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Abstract

We describe the progressive and delayed fracture of rigid solids by a discrete modelling. Each rigid solid is considered as an
assembly of particles with initial cohesive bonds, the latter decreasing progressively during the loading. A damaging interface
model is proposed to describe this progressive phenomenon. The model has been implemented in a discrete element code. The
first illustrative example, which is actually a parametric study, deals with the progressive damage and sudden fracture of a single
interface submitted to an uniaxial tension. The second example is related to the crushing of an assembly of rigid solids—i.e. a
granular medium—submitted to an oedometric compression. To cite this article: C. Silvani et al., C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Une approche discrète de la rupture des solides rigides basée sur un modèle d’endommagement interfacial. Nous décri-
vons la rupture progressive et différée de solides rigides par une approche discrète. Chaque solide rigide est représenté par une
collection de particules, initialement liées par une cohésion qui peut progressivement diminuer au cours du chargement. Un mo-
dèle d’endommagement interfacial est proposé pour décrire cette décroissance progressive. Implémenté dans un code de calcul par
éléments discrets, ce modèle permet de simuler la rupture différée de collections de solides rigides. Le premier exemple illustratif,
qui est en fait une étude paramétrique, est relatif à l’endommagement progressif puis la rupture d’une unique interface soumise
à une traction simple. Le second exemple porte sur la rupture et l’attrition d’une collection de solides rigides—i.e. d’un milieu
granulaire—sous compression œdométrique. Pour citer cet article : C. Silvani et al., C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The general framework of this study is that of the progressive (finite cracking velocity) and delayed (with respect
to the loading) fracture of rigid solids interacting by contact and friction. An illustrative example of such a structural
problem is this of a rockfill dam, which can globally settle due to the local fracture of rock blocks in the time, see e.g.
Deluzarche and Cambou [1]; Oldecop and Alonso [2].

The choice is here made to get numerically approximated solutions of the contact-friction part of the problem by
using the discrete element method proposed by Jean and Moreau (see e.g. [3,4]). However, due to the fact that the
rigid solids (or grains)—which will be all assumed of the same characteristic size DS—can break, each of them is
considered as an assembly of rigid particles—which will be also all assumed of the same characteristic size Dp � DS .
These particles are assumed to be initially ‘glued’. From a numerical point of view, a grain, i.e. an assembly of rigid
particles, must thus be seen as a mesh of the rigid solid, in which a crack can initiate (resp. propagate) only on (resp.
through) the contact zones between rigid grains. Consequently, from a physical point of view, these contact zones
have to be considered as rigid but breakable interfaces.

Strong cohesive forces are supposed to exist initially on the interfaces (see e.g. Delenne et al., [5]), giving to them
their initial tensile strength. It is then assumed that, when a given interface I—characteristic area S ≈ (Dp)2—is
submitted to a sufficiently strong tensile force, microcracks and/or microcavities, i.e. damage, initiate, grow and,
eventually, coalesce, that leads to the fracture of the interface (and so, to the irreversible vanishing of the cohesive
forces).

Section 2 of this Note is devoted to the presentation of a thermodynamically consistent damaging interface model
where, in agreement with the general frame of this study, the evolution of the damage is at the same times progressive
and delayed. Two illustrative examples are presented in Section 3. The first one is that of a single interface between two
particles submitted to an uniaxial tensile force: the analytical solution is given, from which a parametric study of the
damaging interface model is done. The second example is related to the crushing of an assembly of two-dimensional
rigid solids—i.e. a two-dimensional granular medium—due to an oedometric compression: the results here presented
have been obtained using a numerical code in which the damaging interface model has been implemented.

2. A damaging interface modelling

The (thermo)dynamic system considered in this section is an interface I between two grains. Like the grains, I

is assumed to be rigid: the area of the surface S occupied by I is then constant, whatever the forces acting on are.
Furthermore, the displacement jump [u] through S is assumed to be zero whenever I is not destroyed (i.e. whenever
S is clearly defined); consequently, [u] cannot be considered as a state variable of I . Actually, only one ‘mechanical’
state variable will be considered there, denoted by d (scalar) and characterizing the damage by microcracking and/or
microcavitation of the constitutive material of I . It will be assumed that d ∈ [0, 1

m
] where m > 0 is a material parameter

whose physical meaning will be discussed later on. It must be here emphasized that, as soon as d = 1/m, I is destroyed
and the contact-friction interactions between the both grains have to be considered on the basis of the Signorini–
Coulomb equations (see e.g. [4]), which will not be detailed in the present Note.

The damaging interface model is actually based on previous works on continuum damage mechanics by Marigo
[6], where the necessary and sufficient condition for the intrinsic dissipation to be non-negative is simply given by
ḋ � 0. Denoting by σ the stresses acting in S, assumption is then made that σ is homogeneous. On the other hand, it
is assumed that, due to the damage, the effective tough surface of I is not S but its only undamaged part (1 − md)S.
Consequently, the stresses are simply linked to the global force F (defined in such a way that FN = F.N > 0 when I

is submitted to a tensile force) by:

F = (1 − md)Sσ.N (1)

A damage yield surface is introduced next. Once more, it is clearly inspired by the works by Marigo [6]. However, for a
sake of consistency between the present interfacial damage model and the Coulomb–Signorini one (see also Cangemi
et al. [7]), which must ‘merge’ in the latter one as soon as d = 1/m, the damage yield surface is here expressed as a
function of FN and F t = F − FNN , i.e.:

gd(FN,F t , d) = FN + 1 |F t | − Fd
0 (1 − md) = 0 (2)
μ
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where μ is the friction coefficient between the both grains when I is destroyed (d = 1/m), Fd
0 > 0 the damage yield

when d = 0, and m > 0 a ‘softening’ parameter (the greater m, the stronger the softening). As previously indicated,
Eq. (2) reduces to the classical Coulomb’s yield surface as soon as d = 1/m. As for the fracture of I , which can occur
suddenly when I is sufficiently damaged, it is controlled by a fracture yield surface, which reads:

gf (FN,F t , d) = FN + 1

μ
|F t | − F

f

0 (1 − md) = 0 (3)

where F
f

0 � Fd
0 is the maximal tensile force I can undergo. It must be here emphasized that mechanical states

(FN,F t , d) such that gf (FN,F t , d) > 0 cannot be reached—i.e., as soon as gf (FN,F t , d) = 0, I is destroyed—
and that, whatever the reachable mechanical state (FN,F t , d) is, gd(FN,F t , d) � gf (FN,F t , d)—i.e. damage takes
place before fracture, apart from the limit case of a perfectly brittle interface (Ff

0 = Fd
0 ), where damage and fracture

are concomitant.
Eventually, the damage evolution law is given by (η is a characteristic time):

ḋ = 1

η

〈
gd(FN,F t , d)

F d
0

〉
H−(−gf (FN,F t , d)

) +
[

1

m
− d

]
δ
(
gf (FN,F t , d)

)
(4)

where 〈.〉 denotes the MacCauley brackets and H− is the modified Heaviside function (H−(0) = 0). The Dirac
distribution δ indicates that, as soon as gf (FN,F t , d) = 0, ḋ is to be understood as a distribution derivative (i.e. d

‘jumps’ to its maximal value 1/m).

3. Illustrative examples

3.1. Tension

Apart from the friction coefficient μ, four material parameters have to be identified for the damaging interface
model (see Section 2) to be fully defined: the softening parameter m; the damage yield Fd

0 ; the fracture yield F
f

0 =
(1/r)F d

0 (r � 1); the characteristic time η. The influence of each of these parameters on the damage evolution is here
studied, considering a single interface (surface S) submitted to a simple tension such that F t = 0 and σ̇N = ḞN/S =
cst > 0.

For convenience—and due to the fact that t = (σNσ0)/(σ0σ̇N ), where the damage yield stress σ0 is given by
σ0 = Fd

0 /S— d will be here considered as a function of σN/σ0 instead of the time t . Thus, noticing that gd(σN,d) > 0
as soon as σN/σ0 > 1−md0, Eq. (4) can be rewritten (denoting by d,N0 the first derivative of d with respect to σN/σ0):

ησ̇N

σ0
d,N0 −mH

(
σN

σ0
− 1 + md0

)
d =

(
σN

σ0
− 1

)
H

(
σN

σ0
− 1 + md0

)
(5)

with the initial condition d(σN/σ0 = 0) = d0. The exact solution of this equation reads (whenever gf (σN,d) =
σN − σf (1 − md) < 0, where the fracture yield stress σf is given by σf = F

f

0 /S):

d

(
σN

σ0

)
= d0 − H

(
σN

σ0
− 1 + md0

)((
ησ̇N

σ0m2

)
exp

(
mσ0

ησ̇N

(
σN

σ0
− 1 + md0

))

+ 1

m

(
1 − σN

σ0

)
− ησ̇N

σ0m2
− d0

)
(6)

Depending on different values of the material parameters, the different shapes of this solution are presented on Fig. 1.
Notice that, due to the fact that, in Eq. (6), the material parameter η and the loading parameter σ̇N are systematically
linked by their product, choice has been actually made to consider σ̇N as a parameter and η as a constant.

As shown on Fig. 1, the main features of the damage evolution are:

• the loading rate σ̇N (or, in an equivalent way, the inverse of the characteristic time η) acts on both the present
damage d—for an arbitrary given loading σN/σ0, the greater σ̇N , the smaller d—and the critical value of the
damage (dc, such that gf (σN,dc) = 0)—the greater σ̇N , the smaller dc;
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Fig. 1. Simple tension of a single interface: influence of the loading and material parameters on the damage evolution. Notice that only the
exponential part of each graph (ending in d = dc) corresponds to a regular damage evolution: the linear part (ending on the d-axis to the maximum
value of d , 1/m) is only an arbitrary representation of the damage jump [d] = 1/m − dc , which leads to the fracture of the interface. Beyond
σ0 = 0.9 MPa and η = 0.1 s, the reference parameters are: ˙σN = 2.3 MPa s−1, d0 = 0, m = 1, r = 0.25. (a) (top-left): influence of the loading rate,
σ̇N = ˙σN ,2 ˙σN ,4 ˙σN ; the greater σ̇N , the smaller dc ; (b) (top-right): influence of the initial damage, d0 = 0,0.2,0.4; (c) (bottom-left): influence
of the softening parameter, m = m,2m,4m; the greater m, the smaller dc ; (d) (bottom-right): influence of the ratio r = σ0/σf , r = r,0.1r,0.001r ;
the greater r , the smaller dc .

Fig. 1. Traction simple d’une unique interface : influence de la vitesse de chargement et des paramètres-matériau sur l’évolution de l’endomma-
gement. Il est à noter que seule la partie exponentielle de chacun des graphes (se terminant en d = dc) correspond à une évolution régulière de
l’endommagement : la partie linéaire (coupant l’axe des d en d = 1/m) n’est qu’une représentation arbitraire du saut d’endommagement induisant
la rupture de l’interface. Au-delà de σ0 = 0,9 MPa et η = 0,1 s, les paramètres de référence sont : ˙σN = 2,3 MPa s−1, d0 = 0, m = 1, r = 0,25.
(a) (en haut, à gauche) : influence de la vitesse de chargement, σ̇N = ˙σN ,2 ˙σN ,4 ˙σN ; plus σ̇N est grand, plus dc est petit ; (b) (en haut, à droite) :
influence de l’endommagement initial, d0 = 0,0,2,0,4 ; (c) (en bas, à gauche) : influence du paramètre de radoucissement, m = m,2m,4m ; plus
m est grand, plus dc est petit ; (d) (en bas, à droite) : influence du rapport r = σ0/σf , r = r , 0,1r , 0,001r ; plus r est grand, plus dc est petit.

• the initial damage d0 has influence on both the damage yield (σN0, such that gd(σN0, d0) = 0)—the greater d0,
the smaller σN0—and dc—the greater d0, the greater dc;

• the softening parameter m immediately gives the upper-bound of the damage range (since d ∈ [0, 1
m

], see Sec-
tion 2) and constrains the present damage d—for an arbitrary given loading σN/σ0, the greater m, the greater d ;

• the ratio r = Fd
0 /F

f

0 = σ0/σf � 1 acts only on the critical value of the damage—the greater r , the smaller dc.

Another interesting result concerns the ultimate phase of the damage evolution, i.e. the fracture of the interface: the
latter is not triggered by a critical value of the damage, a priori defined, but depends at the same times on the material
parameters and on the loading parameter. From a modelling point of view, this is due to the fact that the damaging
interface model is actually based on two yield surfaces, one for the damage, the other for the fracture; from a physical
point of view, this result simply means that the fracture of the interface can be either ‘brittle’ (small values of dc)—
e.g. when submitted to high loading rates—or ‘ductile’ (great values of dc)—e.g. for small values of the softening
parameter.

3.2. Compression

We now consider an assembly of two-dimensional rigid solids (grains)—i.e. a two-dimensional granular medium—
submitted to a compressive force |T | in oedometric conditions (no lateral displacements). In the initial state, see
Fig. 2(a), the sample (initial height: H = 42 cm; initial width: W = 48 cm) is composed by 75 grains (diameters
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Fig. 2. (a) (top-left): Sample composed by an assembly of 75 non-‘glued’ grains (initial height: H = 42 cm; initial width: W = 48 cm) and
submitted to an oedometric loading; each of the grains is composed of ≈65 particles, initially ‘glued’; (b) (top-right): Axial strain ε = |U |/H
versus dimensionless time t/tF for 2 loading rates: σ0 = 900 kPa, r = 0.25; (c) (bottom-left): Axial strain ε = |U |/H and ratio between the
present number of broken interfaces and the initial number of cohesive contacts, ν, versus dimensionless time t/η; σ0 = 900 kPa; σ̇ = 2300 kPa s−1;
r = 0.25 or 0.5; (d) (bottom-right): Idem (c) except that σf = 5500 kPa; σ̇ = 180 kPa s−1; r = 0.17 or 0.5.

Fig. 2. (a) (en haut, à gauche) Échantillon composé de 75 grains non « collés » (hauteur initiale : H = 42 cm ; largeur : W = 48 cm) et soumis à
un chargement œdométrique ; chacun des grains est composé de ≈65 particules, initialement « collées » (b) (en haut, à droite) : déformation axiale
ε = |U |/H en fonction du temps adimensionnalisé t/tF pour deux vitesses de chargement ; σ0 = 900 kPa, r = 0,25 ; (c) (en bas, à gauche) :
déformation axiale ε = |U |/H et rapport entre le nombre actuel d’interfaces rompues et le nombre initial de contacts cohésifs, ν, en fonction du
temps adimensionnalisé t/η ; σ0 = 900 kPa ; σ̇ = 2300 kPa s−1 ; r = 0,25 ou 0,5 ; (d) (en bas, à droite) : idem (c), mais avec σf = 5500 kPa ;

σ̇ = 180 kPa s−1 ; r = 0,17 ou 0,5.

between 5 and 6 cm), each of them being constituted by 60 to 70 particles (diameters Dp between 5 and 6 mm). More
precisely, the numerical simulations involve 4980 particles. The loading T is defined by a ramp (time rate Ṫ = cst �= 0)
followed by a constant value (Ṫ = 0), in order to highlight the creep-like response of the granular medium. The axial
strain is defined by ε = |U |/H where U is the global displacement induced by T ; the axial stress is denoted by
σ = |T |/eW where e is the (unit) thickness of the sample. An other important parameter, denoted by ν, is the ratio
between the present number of broken interfaces and the initial number of cohesive contacts. Notice also that all the
simulations were performed with the discrete element code LMGC90 (see e.g. [8]) and with μ = 1,m = 1, η = 1 s
and a time step �t = 5 × 10−4 s.

As we have a time dependent damage model, the loading rate strongly influences the mechanical response of the
sample. This is clearly shown on Fig. 2(b), where t is scaled by the loading characteristic time tF = F

f

0 /|Ṫ |. For a
given value of σ0, Fig. 2(c) shows that r influences the kinetics of the creep phase, while for a given value of σf , see
Fig. 2(d), this is the amplitude of the axial strain which is modified by r . Notice eventually that ν and ε evolves in the
same way during the creep phase: the kinetics is mainly governed by the fracture of the interfaces.

4. Conclusion

Most of the structural failures are due to the pre-existence of various kinds of microdefects (microcracks and/or
microvoids) in the materials, which propagate and eventually coalesce in a macrocrack. The modelling of these prop-
agation and coalescence is an important issue. The discrete approach presented here is intended as a step toward this
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issue. The proposed damaging interface model is based on a reduced set of five parameters. The illustrative examples
seem to indicate that the numerical code in which the damaging model has been implemented is an efficient tool for
simulating the initiation and the propagation of macrocracks in rigid solids, including the time effect. Examples of
applications clearly include dam engineering: rockfill material is characterized by delayed grain breakage under con-
stant load. This is the main cause of the majority of post-constructive displacements observed in high rockfill dams,
which can produce piping or cracking of the impervious element.
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