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Abstract

We consider an ε-periodic composite material, ε � 1, constituted of periodic fibres surrounded by a polymer matrix, solidifying
under a heating process. The mechanical behaviour of the material is described by the Kelvin–Voigt visco-elasticity equation with
rapidly oscillating space and time dependent coefficients. This time dependence is caused by the dependence of the state of the
material on the temperature, that is a solution of a thermo-chemical model studied earlier. The existence and uniqueness of a solution
of the Kelvin–Voigt visco-elasticity model are proved, the homogenized model is obtained and the existence and uniqueness of its
solution are studied. The estimates for the difference between the solution of the original problem and the homogenized one are
obtained. To cite this article: Z. Abdessamad et al., C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Homogénéisation du modèle thermo-visco-élastique Kelvin–Voigt. On considère un matériau composite de structure pério-
dique de période ε � 1, constitué d’un tissu de fibres noyé dans une résine qui se soldifie sous l’effet de la chaleur. Les propriétés
mécaniques du matériau sont décrites par l’équation de viscoélasticité de Kelvin–Voigt avec des coefficients oscillants dépendant
des variables spatiale et temporaire x et t . Cette dépendance de temps est engendrée par la dépendance de l’état déformé du matériau
de la temperature, une solution du problème thermo-chimique étudié précedement. On établit un résultat d’existence et d’unicité
de la solution, puis à l’aide de la méthode du développement asymptotique on détermine le problème homogénéisé. On prouve
l’existence et l’unicité de la solution du problème homogénéisé, puis on obtient une estimation pour la différence entre la solution
du problème de départ et la solution du problème homogénéisé lorsque ε tend vers zéro. Pour citer cet article : Z. Abdessamad et
al., C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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The present Note continues the topic [1] where the following thermo-chemical model of formation of a composite
material has been considered. (See [1] for the precise physical meaning of all the entities.)⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C

(
x

ε

)
∂Tε

∂t
− div

(
K

(
x

ε

)
∇Tε

)
= fε, (x, t) ∈ Ω × (0, τ )

∂αε

∂t
= f̂ (αε, Tε), (x, t) ∈ Ω × (0, τ )

Tε(x, t) = 0, (x, t) ∈ ∂Ω × (0, τ )

Tε(x,0) = T 0(x), αε(x,0) = α0(x), x ∈ Ω

(1)

Here Ω is a bounded domain in R
n, n � 2; its boundary ∂Ω is assumed to be C4-smooth; fε = q(x

ε
)f̂ (αε, Tε) +

f0(x, t); C(ξ), K(ξ) and q(ξ) are 1-periodic measurable bounded functions of ξ ∈ R
n, piecewise smooth in the sense

of [2] §4.1, such that ∃k1, q1 > 0: ∀ξ ∈ R
n, C(ξ),K(ξ) � k1; |q(ξ)| � q1; f̂ ∈ C4(R2), λ-Lipschitz (i.e. |f̂ (α1, T1)−

f̂ (α2, T2)| � λ(|α1 − α2|2 + |T1 − T2|2)1/2) with some

λ <
k1

max{1, diamΩ√
2

}(k1τ + (1 + 1√
2
)q1 diamΩ)

T 0 ∈ C4(Ω), f0 ∈ C2(Ω × [0, τ ]), α0 ∈ C2(Ω).
It was shown in [1] that if (α0, T0) is a solution of the homogenized problem⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

〈C〉ξ ∂T0

∂t
− div

(
K̂∇T0

) = 〈q〉ξ f̂ (α0, T0) + f0(x, t), (x, t) ∈ Ω × (0, τ )

∂α0

∂t
= f̂ (α0, T0), (x, t) ∈ Ω × (0, τ )

T0(x, t) = 0, (x, t) ∈ ∂Ω × (0, τ )

T0(x,0) = T 0(x), α0(x,0) = α0(x), x ∈ Ω

(2)

such that (α0, T0) ∈ C2(Ω × [0, τ ]) × C3(Ω × [0, τ ]), then we have the following estimate:

‖Tε − T0‖L2(Ω×(0,τ )) + ‖αε − α0‖L2(Ω×(0,τ )) = O
(√

ε
)

Henceforth the angular brackets with subscript ξ denote the mean value of the appropriate function with respect to ξ :
〈u(ξ)〉ξ := ∫

Q
u(ξ)dξ , where Q = (0,1)n is the reference periodicity cell. The symbol K̂ denotes the homogenized

conductivity matrix (see [2]).
In this Note, we refer to a particular case of problem (1) where we take α0 = T 0 = 0 and f̂ (0,0) = 0. In this case,

the above results can be improved as follows:

Lemma 1. Assume that m ∈ N
∗, f0 ∈ Hm(0, τ ;H 2m(Ω)) and that there exists a constant τ ∗ < τ such that

f0(x, t) = 0, for all t � τ ∗, f̂ ∈ C2m(R2) (and all the derivatives of f̂ of order up to 2m are bounded), λ(m)-Lipschitz
in the sense

λ(m) := sup
u1,u2,v1,v2∈Hm(0,τ ;H 2m(Ω))

‖f̂ (u1, v1) − f̂ (u2, v2)‖Hm(0,τ ;H 2m(Ω))

‖u1 − u2‖Hm(0,τ ;H 2m(Ω)) + ‖v1 − v2‖Hm(0,τ ;H 2m(Ω))

< ∞

Then there exists μ(m) > 0 depending only on m, k1, q1, τ and Ω , such that as long as λ(m) � μ(m) a solution (α0, T0)

of problem (2) exists, it is unique and belongs to Cm−[n/2]−1(Ω × [0, τ ]) × Cm−[n/2](Ω × [0, τ ]); it is equal to zero
for all t � τ ∗.

Lemma 2. Assume that there exists a finite number p of open 1-periodic sets (Di )1�i�p with C1,β -smooth boundary
(0 < β � 1) such that Di ∩ Dj = ∅, i �= j , and R

n = ⋃p

i=1 Di , and assume that K ∈ C0,μ(Di ) for all i = 1, . . . , p.
Let the assumptions of Lemma 1 hold for m = 3 + [n/2] and let (αε, Tε), (α0, T0) be the solutions of problems (1)

and (2) respectively. Then there exists a constant C independent of ε such that

‖Tε − T0‖L∞(Ω×[0,τ ]) + ‖αε − α0‖L∞(Ω×[0,τ ]) � Cε and

∥∥∥∥∂Tε

∂t

∥∥∥∥
L∞(Ω×[0,τ ])

� C
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Consider now the Kelvin–Voigt visco-elasticity equation⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ

(
x

ε

)
üε

Tε
− ∂

∂xi

(
B

ε,Tε

ij

∂u̇ε
Tε

∂xj

)
− ∂

∂xi

(
A

ε,Tε

ij

∂uε
Tε

∂xj

)
= f (x, t), (x, t) ∈ Ω × (0, τ )

uε
Tε

(x, t) = 0, (x, t) ∈ ∂Ω × (0, τ )

uε
Tε

(x,0) = u̇ε
Tε

(x,0) = 0, x ∈ Ω

(3)

Here uε
Tε

(x, t) is the unknown displacement vector field, uε
Tε

(x, t) = (uε
Tε,k

(x, t))1�k�n; u̇ε
Tε

and üε
Tε

denote the first
and the second time derivatives of uε

Tε
, respectively. The summation over the repeated indices is assumed. The volume

density ρ(ξ) is a scalar function which is also 1-periodic. The smooth vector function f (x, t) is given, and describes
forces due to the thermal effects. The linear elastic tensor A

ε,Tε

ij and the viscosity tensor B
ε,Tε

ij are matrix valued
entities:

A
ε,Tε

ij = (
Akl

ij

)
1�k,l�n

, B
ε,Tε

ij = (
Bkl

ij

)
1�k,l�n

, i, j = 1, . . . , n

These tensors are functions of Tε , the solution of problem (1) and they are assumed to depend periodically on ξ := x/ε.
This dependence means that the visco-elastic properties depend on the temperature. For example, for low temperatures
the elastic tensor A plays a more significant role than the viscosity tensor B while for high temperatures it may be
other way round. So, this temperature depending Kelvin–Voigt model simulates the thermo-chemico-visco-elastic
process for a composite material. In this model the thermo-chemical and visco-elastic problems are decoupled: first
the thermo-chemical problem (1) has to be solved, and then its solution is used in the visco-elastic equation (3). There
is a high interest to the combined models of this type, see e.g. a recent paper [3] where a visco-plastic model taking
into account the non-linear hardening effect is considered. Our model (1), (3) takes into account the dependence of
the visco-elastic properties on the temperature.

Assume that Aij (ξ, T ) and Bij (ξ, T ) are Lipschitz functions of T and that their derivatives in T are also Lipschitz
functions of T . We assume also that:

(H1) For all T ∈ R, ξ ∈ R
n and i, j = 1, . . . , n, Aij (ξ, T ), Bij (ξ, T ) and their first derivative in T belong to

L∞(Rn+1;Mn,n(R)). Additionally, Bkl
ij = Bil

kj = Blk
ji and there exists a positive constant ν independent of

ξ and T , such that for all symmetric matrices η = (ηl
j ) ∈ R

n×n,

νηk
i η

k
i � Bkl

ij (ξ, T )ηk
i η

l
j � ν−1ηk

i η
k
i , ∀ξ ∈ R

n, ∀T ∈ R (4)

(H2) The 1-periodic function ρ belongs to L∞(Q;R) and is uniformly positive.

We will adopt the following notational conventions throughout the Note. H 1
# (Q) denotes the closure of C∞

# (Q) in
the norm of the standard space H 1(Q) where C∞

# (Q) stands for the subspace of infinitely smooth functions C∞(Rn)

whose elements are periodic with respect to Q. For any space X, we denote the space Xn by X. The space H is the
Hilbert space consisting of all elements u of H1

#(Q) that have a zero mean value with respect to ξ . It is equipped with
the norm ‖u‖H := ‖∇ξ u‖(L2(Q))n . The space H−1

# (Q) is the ‘dual’ space of H1
#(Q) with respect to the dual product

denoted 〈·,·〉Q.
The last result of Lemma 2 concerning the estimate of the first time derivative of the function Tε will be employed

with the assumption (H1) to prove that the eslasticity and the viscosity functions A
ε,Tε

ij and B
ε,Tε

ij have uniformly
bounded first time derivatives.

Theorem 1. Let f ∈ L2(0, τ ;H−1(Ω)) and let (H1)–(H2) and the assumptions of Lemma 2 hold. Then for all ε > 0,
problem (3) admits a unique solution uε

Tε
in H 1(0, τ ;H1

0(Ω)) and there exists a constant C1 independent of ε such
that ∣∣∣∣∣∣uε

Tε

∣∣∣∣∣∣
Ωτ

≡ ∥∥uε
Tε

∥∥
L∞(0,τ ;H1

0(Ω))
+ ∥∥u̇ε

Tε

∥∥
L2(0,τ ;H1

0(Ω))
+ ∥∥u̇ε

Tε

∥∥
L∞(0,τ ;L2(Ω))

� C1‖f ‖L2(0,τ ;H−1(Ω))

Let us replace Tε by T0 in the coefficients Aij , Bij of problem (3). Then, applying the Lipschitz property for the
coefficients Aij and Bij in T , we can prove that the solution uε

T0
of this new modified problem is close to the solution

uε of problem (3):∣∣∣∣∣∣uε − uε
∣∣∣∣∣∣ = O(ε) (5)
Tε T0 Ωτ
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This new problem for uε
T0

is a particular case of the time dependent problem for the Kelvin–Voigt equation. Taking
into account estimate (5) we will further consider the following auxiliary visco-elasticity equation:

ρ

(
x

ε

)
üε − ∂

∂xi

(
Bij

(
x, t,

x

ε

)
∂u̇ε

∂xj

)
− ∂

∂xi

(
Aij

(
x, t,

x

ε

)
∂uε

∂xj

)
= f (x, t), in Ω × (0, τ ) (6)

uε = 0, on ∂Ω (7)

uε|t=0
= u̇ε|t=0

= 0 (8)

where, the tensors Aij (x, t, ξ) and Bij (x, t, ξ) are matrix-valued entities:

Aij (x, t, ξ) = (
Akl

ij (x, t, ξ)
)

1�k,l�n
, Bij (x, t, ξ) = (

Bkl
ij (x, t, ξ)

)
1�k,l�n

which are 1-periodic with respect to ξ . The properties of Aij and Bij with respect to x and t result from those of T0,
which are given by Lemma 1.

Let Ωτ := Ω × (0, τ ), and henceforth we assume that:

(H3) For all i, j = 1, . . . , n, Aij (x, t, ξ), Bij (x, t, ξ) and their first time derivative Ȧij and Ḃij belong to L∞(Ω ×
(0, τ ) × R

n;Mn,n(R)). Additionally, Bkl
ij = Bil

kj = Blk
ji and there exists a positive constant ν independent of x,

ξ and t , such that for all symmetric matrices η = (ηl
j ) ∈ R

n×n and for all (x, t, ξ) ∈ Ω × (0, τ ) × R
n, the tensor

Bij satisfies (4).

Thus, from Theorem 1, we deduce that for a given f ∈ L2(0, τ ;H−1(Ω)), and for all ε > 0, problem (6)–(8)
admits a unique solution uε in H 1(0, τ ;H1

0(Ω)). In order to derive the homogenized problem, we use the traditional
asymptotic expansion method (see, e.g., [2,4]) which suggests that the solution to the problem (6)–(8) be sought in
the following two-scale form:

uε(x, t) ∼ v(x, t) + εN

(
x, t,

x

ε

)
+ ε2u(2)

(
x, t,

x

ε

)
+ · · · (9)

where N and u(2) are 1-periodic functions with respect to the third argument. These functions are found via solving
appropriate versions of the ‘cell’ problem in ξ = x/ε and t , formulated in its generality as follows:
For any x ∈ Ω , find u(x, ·,·) ∈ H 1(0, τ ;H) such that:

− ∂

∂ξi

(
Bij (x, t, ξ)

∂u̇

∂ξj

)
− ∂

∂ξi

(
Aij (x, t, ξ)

∂u

∂ξj

)
= g(x, t, ξ), u(x,0, ξ) = φ(x, ξ) (10)

with some given g and φ.

Theorem 2. Assume that for all x ∈ Ω , φ and g belong respectively to H and H 1(0, τ ;H−1
# (Q)). Let g(x, t, ·) satisfy

〈g〉ξ = 0. Let also for any x ∈ Ω the straightforward modifications of assumption (H3) hold, namely with x replaced
by ξ , Ω by Q and Ωτ by Qτ := Q × (0, τ ). Then the problem (10) admits for any x a unique solution u(x, ·,·) in
H 1(0, τ ;H). Moreover, there exists a constant C2 such that:

‖u‖L∞(0,τ ;H) + ‖u̇‖L2(0,τ ;H) � C2
(‖g‖L2(0,τ ;H−1(Q)) + ‖φ‖H

)
, for any x ∈ Ω

Substituting the ansatz (9) into (6) and collecting formally the terms with equal powers of ε, one can identify the
terms corresponding to order ε−1. Equation generated by these terms and the first initial condition (8) give the main
‘unit cell’ problem satisfied by N , the second term of the ansatz (9):

− ∂

∂ξi

(
Bij (x, t, ξ)

∂2N

∂ξj ∂t
(x, t, ξ)

)
− ∂

∂ξi

(
Aij (x, t, ξ)

∂N

∂ξj

(x, t, ξ)

)
= F(x, t, ξ), ξ ∈ R

n, t > 0 (11)

N(x,0, ξ) = 0, ξ ∈ R
n (12)

where

F(x, t, ξ) := ∂
Bik(x, t, ξ)

∂v̇
(x, t) + ∂

Aik(x, t, ξ)
∂v

(x, t)

∂ξi ∂xk ∂ξi ∂xk
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By Theorem 2, the periodic function N(x, ξ, t) satisfying the ‘unit cell’ problem exists for any given x ∈ Ω and v(·,t)
such that v(·, t) ∈ H 1(0, τ ). For uniqueness of the solution we require that N has zero mean value with respect to ξ .
The following lemma establishes the structure of function N :

Lemma 3. The following representation holds:

N(x, t, ξ) =
t∫

0

∂v̇

∂xk

(x, t ′)NB
k (x, t − t ′, t ′, ξ)dt ′ +

t∫
0

∂v

∂xk

(x, t ′)NA
k (x, t − t ′, t ′, ξ)dt ′

Here NA
k (x, t, s, ξ) and NB

k (x, t, s, ξ) are periodic with respect to ξ solutions of the following initial boundary value
problems:

− ∂

∂ξi

(
Bij (x, s + t, ξ)

∂ṄA
k

∂ξj

(x, t, s, ξ)

)
− ∂

∂ξi

(
Aij (x, s + t, ξ)

∂NA
k

∂ξj

(x, t, s, ξ)

)
= 0 (13)

− ∂

∂ξi

(
Bij (x, s + t, ξ)

∂ṄB
k

∂ξj

(x, t, s, ξ)

)
− ∂

∂ξi

(
Aij (x, s + t, ξ)

∂NB
k

∂ξj

(x, t, s, ξ)

)
= 0 (14)

NA
k (x,0, s, ξ) = gA

k (x, s, ξ), NB
k (x,0, s, ξ) = gB

k (x, s, ξ) (15)

In turn, gA
k (x, s, ξ), gB

k (x, s, ξ) solve the following cell problems:

− ∂

∂ξi

(
Bij (x, s, ξ)

∂

∂ξj

gA
k (x, s, ξ)

)
= ∂

∂ξi

Aik(x, s, ξ) (16)

− ∂

∂ξi

(
Bij (x, s, ξ)

∂

∂ξj

gB
k (x, s, ξ)

)
= ∂

∂ξi

Bik(x, s, ξ) (17)

In the same way, the identification of the terms corresponding to order ε0 after the substitution of (9) into (6) and in
(8) implies that the function u(2)(x, t, ξ) solves the problem (10) with φ = φu(2) = 0 and g equal to some function F .
According to Theorem 2, u(2)(x, t, ξ) exists if and only if the function F(x, t, ξ) has zero mean value with respect to
ξ over Q: 〈F(x, t, ξ)〉ξ = 0. This equation implies the homogenized equation:

ρ̂v̈(x, t) − ∂

∂xi

σi(x, t) = f (x, t) (18)

where ρ̂ = 〈ρ〉ξ and

σi(x, t) = B̂ij (x, t)
∂v̇

∂xj

+ Âij (x, t)
∂v

∂xj

+
t∫

0

(
Êij (x, t, t ′) ∂v̇

∂xj

(x, t ′) + D̂ij (x, t, t ′) ∂v

∂xj

(x, t ′)
)

dt ′ (19)

Let us note that the homogenized relations (18)–(19) display the ‘memory effect’ due to the integral terms in (19).
Expression (19) uses the notation

Âij (x, t) =
〈
Aij (x, t, ξ) + Bik(x, t, ξ)

∂gA
j

∂ξk

〉
ξ

, B̂ij (x, t) =
〈
Bik(x, t, ξ)

(
δkj I + ∂gB

j

∂ξk

)〉
ξ

(20)

Êij (x, t, t ′) =
〈
Aik(x, t, ξ)

∂NB
j

∂ξk

(x, t − t ′, t ′, ξ)

〉
ξ

+
〈
Bik(x, t, ξ)

∂2NB
j

∂ξk∂t
(x, t − t ′, t ′, ξ)

〉
ξ

(21)

D̂ij (x, t, t ′) =
〈
Aik(x, t, ξ)

∂NA
j

∂ξk

(x, t − t ′, t ′, ξ)

〉
ξ

+
〈
Bik(x, t, ξ)

∂2NA
j

∂ξk∂t
(x, t − t ′, t ′, ξ)

〉
ξ

(22)

Now, we define the operator L :H 1(0, τ ;H1
0(Ω)) → H 1(0, τ ;H1

0(Ω)), such that if x ∈ Ω , v ∈ H 1(0, τ ;H1
0(Ω))

then ṽ = Lv is defined as a solution of the following equation:

ρ̂ ¨̃v − ∂

∂xi

(
B̂ij

∂ ˙̃v
∂xj

+ Âij

∂ṽ

∂xj

)
= f + ∂

∂xi

t∫ (
Êij (x, t, t ′) ∂v̇

∂xj

(x, t ′) + D̂ij (x, t, t ′) ∂v

∂xj

(x, t ′)
)

dt ′
0
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such that, ṽ(x,0) = ˙̃v(x,0) = 0 and ṽ(x, t)|∂Ω×(0,τ ) = 0. Thus, by using the Banach fixed point theorem we establish
the following results:

Theorem 3. Let f ∈ L2(0, τ ;H−1(Ω)) such that there exists a constant τ ∗ < τ , such that f (x, t) = 0 for all t � τ ∗,
and assume that (H2)–(H3) hold. Then there exists a unique v ∈ H 1(0, τ ;H1

0(Ω)), such that

ρ̂v̈(x, t) − ∂σi

∂xi

(x, t) = f (x, t), v|∂Ω×(0,τ ) = 0, v|t=0 = v̇|t=0 = 0

In order to justify the asymptotic expansion of uε we will impose additional regularity assumptions on the vis-
coelastic coefficients. Namely, we will assume that Aij and Bij are both smooth with respect to x and t , and periodic
and piecewise smooth with respect to ξ . More precisely, we will assume (cf. Lemma 2) that there exist a finite number
p of disjoint periodic subdomains Di ⊂ R

n, i = 1, . . . , p, such that R
n = ⋃p

i=1 Di and that each Alj , Blj is in Hölder
class C1,ζ (Di ) of periodic functions, with 0 < ζ � 1. We hence require the physical characteristics of the composite
media to be smooth in ξ in each subdomain Di assumed itself having a sufficiently smooth boundary, but possibly
discontinuous across their boundaries. Henceforth we denote for a fixed 0 < ζ < 1 by K the space consisting of all
elements u of C1,ζ (Di ) for all i = 1, . . . , p.

Theorem 4. Assume that: v, v̇ ∈ C3(Ωτ ); Aij , Bij , N and Ṅ ∈ C2(Ωτ ;K) and u(2), u̇(2) ∈ C1(Ωτ ;K). Then there
exists a constant C independent of ε such that∥∥uε − (v + εN)

∥∥
L∞(0,τ ;H1

0(Ω))
+ ∥∥u̇ε − (v̇ + εṄ)

∥∥
L2(0,τ ;H1

0(Ω))
� Cε1/2

‖uε − v‖L∞(0,τ ;L2(Ω)) + ‖u̇ε − v̇‖L∞(0,τ ;L2(Ω)) � Cε1/2

Now we describe sufficient conditions which ensure the validity of the assumptions of Theorem 4. Namely, we
consider the case when the elastic and viscous characteristics are proportional, i.e. there exists a constant κ > 0 such
that for all i, j = 1, . . . , n, Aij = κBij . In this case we check that Âij = κB̂ij , Êij = D̂ij = 0 and from (18)–(19), we
conclude that the homogenized problem takes the form

ρ̂v̈(x, t) − ∂

∂xi

(
B̂ij (x, t)

∂

∂xj

(v̇ + κv)

)
= f (x, t), v|t=0 = v̇|t=0 = 0

Then by using the Faedo–Galerkin method we prove that it is enough to have Aij , Bij ∈ C[n/2]+4(Ωτ ;L∞(Q)), and
for all k = 0,1,2,3, f (k) ∈ L2(0, τ ;H6−2k(Ω)), such that there exists a constant τ ∗ < τ , such that f (x, t) = 0 for all
t � τ ∗ to ensure the inclusions v, v̇ ∈ C3(Ωτ ) which are assumed in Theorem 4. Additionally, using the results of [5]
(or of [6]) and [7] we prove:

Lemma 4. Let Di ⊂ R
n, i = 1, . . . , p, be as in Lemma 2. We also assume that Alj (x, t, ξ) and Blj (x, t, ξ) are

1-periodic with respect to ξ , such that Alj , Blj belong to C2(Ωτ ;C0,λ(Di )) for all i = 1, . . . , p. Then

N, Ṅ ∈ C2(Ωτ ;K), u(2), u̇(2) ∈ C1(Ωτ ;K)

Thereby we conclude that under the assumptions of Lemma 4 and those immediately preceding it, the proportional-
ity condition of Aij and Bij is sufficient to ensure the validity of the assumptions made in Theorem 4 and consequently
it ensures the results of Theorem 4 which proves the estimate for the difference between the exact solution uε and v

when ε tends to zero.

Remark. Let us recall that for (α0, T0), the solution of problem (2), the function T0 depends only on variables x

and t which belong to Ωτ , thus we will consider A
ε,T0
ij and B

ε,T0
ij as functions of (x, t, ξ). Then, by using Lemma 1

and Lemma 4, we can find sufficient conditions for A
ε,T0
ij and B

ε,T0
ij to be regular enough, e.g. for them to belong to

C4+[n/2](Ωτ ;L∞(Q)) ∩ C2(Ωτ ;K). Thus, we can apply the main result of the present paper Theorem 4 to a visco-
elasticity equation coupled with problem (2). Indeed, the associated homogenized problem has the same structure
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as the problem (18)–(19). It suffices to replace Aij and Bij by A
ε,T0
ij and B

ε,T0
ij in definitions of the homogenized

coefficients given by (20)–(22) and in problems (13)–(17). In particular, if A
ε,T0
ij and B

ε,T0
ij are proportional, then the

result of Theorem 4 is also valid for the difference between uε
T0

and the solution of this homogenized problem, also
denoted by v. Finally, we use (5) to deduce the following estimate:∥∥uε

Tε
− v

∥∥
L∞(0,τ ;L2(Ω))

+ ∥∥u̇ε
Tε

− v̇
∥∥

L∞(0,τ ;L2(Ω))
� Cε1/2
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