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Abstract

This Note proposes a non-uniform warping beam theory including the effects of torsion and shear forces. Based on a displace-
ment model using three warping parameters associated to three St Venant warping functions corresponding to torsion and shear
forces, this theory is free from the classical assumptions on the warpings or on the shears, and is valid for any kind of homogeneous
elastic and isotropic cross-section. The result on the structural behavior of the beam specifies the effect of the non-symmetry of the
cross-section, and the closed form results obtained for the stresses show the contribution of each internal force. Comparison with
St Venant beam theory highlights the additional effects due to the non-uniformity of the warping. To cite this article: R. El Fatmi,
C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Une théorie de gauchissement non uniforme. Cette Note propose une théorie de gauchissement non uniforme prenant en
compte les effets de la torsion et des efforts tranchants. Basée sur un modéle cinématique utilisant trois paramètres de gauchisse-
ment associés aux trois fonctions de gauchissement de torsion et d’efforts tranchants de St Venant, cette théorie, qui s’affranchit
naturellement des hypothèses classiques sur les gauchissements ou les cisaillements, est valable pour toute section homogène élas-
tique et isotrope. La comparaison aux résultats de St Venant permet aussitôt de dégager les effets induits par la non-uniformité du
gauchissement. En particulier, cette théorie permet de préciser la contribution de chacun des efforts intérieurs ainsi que l’effet de
la non-symétrie de la section sur le comportement global de la poutre. Pour citer cet article : R. El Fatmi, C. R. Mecanique 335
(2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

In the general case of loading and boundary conditions, warping is non-uniform along the axis of a beam. This
leads to a beam mechanical behavior that may be sufficiently different from that predicted by the St Venant (SV)
beam theory [1,2] or other theories which are restricted to uniform warping. To better describe the warping effects,
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Fig. 1. St Venant problem.

high order beam theories have been proposed; they have generally been used to study, separately, the effects of
torsional warping [3,4] and shear force warping [5,6]. These theories are based on displacement models (ξ ) including
a warping (w) of the following shape:

ξ(x,X) = v(x) + θ(x) ∧ X + w(x,X)x with w(x,X) = η(x)ψ(X) (1)

where x is the unit vector along the beam axis, X the in-section vector position, (v, θ ) the cross-sectional displace-
ments, η the warping parameter and ψ a warping mode associated to torsion or to one of the shear forces. In each case,
ψ is supposed to represent the corresponding SV-warping-function, which is considered as the reference to describe
the natural warping of a cross-section (CS). Further, η may be independent or linked to the cross-sectional strains,
which can reduce the number of degrees of freedom (for the torsion, η is taken as the twisting rate (e.g. [3]), and for
the shear-bending η is taken as the cross-sectional shear strain (e.g. [6])).

Non-uniform warping theories agree for the structural behavior of the beam in the case of bi-symmetrical-CS.
There is also an agreement about the expression of the additional axial stresses due to warping. However, the situation
is not so clear for shear stresses, because these are intimately associated to the choice of the warping mode and the
warping parameter (independent or not). Also, there is no agreement concerning the effect of the non-symmetry of the
CS. In most of the works, for non-symmetrical-CS, if the bending moments refer to the centroid while the torsional
moment refers to the shear center, torsional and bending effects remain uncoupled for non-uniform warping theories
as they were in classical beam theories. However, on an other hand, [4] has shown that a (new) flexural-torsional
coupling is induced by the non-uniformity of the warping.

In order to obtain a beam theory valid for any CS and able to detect eventual elastic coupling between warpings,
we propose, in this Note, a beam theory based on the following warping model:

w(x,X) = ηx(x)ψx(X) + ηy(x)ψy(X) + ηz(x)ψz(X) (2)

using three independent warping parameters (ηx, ηy, ηz) associated to three warping functions (ψx,ψy,ψz) which are
‘exactly’ the SV-warping-functions corresponding to torsion and shear forces. This model, that could be considered
as the most general one, leads to a non-uniform beam theory (denoted herein by NUW-BT) free from the classical
assumptions on the warping functions or on the shear distributions (e.g. Vlasov assumptions for thin-walled profiles).

It should be noted that the theoretical development of this theory is completely based on the properties of 3D SV-
solution of the original and complete SV-problem. Thus, it is necessary in the present Note, to first recall SV-problem
and the detailed 3D SV-solution.

2. Three-dimensional solution of St Venant problem

In this section, we give, for an homogeneous elastic isotropic material, the SV-solution that refers to the shear cen-
ter1 of the cross-section, and wherein, for the sake of simplicity, the in-plane displacement related to Poisson’s effects
will be omitted (which is equivalent to assume that the Poisson’s ratio ν is zero). Furthermore, several properties of
SV-solution, needed for the theoretical development of the NUW-BT presented in the next section, are also specified.

The reference problem shown in Fig. 1 is a 3D equilibrium beam problem. The beam is of section S and length L.
Slat is the lateral surface and S0 and SL are the extremity sections. y and z are the inertia unit vectors of the CS.
A point is marked M = xx + X, where X belongs to S. The material constituting the beam is characterized by the
Young’s modulus E and the shear modulus G. The beam is in equilibrium under surface force densities H 0 and HL

1 We refer to the shear center, because it is common, for non-symmetrical cross-sections (in order to uncouple torsional and bending effects) to
express the bending moments referring to the centroid while the torsional moment is referred to the shear center.
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acting on S0 and SL, respectively. SV-solution satisfies all the equations of the linearized equilibrium problem, except
the boundary conditions on (S0, SL) which are satisfied only in terms of the resultant (force and moment). To give the
expression of the SV-solution, it is convenient to first introduce these notations:

– Let (yc, zc) denote the components of the shear center C of the CS. We define by X = (0, (y − yc), (z − zc)) the
in-section vector that refers to the C.

– σ denoting the stress tensor, we define the cross-sectional stresses (R,M), resultant and moment, by

R = r(σ · x) = (N,T y, T z), M = m(σ · x) = (Mx,My,Mz) (3)

where (N,T y,T z) are the axial and the shear forces, Mx is the torsional moment referring to the shear center C,
whereas (My,Mz) are the bending moment referring to the centroid G.

The SV-solution is given by:

ξ sv = u(x) + ωx(x)x ∧ X + (
ωy(x)y + ωz(x)z

) ∧ X + (
Mxφx(X) + T yφy(X) + T zφz(X)

)
x (4)

σ sv =
⎡
⎣σ sv

xx σ sv
xy σ sv

xz

0 0

0

⎤
⎦

sym

,

⎧⎨
⎩σ sv

xx = N

A
+ My

Iy

z − Mz

Iz

y

τ sv = σ sv
xyy + σ sv

xzz = Mxτ x + T yτ y + T zτ z

(5)

γx = N

EA
, γy = Ty

GAy

, γy = Tz

GAz

, χx = Mx

GJ
, χy = My

EIy

, χy = Mz

EIz

(6)

where (u,ω) are the cross-sectional displacements, (γ = u′ + x ∧ ω,χ = ω′) the cross-sectional strains, (A,Ay,Az,

Iy, Iz, J ) are the area, the reduced areas, the moments of inertia and the torsional constant, respectively; and where
(φi,τ i ) with i ∈ {x, y, z} are the SV-warping-functions and the SV-shears corresponding to torsion and shear forces,
respectively. In this solution, the cross-sectional stresses (R,M) are supposed to verify the one-dimensional (1D)
equilibrium equations

R′ = 0, M ′ + x ∧ R = 0 (7)

and are related to (γ ,χ ) by the 1D structural behavior expressed by the uncoupled constitutive relations (Eq. (6)).
σ sv is unique ([ ]sym indicates that the matrix is symmetric) and ξ sv is given within an arbitrary rigid body displace-
ment.

Eqs. (7), (6) and boundary conditions on S0 and SL, form the 1D problem that defines the SV beam theory (denoted
herein by SV-BT) associated to the 3D SV-solution.

2.1. Properties2 of SV-warping-functions and SV-shears

(a) The shears τ i verify the natural conditions:

〈τ y〉 = y, 〈τ z〉 = z, 〈τ x〉 = 0, 〈X ∧ τ y〉 = 0, 〈X ∧ τ z〉 = 0, 〈X ∧ τ x〉 = x (8)

(b) Shear forces and torsion are not coupled (Eq. (6)), this implies that:

〈τ x · τ x〉 = 1

J
, 〈τ y · τ y〉 = 1

Ay

, 〈τ z · τ z〉 = 1

Az

, 〈τ x · τ y〉 = 〈τ x · τ z〉 = 〈τ y · τ z〉 = 0 (9)

(c) The warping functions are chosen such that:

〈φi〉 = 〈yφi〉 = 〈zφi〉 = 0, i ∈ {x, y, z} (10)

These conditions are always possible [1], since ξ sv is unique within an arbitrary rigid body displacement.

2 Within the framework of the exact beam theory [1], which constitutes our reference, SV-solution is expressed with cross-sectional operators that
contain the SV-warping-functions, the SV-shears, the structural behavior, . . . . For the mathematical characterization that governs these operators
see the details [2, Section-3] for a 2D-characterization (on the cross-section) and see [7, Section-3] for 3D-characterization (on a slice of the beam).
For the numerical method that can be used to compute these operators see [8,2,7].
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(d) Starting from Eqs. (4)–(6), one can derive the relations between the shears and the warping functions:

τ x = 1

J
(x ∧ X + GJ∇φx), τ y = 1

Ay

(y + GAy∇φy), τ z = 1

Az

(z + GAz∇φz) (11)

(∇ denotes the gradient operator).
(e) When a CS presents y- or/and z-symmetry, we have the following properties:

y-symmetry zc = 0 φx is odd/z φy is even/z φz is odd/z

z-symmetry yc = 0 φx is odd/y φy is odd/y φz is even/y

}
(12)

3. Non-uniform warping theory

For the sake of simplicity, we keep, as reference, the problem defined in Section 2. The theory is based on the
following displacement model (similar to that of the St Venant equation (4)):

ξ(v, θ ,η) = v(x) + θx(x)x ∧ X + (θy(x)y + θz(x)z) ∧ X + ηi(x) · ψi(X)x (13)

where ηiψ
i is a sum using the repeated indices convention with i ∈ {x, y, z}, (v, θ) are the cross-sectional displace-

ments, ηi (η = (ηx, ηy, ηz)) the warping parameters, and ψi the warping functions corresponding to torsion and
shear forces related to SV-warping-functions by: ψx = GJφx , ψy = GAyφ

y and ψz = GAzφ
z. This choice assumes

that the CS maintains its shape (no distortion). The beam theory associated with this displacement, parametrized by
(v, θ ,η), will be derived hereafter by the principle of virtual work. Let us introduce first ξ̂ = ξ(v̂, θ̂ , η̂) denoting a

virtual displacement and ε̂ = ε(ξ̂) the corresponding strain tensor. With γ̂ = v̂′ + x ∧ θ̂ and χ̂ = θ̂
′
, the non-zero

components of ε̂ can be written:

ε̂xx = γ̂x + zχ̂y − yχ̂z + η̂′
iψ

i,

[
2 ε̂xy

2 ε̂xz

]
= γ̂yy + γ̂zz + χ̂x(x ∧ X) + η̂i∇ψi (14)

The internal virtual work is Wi = − ∫
L
〈σ : ε(ξ̂)〉dx. Using the expression (14) of the virtual deformations, Wi

takes the form:

Wi = −
∫
L

(R · γ̂ + M · χ̂ + Mψ · η̂′ + Ms · η̂)dx

=
∫
L

(
R′ · (v̂ + x ∧ θ̂) + M ′ · θ̂ + (M ′

ψ − Ms) · η̂)
dx − [R · v̂ + M · θ̂ + Mψ · η̂]L0 (15)

where

R = 〈σ · x〉, M = m(σ · x), Mψ = 〈σxxψ
i〉xi , Ms = 〈σxyψ

i
,y + σxzψ

i
,z〉xi

(
xi ∈ {x,y,z}) (16)

This defines the internal forces R,M,Mψ and Ms . The new ones denoted by Mψ = (Mx
ψ,M

y
ψ,Mz

ψ) and Ms =
(Mx

s , T
y
s , T z

s ) will be called3 the bimoment vector and the secondary internal force vector, respectively.
The external virtual work is We = ∫

S0
H 0 · ξ̂ dS + ∫

SL
HL · ξ̂ dS. Using (Eq. (13)), We takes the form:

We = P 0 · v̂0 + C0 · θ̂0 + Q0 · η̂0 + P L · v̂L + CL · θ̂L + QL · η̂L (17)

where (P I = 〈H I 〉;CI = (H I );QI = 〈Hx
I ψx〉x + 〈Hx

I ψy〉y + 〈Hx
I ψz〉z) define, for the 1D theory, the external

actions associated to the external surface force density H I , with I ∈ {0,L}.

3 It is usual, in non-uniform torsional warping theories, to call Mx
ψ the bimoment, and Mx

s the secondary torsional moment. By analogy, we

introduce the bimoment vector Mψ and the secondary internal force vector Ms . The components of Ms are denoted by (Mx
s ,T s

y , T z
s ) because

Mx
s which is homogeneous to a moment, and the (T

y
s , T z

s ) are homogeneous to forces.
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Thanks to the principle of virtual work, Eqs. (15)–(17) provide the equilibrium equations and the boundary condi-
tions:

R′ = 0

M ′ + x ∧ R = 0

M ′
ψ − Ms = 0

⎫⎪⎬
⎪⎭ ,

x = 0: {R,M,Mψ }0 = −{P 0,C0,Q0}
x = L: {R,M,Mψ }L = {P L,CL,QL}

}
(18)

Let D = (Dσ ,Dτ ) denote the generalized strain vector and T = (T σ ,T τ ) the corresponding generalized force
vector defined by:

Dσ = (γx,χy,χz, η
′
x, η

′
y, η

′
z), Dτ = (χx, ηx, γy, ηy, γz, ηz)

T σ = (N,My,Mz,Mx
ψ,M

y
ψ,Mz

ψ), T τ = (Mx,Mx
s , T y, T

y
s , T z, T z

s )

}
(19)

The 1D elastic constitutive relation can be written T = Γ D where Γ defines the structural rigidity operator. Using the
matrix notation, the elastic strain energy for the 1D model of the beam is given by W 1D

el (D,D) = 1
2

∫
L
[D]t [Γ ][D]dx.

Besides, for the 3D problem, ε denoting the strain tensor associated to the displacement ξ(v, θ ,η) (Eq. (13)), and
using Hooke’s law, the beam elastic strain energy can be written as

W 3D
el (ε,ε) = 1

2

∫
L

〈
Eε2

xx + 4G(ε2
xy + ε2

xz)
〉
dx (20)

Identifying the strain energies W 3D
el and W 1D

el allows to derive the rigidity operator Γ . This identification shows that
Γ can be written Γ = [

Γ σ 0
0 Γ τ

]
and leads to the uncoupled relations T σ = Γ σ Dσ and T τ = Γ τDτ . The rigidity

operators Γ σ and Γ τ are associated to the axial stress and the shear stresses, respectively. Using the properties Eqs.
(8)–(11) for the SV-shears and the SV-warping functions, Γ σ and Γ τ reduce to:

Γ σ = E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A 0 0 0 0 0

Iy 0 0 0 0

Iz 0 0 0

I xx
ψ I

xy
ψ Ixz

ψ

I
yy
ψ I

yz
ψ

I zz
ψ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

sym

Γ τ = G

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ix J − Ix zcA −zcA −ycA ycA

Ix − J −zcA zcA ycA −ycA

A Ay − A 0 0

A − Ay 0 0

A Az − A

A − Az

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

sym

(21)

where the cross-sectional constants I
ij
ψ = 〈ψiψj 〉 define the warping matrix noted Iψ .

The expressions of the strain (Eq. (14)) and the inverse of the constitutive relations (Eq. (21)) allow one to express
the normal and shear stresses with respect to the generalized stresses. Using the property Eq. (11), one can obtain the
following explicit form

σnuw
xx =

σ sv
xx︷ ︸︸ ︷

N

A
+ My

Iy

z − Mz

Iz

y

+ Mx
ψ

κσ

[
(I

yy
ψ I zz

ψ − I
yz
ψ

2
)ψx + (−I

xy
ψ I zz

ψ + I xz
ψ I

yz
ψ )ψy + (I

xy
ψ I

yz
ψ − I xz

ψ I
yy
ψ )ψz

]
+ M

y
ψ [

(−I
xy
ψ I zz

ψ + I xz
ψ I

yz
ψ )ψx + (I xx

ψ I zz
ψ − I xz

ψ
2
)ψy + (−I xx

ψ I
yz
ψ + I

xy
ψ Ixz

ψ )ψz
]

κσ
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+ Mz
ψ

κσ

[
(I

xy
ψ I

yz
ψ − I xz

ψ I
yy
ψ )ψx + (−I xx

ψ I
yz
ψ + I

xy
ψ Ixz

ψ )ψy + (I xx
ψ I

yy
ψ − I

xy
ψ

2
)ψz

]
with

κσ = I xx
ψ I

yy
ψ I zz

ψ − I xx
ψ I

yz
ψ

2 − I
xy
ψ

2
I zz
ψ + 2I

xy
ψ Ixz

ψ I
yz
ψ − I xz

ψ
2
I

yy
ψ (22)

τnuw =
τ sv︷ ︸︸ ︷

Mxτx + T yτy + T zτ z

+ Mx
s

κτ

[
(A − Ay)(A − Az)(Ixτ

x − x ∧ X) − A2(y2
c (A − Ay) + z2

c(A − Az)
)
τ x

− zcA(A − Az)(Ayτ
y − y) + ycA(A − Ay)(Azτ

z − z)
]

+ T
y
s

κτ

[−zcA(A − Az)(Jτ x − x ∧ X)

+ (
(Ix − J )(A − Az) − y2

c A2)(Aτ y − y) − z2
cA

2(A − Az)τ
y − yczcA

2(Azτ
z − z)

]
+ T

y
s

κτ

[
ycA(A − Ay)(Jτ x − x ∧ X)

− yczcA
2(Ayτ

y − y) + (
(Ix − J )(A − Ay) − z2

cA
2)(Aτ z − z) − y2

c A2(A − Ay)τ
z
]

with

κτ = (Ix − J )(A − Ay)(A − Az) − A2(y2
c (A − Ay) + z2

c(A − Az)
)

(23)

This result makes clear the additional contribution of the new internal forces Mψ and Ms induced by the non-
uniformity of warping.

4. Comments

– Due to warping, torsional and bending effects are coupled in the present NUW-BT, even if the torsional moment
refers to the shear center C whereas the bending moments refer to the centroid G. For an arbitrary-CS this coupling
effect is related to the three coupling components (I

xy
ψ , I xz

ψ , I
yz
ψ ) of the warping matrix and to the coordinates

(yc, zc) of C. This coupling appears clearly in the constitutive relations (Eq. (21)) and in the expressions of the
stresses Eqs. (22), (23). For bi-symmetrical-CS, thanks to symmetry properties (Eq. (12)), yc = zc = I

xy
ψ = I xz

ψ =
I

yz
ψ = 0 and the torsional-flexural coupling vanishes; in that case, the stresses reduce to:

σnuw
xx = σ sv

xx + Mx
ψ

Ixx
ψ

ψx + M
y
ψ

I
yy
ψ

ψy + Mz
ψ

Izz
ψ

ψz (24)

τnuw = τ sv + Mx
s

(Ix − J )
(Ixτ

x − x ∧ X) + T
y
s

(A − Ay)
(Aτ y − y) + T z

s

(A − Az)
(Aτ z − z) (25)

– Equilibrium equations (18), constitutive relation T = Γ D (Eq. (21)) and boundary conditions on S0 and SL

form the 1D problem that defines the NUW-BT. For a cantilever beam submitted to shear-bending or torsion, the
warping is restrained (η = 0) for the built-in section, and free (Mψ = 0) in the other extremity; the warping is
then non-uniform along the span.

– The lateral surface Slat of the beam is free of loading. In Eq. (23), the contribution of Ms to the shear is expressed
with the SV-shears (τ x,τ y,τ z) and with the supplementary terms (x ∧ X), (y) and (z). The SV-shears naturally
vanish at the free edge of the section but the supplementary terms violate the ‘no shear’ boundary conditions at
the edge. Thus, for this theory founded on the displacement model (13), the result on the shear distribution over
the section is not quite satisfying.4

4 To better evaluate the shear, an alternative consists of considering the equilibrium of an elementary slice (dx) of the beam and of calculating
the shear that equilibrates the variation of the normal stresses σnuw

xx given by Eq. (22).
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TP-SV Vlasov Kim-BT NUW-BT

θx(L) 43.330 4.119 4.236 4.203
vz(L) – – 2.163 2.369

Fig. 2. Torsion of a cantilever beam with a channel-CS (aspect ratio 5): coupling effect.

Table 1
Torsion. Axial and shear stresses

σ 3D
xx σ 1D

xx σ sv
xx

CS1 29.104 20.690 0
CS2 1499.8 1234.0 0

τ3D τ1D τ sv

CS1 11.168 9.600 16.28
CS2 50.735 32.873 620.64

Table 2
Shear-bending of a short beam (aspect ratio 2.5). Comparison of the axial stresses due to
warping and flexure

3D-FEM σ 3D
xx σ sv

xx (σ 3D
xx )w

(σ3D
xx )w

σ sv
xx

%

CS1 34.306 30.000 4.306 14.35
CS2 122.720 87.234 35.486 40.68

NUW-BT σ 1D
xx σ sv

xx (σ 1D
xx )w

(σ1D
xx )w

σ sv
xx

%

CS1 33.346 30.000 3.346 11.15
CS2 135.909 87.234 48.675 55.77

∣∣ σ1D
xx −σ3D

xx

σ3D
xx

∣∣%
CS1 2.80
CS2 10.75

(·)3D , (·)1D and (·)sv denote quantities related to 3D-FEM, NUW-BT, and SV-BT, respectively.

– It should be noted that for the application of the NUW-BT, one needs to previously know, for any given CS,
all its constants (A, Ay , Az, Iy , Iz, J , yc, zc) and in particular its SV-warping-functions (ψx,ψy,ψz) and shears
(τ x,τ y,τ z). This can be achieved by using one of the numerical methods proposed by [8,2,7] for the computation
of the 3D SV-solution. In such conditions, it is worthwhile to note that we have just to compute the six scalars of
the warping matrix Iψ , and for the stresses, the closed form results (Eqs. (22), (23)) can be directly used without
any additional computation.

This Note has been limited to the key points of the theory; however, more details can be found in [9, Part-I]. Further,
in [9, Part-II], this theory is used to analyze, for a representative set of cross-sections (CS) (solid-CS and thin-walled
open/closed-CS, bi-symmetric or not), the elastic behavior of cantilever beams subjected to torsion or shear-bending;
numerical results are given for the 1D-structural behavior and also for the 3D-stress distributions close to the built-in
section: the stress predictions of the NUW-BT are compared to those obtained by three-dimensional finite elements
computations 3D-FEM. However, for the present Note, some significant results due to warping effects may be given:

– the first result is given to illustrate the flexural-torsional coupling that occurs for non-symmetrical-CS. Fig. 2 con-
cerns the channel-CS studied by [4]: for θx(L), the results are similar for the three theories (Vlasov-BT, Kim-BT,5

NUW-BT) and its magnitude is 90% lower than for uniform theory (SV-BT). The transversal displacement due to
the flexural-torsional coupling computed by the present theory and that of Kim are very close;

– the second result concerns the stresses in the built-in section of cantilever beams subjected to torsion or shear-
bending and made of two kinds of CS: a solid-rectangular-CS (CS1 ) and an open thin-walled-I-CS (CS2). For the
torsion (Table 1), the results indicate that the axial stresses (due to the restrained warping) may be much larger
than the shears. For the shear bending of a short beam (Table 2), the results indicate that the axial stresses σw

xx due
to (the restrained warping) may reach 50% of the axial stresses σ sv

xx due to flexure.
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