime. This fact is a result of the mass balance: if a melt with c2 composition flowed through the gap into
the melt it should be solidified after some transient process. The preparation of a rich concentration zone W1 close to
the m/c interface helps to reduce this transition time significantly, with the AHP-heater assisting. For an equal initial
concentration in both zones W1 and W2 (x = 0.06) the transition time is increased significantly, but a stationary
regime also exists. From Fig. 2 it is clear that the AHP-method always results in the growth of high concentration
crystals. In the third case (the Bridgman technique) the crystal grown at small pulling velocity (1 mm/h) has a small
concentration up to 80 mm. For the sixth case at V = 3 mm/h the grown crystal composition (Fig. 2(c)) became
very large and lateral scatter α is more than 70%, where α = 100%(cmax − cmin)/(cmax + cmin). The m/c interface
becomes concave inside the crystal and its radius is huge too, more than 10 mm. This is similar to results in [1]

Fig. 2. The concentration distributions in the grown crystal at the axis (black curve) and the side wall (blue one): (a) first and second cases (called
‘1’ and ‘2’) were obtained during AHP growth at V = 1 mm/h and Rc = 10 mm and at Rc = 30 mm, respectively, third case—Bridgman growth
at V = 1 mm/h and Rc = 10 mm ; (b) fourth and fifth cases—AHP-growth at V = 3 mm/h and Rc = 10 mm with and without solute convection;
(c) sixth case—Bridgman growth at V = 3 mm/h and Rc = 10 mm.

Fig. 2. Champs de concentration dans le cristal au niveau de l’axe (tracé noir) et à la paroi (tracé bleu) : (a) les premier et second cas (marqueurs
« 1 » et « 2 » resp.) sont obtenus durant la croissance AHP à V = 1 mm/h, = 10 mm et = 30 mm resp., troisième cas—croissance de Bridgman
à V = 1 mm/h et = 10 mm ; (b) quatrième et cinquième cas—croissance AHP a V = 3 mm/h et = 10 mm avec et sans convection solutale ;
(c) sixième cas—croissance de Bridgman à V = 3 mm/h et = 10 mm.
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Fig. 3. (a) Time dependence of interface temperature for fourth case (AHP, V = 3 mm/h, Rc = 10 mm); (b) and (c) z-distribution of radial
component of flow velocity close to the axis (r = 0.08Rc , black curve), at half radius (blue) and close to side wall (red) for fourth (b) and fifth (c)
cases (with and without solute convection).

Fig. 3. (a) Évolution de la température de l’interface pour quatre cas (AHP, V = 3 mm/h, = 10 mm) ; (b) et (c) variation selon z de la composante
radiale de vitesse au voisinage de l’axe (r = 0,08, tracé noir), à mi-rayon (bleu) et proche de la paroi (rouge) pour quatre (b) et cinq (c) cas (avec
et sans convection solutale).

for x = 0.06. Such a coincidence is not accidental: growth conditions (composition, temperature gradient, cooling
velocity) are close to the experiment. Further lateral concentration scatters were calculated at z = 90 mm of grown
crystal for test case problems of AHP-growth. The smallest lateral scatter is 4% and corresponds to first case, to
smaller velocity. With increasing of pulling rate up to 3 mm/h the α = 23% (Fig. 2). In [7,8] the pulling velocity was
less than 1 mm/h. With an increasing crystal radius, the scatter is increased too. At Rc = 30 mm α = 8.6%, which is
really good, especially for such a large crystal radius.

Interface concavity inside the crystal for cases of AHP-growth was small for the first variant (V = 1 mm/h, radius
10 mm). The concavity was equal to 2.5 mm. At a higher velocity (3 mm/h, the fourth case) and the same radius,
10 mm, it was equal to 5 mm. Increasing the internal radius by a factor of three at a small pulling rate 1 mm/h
(case 2) lead to doubling of the interface concavity to 5.5 mm. Fig. 3(a) presents the time-dependence of the m/c
interface temperature for the fourth test case problem, which had the biggest concentration scatter. The temperature
drop amounted to 26 K along the m/c interface. For the other cases this value was smaller.

Figs. 3(b) and (c) present distributions of radial component of flow velocity ur along z-direction at different values
of r = 0.08Rc (black curves), r = 0.5Rc (blue curves), r = 0.9Rc (red curves), obtained for the fourth and the fifth test
case problems (t = 28 h). Due to solute convection, the intensity of flow movement decreased at least twice (compare
Fig. 3(b) and (c)). Thus the concentration distribution of grown crystals had bigger lateral scatter (see Fig. 2(b)). The
velocity distributions at r = 0.8 mm and at r = 5 mm had positive values. This infers that there is a small vorticity near
the axis and the m/c interface, where the melt moved from the axis. As calculations indicated, this vorticity is unstable,
and at times it disappeared. In the whole flow, convection is sufficient for melt mixing. For the sixth test case problem
(Bridgman growth, 3 mm/h) ur has maximum value ∼ − 0.0008 cm/s close to the m/c interface (boundary layer)
and it was much smaller inside the melt. The convection motion was really stagnant. It is not surprising that there is
such a huge radial concentration scatter, Fig. 2(c). The diffusion coefficient is very small as the melt concentration
is very high. So both mechanisms, diffusion and convection, could not mix the highly concentrated boundary layer.
For this Bridgman growth problem, the boundary temperature condition is an idealization of condition from [1],
constant in time. So here the intensity of flow convection for the sixth case is smaller than that obtained in [4] for
experiment [1]. In [4] the maximum value of radial component of flow velocity was smaller by a factor of four, (less
than 0.01 cm/s) than in the fourth case. As it was shown numerically that [4] there was a stagnant layer close to m/c
interface whose length was ∼20 mm. Above this layer there was an intensity vorticity caused by the changing of the
side wall temperature gradient at the junction of the crucibles made of different materials, [1]. When the m/c interface
came to this point, a strong convection flow mixed the concentration in this stagnant zone and homogeneous growth
continued (x = 0.06, [1] and [4]).
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5. Conclusions

This article discusses the results of the mathematical modeling of InxGa1−xSb growth by AHP and by Bridgman
methods. Test case problems having some idealized conditions close to real experimental data were used. Numerical
modeling for the Bridgman test case crystal growth problem illustrated that it would be impossible to grow homoge-
neous crystals of high composition even with very small diameters. This was demonstrated experimentally in [1]. The
mathematical modeling performed on InxGa1−xSb growth by the AHP method indicated the possibility of producing
a very homogeneous crystal of large diameter and high composition. Submerged into the melt, the AHP-heater acts as
a barrier: the crystallization zone is limited by the m/c interface and the bottom of the AHP-heater. The AHP-heater is
an essential technological detail which influences the growth process. This technique produces a small crystallization
zone close to the interface. The physical state of this zone (temperature, composition, velocity field) could be easy
described, so it is possible to produce the changes needed in order to manage the crystal growth process. In the present
article, the complex convection caused by temperature and concentration drops in the melt was still sufficient for ad-
equate melt mixing in spite of the small diffusion coefficient at high concentrations (AHP-growth). Due to possibility
of preparing the initial composition for the crystallization zone W1, the time to reach the quasi-stationary regime
could be reduced. It was shown that reducing the pulling rate, the radial concentration scatter could be significantly
decreased. Numerical simulations of various test case problems together with real experimental data have indicated
that good quality crystals of large diameter could be grown by the AHP-method.
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