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Abstract

The cohesive zone models are an alternative to fracture criteria for the prediction of crack initiation at stress concentration points
in brittle materials. We propose here a comparison between the so-called mixed criterion involving a twofold condition (energy and
stress) and the Dugdale cohesive model. The predictions of the critical load leading to failure are in perfect agreement and both
models conclude that the initial process is unstable except in case of a pre-existing crack. To cite this article: C. Henninger et al.,
C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Amorçage d’une fissure en pointe d’entaille en V—comparaison entre un critère de rupture fragile et le modèle de zone
cohésive de Dugdale. Les modèles de zone cohésive constituent une alternative aux critères d’amorçage de fissures aux points
de concentration de contraintes dans les matériaux fragiles. On se propose ici de comparer le critère dit « mixte », basé sur une
double condition en énergie et en contrainte, et le modèle de zone cohésive de Dugdale. Les prédictions de la charge critique
d’amorçage coïncident parfaitement, et les deux modèles concluent à l’instabilité du processus d’amorçage sauf dans le cas d’une
fissure pré-existante. Pour citer cet article : C. Henninger et al., C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Within the framework of plane elasticity, the initiation of failure at a V-notch in brittle elastic materials under
Mode I loading has been successfully predicted with a mixed criterion based on the critical value of a generalized
stress intensity factor (GSIF) [1,2]. Alternatively it can be assumed that a fracture process zone is active in front of
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Fig. 1. The Dugdale cohesive model.

Fig. 1. Le modèle de zone cohésive de Dugdale.

the notch tip. The associated cohesive forces can depend on the local opening for a damage model [3–7] or keep
constant for a model of perfect plasticity [8]. The latter is chosen to carry on a comparison with the mixed criterion.
The constant force is taken equal to the tensile strength σc of the material and the crack onset is assumed to occur as:

δ(O) = Gc

σc

(1)

where δ(O) is the cohesive zone opening at the notch tip O and Gc is the fracture toughness (see Fig. 1). Herein a
two-scale analysis using singular elastic fields is carried out and provides the critical GSIF for a set of notch angles.
The critical load predictions are compared with those of the mixed criterion [1] and an analysis is made on the stability
of the failure mechanism in both models.

2. The cohesive zone model

We consider a V-notched specimen (angle ω, dimensions: 148 × 90 × 10 mm) of PMMA (Young’s modulus:
E = 3250 MPa, Poisson’s ratio: ν = 0.3, tensile strength: σc = 75 MPa, Gc = 0.35 MPa mm) subjected to a uniaxial
tension or displacement (see Fig. 2 left). The crack is expected to grow orthogonally to the direction of solicitation
thus we introduce a cohesive zone of length � in front of the notch tip in that direction. The length � is unknown a
priori, what makes the problem non-linear.

Fig. 2. The actual problem (left) and the ‘outer’ domain (right).

Fig. 2. Le problème réel (gauche) et le domaine « extérieur » (droite).
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Table 1
Numerical values of λ, KA

I
, KB

I
and A (knowledge of A is unnecessary for ω = 180◦)

Tableau 1
Valeurs numériques de λ, KA

I
, KB

I
et A (la connaissance de A est inutile pour ω = 180◦)

ω (◦) 0 30 60 90 120 160 180

λ 0.5 0.502 0.512 0.545 0.616 0.819 1
KA

I
(mm−0.5) 0.993 0.995 0.987 0.966 0.932 0.851 0.791

KB
I

(mm−0.5) 0.6347 0.6354 0.6354 0.6457 0.6696 0.7354 0.7916
A (MPa−1) 5.670 5.648 5.416 4.900 4.040 2.521

This length � is assumed to be small in regard to the specimen dimensions. Thus the analysis is, in a first step,
carried out in an ‘outer’ domain, where the cohesive zone is not visible, i.e. � → 0 (Fig. 2 right). The displacement
field in that ‘outer’ domain expands in the vicinity of the notch tip O as:

U(x1, x2) = U(O) + Krλu(ϕ) + · · · (2)

The constant term U(O) is the rigid translation of the origin, (x1, x2) and (r, ϕ) are respectively the Cartesian and
polar coordinates with the origin at point O. The exponent λ is the characteristic exponent of the singularity (smaller
the exponent, more critical the singular point) and u is the associated displacement mode; they depend on ω and
are known analytically or can be computed using a general procedure [9]. As λ ranges between 0.5 and 1 ([10] and
Table 1), the associated stress field increases to infinity when approaching O. The scalar K is the GSIF, it depends on
the global geometry and on the loading. The dots correspond to further non-singular terms of the expansion.

Next the analysis is carried out in an ‘inner’ unbounded domain obtained by stretching the actual domain by 1/�

and then considering the limit � → 0. In this inner domain, the cohesive zone has a fixed (unit) length, therefore the
non-linearity disappears and the problem splits in two parts PA and PB .

Matched asymptotics allow writing the solution to PA as [1]:

UA(x1, x2) = U(O) + K�λV A(y1, y2) + · · · (3)

where (y1, y2) are the stretched Cartesian coordinates (yi = xi/�). The displacement field V A fulfils stress-free con-
ditions on the cohesive zone and notch faces and behaves like ρλu(ϕ) as ρ → ∞, with ρ = r/�, as a consequence of
matching conditions.

As well, the solution to PB can be written:

UB(x1, x2) = −σc�V
B(y1, y2) + · · · (4)

where V B fulfils a unit tensile condition on the crack faces, stress-free conditions on the notch faces and vanishing
remote conditions at infinity.

Eqs. (3) and (4) provide the total displacement field solution to the cohesive zone problem:

U�(x1, x2) = U(O) + K�λV A(y1, y2) − σc�V
B(y1, y2) + · · · (5)

The Williams’ expansions of V A and V B in the vicinity of the tip O1 are given by:

V A(y1, y2) = V A(O1) + KA
I

√
ρuI (ϕ) + · · · (6)

V B(y1, y2) = V B(O1) + KB
I

√
ρ uI (ϕ) + ρ v(ϕ) + · · · (7)

and thus Eqs. (5), (6) and (7) provide:

U�(x1, x2) = U(O) + (
KA

I K�λ − KB
I σc�

)√
ρ uI (ϕ) − σc�ρv(ϕ) · · · (8)

where KA
I and KB

I scale the intensity of the singular stress field associated with a crack in an homogeneous material,
and uI is the opening mode (since the loading and the geometry are symmetric, the shear mode II vanishes). The
non-singular term ρv(ϕ) corresponds to the constant stress conditions on the two faces of the cohesive zone. The
fields V A and V B are computed using a finite element method and the GSIF’s KA

I and KB
I are extracted using a

path-independent integral [9] (see Table 1).



C. Henninger et al. / C. R. Mecanique 335 (2007) 388–393 391
Fig. 3. The critical GSIFs in the cohesive zone model (circles) and in the mixed criterion (cross-shaped markers) versus the notch angle ω.

Fig. 3. Les facteurs d’intensité de contraintes généralisés dans le modèle de zone cohésive (cercles) et dans le critère mixte (croix) en fonction de
l’angle d’entaille ω.

3. The crack onset predictions

According to Eq. (5) the opening at the notch tip can be written:

δ(O) = K�λ
[
V A

]
(O) − σc�

[
V B

]
(O) (9)

The notation [V ] denotes the opening (the normal discontinuity) of V .
The cohesive zone is such that the stress field at the tip O1 is smooth [3,8]. Using the expansion (8), this condition

is:

KA
I K�λ − KB

I σc� = 0 (10)

giving an equation for the cohesive zone length � in function of the load (through K), provided the opening δ(O) does
not exceed the critical value Gc/σc (see Eq. (1)).

Combining Eqs. (1), (9) and (10) provides the failure GSIF Kz
c (the critical value of K) for the cohesive zone

model:

Kz
c =

(Gc

Ā

)1−λ

(σc)
2λ−1 (11)

with Ā = (
KA

I

KB
I

)
λ

1−λ [V A](O) − (
KA

I

KB
I

)
1

1−λ [V B ](O).

On the other hand the mixed criterion, based on two necessary conditions in energy and stress [1], provides the
following critical value of the GSIF:

Kc =
(Gc

A

)1−λ

(σc)
2λ−1 (12)

where A is a geometrical coefficient (dependent on ω), extracted from V A by a path-independent integral [9,1] (see
Table 1).

Fig. 3 exhibits Kz
c (circles) and Kc (cross-shaped markers) as a function of the notch angle ω. They are computed

using, respectively, Eqs. (11) and (12) (except for ω = 180◦). The agreement between both criteria is very good.
The maximum deviation is smaller than 4% for ω = 160◦. For ω = 180◦ the critical GSIF is obtained directly from
Eq. (10) (Kz

c = σcK
B
I /KA

I , noting that, in that case, KB
I = KA

I ), while the mixed criterion provides: Kc = σc. The
maximal cohesive zone length (i.e. its length at failure) ranges between 87 µm for ω = 0◦ and 224 µm for ω = 160◦,
what is consistent with the initial assumption of smallness and justifies the asymptotic development.

4. Stability of the initiation process

The brittle fracture criterion leads to the conclusion that, whatever the kind of applied loads, the initial fracture
process is brutal for ω > 0◦: the crack jumps suddenly to a finite length, [1], while for ω = 0◦ the criterion allows
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Fig. 4. The modelling of the crack growth.

Fig. 4. Modélisation de la phase d’amorçage.

Fig. 5. The opening of the cohesive zone end for ω = 0◦ (dia-
monds), ω = 30◦ (squares), ω = 60◦ (circles) and ω = 90◦ (tri-
angles) as a function of the distance to the notch tip.

Fig. 5. L’ouverture de l’extrémité de la zone cohésive pour ω = 0◦
(losanges), ω = 30◦ (carrés), ω = 60◦ (cercles) et ω = 90◦ (tri-
angles) en fonction de la distance à la pointe d’entaille.

infinitesimal crack lengths, as suggested by Griffith. The question is: does the cohesive model, a damage-like model,
lead to the same conclusions?

To check that, the crack initiation is simulated by unbuttoning the two nodes at the end of the cohesive zone and by
computing the opening δ(O′) at the end O′ of the new cohesive zone under the constant critical load Kz

c . The process
will be unstable if δ(O′) > δ(O). Numerically the unbuttoning process consists in splitting the initial cohesive zone
of length � (length 1 in the ‘inner’ domain) into a stress-free cracked zone and a zone where cohesive forces are still
acting. Eq. (10) with K = Kz

c and an updated KB
I provide the actual length � (it is checked that it remains small), and

the length of the cohesive zone �z is given by:

�z = �(1 − Nd) (13)

where N is the number of unbuttoned couples of nodes and d is the mesh size (see Fig. 4).
Fig. 5 exhibits the opening δ(O′) as a function of the number of unbuttoned couples of nodes N . The crack

configuration (ω = 0◦) should theoretically exhibit a constant opening, but a slight (note the scale along the vertical
axis) pollution is visible due to the fact that for FE computations the remote conditions at infinity are replaced by
prescribed conditions at a large (but finite) distance from the origin. In the other configurations (ω > 0◦) the crack onset
is unstable since the cohesive zone end openings exceed the critical value Gc/σc and then the process of unbuttoning
must go on. Note that the number N does not increase to simulate the growth process but to check the independence
with respect to the unbuttoned length (mesh independence).

5. Conclusion

A comparison has been carried on between the mixed criterion and the Dugdale cohesive zone model. The agree-
ment between the two models is excellent and both predict an initially unstable crack growth (except for ω = 0◦).
Further analyses involving cohesive models where forces depend on the opening (Crisfield or Needleman models for
instance, [11]) should be very interesting, but it can be reasonably expected that they will lead to similar conclusions.
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