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Abstract

A heavy and hard peak-shaped inclusion in an elastic body provokes to concentration of eigenvalues in the low-frequency range
of the spectrum and localization of the corresponding eigenmodes near the peak tip. To cite this article: S.A. Nazarov, C. R.
Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Développement asymptotique des fréquences propres d’un corps élastique avec une inclusion lourde et de forme très
pointue. Une inclusion lourde et dure de forme pointue dans un corps élastique provoque la concentration des valeurs propres dans
le domaine basses fréquences du spectre et la localisation des modes propres correspondants près de l’extrémité du pic. Pour citer
cet article : S.A. Nazarov, C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Eigenoscillations of contrast composite solids

Let Ω0 and Ω1 = Ω \ Ω0 be two-dimensional anisotropic heterogeneous solids while the exterior boundary Γ =
∂Ω is smooth and free of traction, and the contact contour Γ 0 = ∂Ω0 is smooth everywhere except at the point O. In
the vicinity of O the inclusion Ω0 is determined by the relations

x1 > 0, −b−x
1+γ

1 < x2 < b+x
1+γ

1 (1)

where x = (x1, x2) are dimensionless Cartesian coordinates centered at O while b = b+ + b− and γ are positive
constants. Because of (1), the inclusion is peak-shaped (see Fig. 1).
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Fig. 1. The peak-shaped inclusion.

The eigenoscillations of the composite body Ω are described by the problem

D(−∇x)
�Ai(x)D(∇x)u

i(x) = Λρi(x)ui(x), x ∈ Ωi, i = 0,1 (2)

u0(x) = u1(x), D
(
n(x)

)�
A0(x)D(∇x)u

0(x) = D
(
n(x)

)�
A1(x)D(∇x)u

1(x), x ∈ Γ 0 (3)

D
(
n(x)

)�
A1(x)D(∇x)u

1(x) = 0, x ∈ Γ (4)

Here we employ a matrix notation in the elasticity theory, i.e., u = (u1, u2)
� is the displacement column, � stands

for transposition, ui for the restriction of the field u on Ωi , and

ε(u) = (ε11,
√

2ε12, ε22)
� = D(∇x)u, D(∇x)

� =
(

∂1 2−1/2∂2 0
0 2−1/2∂1 ∂2

)
, ∂j = ∂

∂xj

, ∇x =
(

∂1
∂2

)

while εjk are Cartesian components of the strain tensor. The strain column ε(u) and the analogous stress column
σ i(u) are related by the Hooke law σ i(u) = Aiε(u) where Ai is 3 × 3-matrix of elastic moduli, symmetric, positive
definite, and smooth in a neighborhood V i of the set Ωi = Ωi ∪ ∂Ωi . Furthermore Λ denotes an eigenvalue (square
of an eigenfrequency), ρi the material density which is positive and smooth is V i , and n = (n1, n2)

� the outward
normal on the contours Γ and Γ 0. We assume that

A1(x) = τA1•(x), ρ1(x) = τ 1+βρ1•(x) (5)

where τ > 0 is a small parameter, β � 0, and the characteristics A1• and ρ1• are of the same order as A0 and ρ0,
respectively, i.e., the inclusion Ω0 is much more hard and heavy than the body Ω1.

Problem (2)–(4) is among the so-called stiffness problems which have been under consideration in many publica-
tions (cf. [1–4]). In particular, it was proved in [3,4] that, for β > 0 and a smooth contour Γ 0 (the Lipschitz property
of Γ 0 is sufficient), the eigenvalues of problem (2)–(4) listed in the sequence

0 = Λτ
1 = Λτ

2 = Λτ
3 < Λτ

4 � Λτ
5 � · · · � Λτ

k � · · · → +∞ (6)

according to their multiplicities, converge as τ → +0 to the corresponding eigenvalues

0 = Λ0
1 = Λ0

2 = Λ0
3 < Λ0

4 � Λ0
5 � · · · � Λ0

k � · · · → +∞ (7)

of the spectral problem on the isolated inclusion

D(−∇x)
�A0(x)D(∇x)v

0(x) = Λ0ρ0(x)v0(x), x ∈ Ω0

D
(
n(x)

)�
A0(x)D(∇x)v

0(x) = 0, x ∈ Γ 0. (8)

Moreover, papers [3,4] present certain information on the eigenvectors of problem (2)–(4) and the asymptotic structure
of the spectrum in the middle-frequency range together with estimates of asymptotic remainders where majoring
constants are independent of the eigenvalue number k, i.e., an explicit dependence of the bounds on attributes of the
limit spectrum (7) is established.

For a sharp peak (1) with γ � 1, the boundary Γ 0 is not Lipschitz and the energy space E(Ω0) equipped with
the norm (‖D(∇x)v;L2(Ω0)‖2 + ‖v;L2(Ω0 \ Bd)‖2)1/2, where Bd = {x: |x| < d} and the radius d > 0 is small,
is not compactly embedded into the Lebesgue space L2(Ω0) (cf. [5, § 3.1] and [6]) and, therefore, the spectrum of
problem (8) cannot be discrete so that even the convergence Λτ

k → Λ0
k cannot be construed. Note that the inclusion

H ⊂ H 1(Ω0) is wrong for any γ > 0 (see [5, § 3.1]).
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The aim of this Note is to prove another type of convergence

τ−2β−Λτ
k → λk−3, k = 4,5, . . . , β± = 3−1(1 ± γ −1) > 0 (9)

in the case γ > 1 and to indicate the resultant spectral problem with the eigenvalues

0 < λ1 � λ2 � · · · � λj � · · · → +∞. (10)

By (9), the eigenvalue Λτ
k of problem (2)–(4) with the sharp (γ > 1) peak (1) vanishes as τ → +0.

2. Asymptotic ansatz

Introducing the stretched coordinates

ξ = (ξ1, ξ2) = τ−β0x, β0 = (3γ )−1 (11)

turns inequalities (1) into the following ones:

η := ξ1 > 0, −b−ξ
1+γ

1 < τ−1/3ξ2 < b+ξ
1+γ

1 . (12)

Besides, the peak-shaped inclusion becomes thin so that it is characterized by the new small parameter h = τ 1/3.
Defining the ultra-rapid variable

ζ = h−1ξ2 = τ−β+x2 ∈ Υ (η) = (−b−η1+γ , b+η1+γ
)

(13)

we employ the standard asymptotic ansatz (cf. [7], [5, Ch. 7]) for elasticity problems in thin domains

Λτ = τ−2β0h2λ + · · · = τ 2β−λ + · · · (14)

u0(x) = w2(η)e2 + hU1(η, ζ ) + h2U2(η, ζ ) + h3U3(η, ζ ) + h4U4(η, ζ ) + · · · (15)

where ej = (δj,1, δj,2)
�, δj,k denotes the Kronecker symbol and other entries of the ansatz are to be found. The

asymptotic ansatz in the framing body Ω1

u1(x) = v(ξ) + · · · (16)

is adjusted with (15). We emphasize that the limit passage h → +0 shrinks set (12) into the semi-infinite slit Σ =
{ξ : ξ1 > 0, ξ2 = 0} and, thus, the vector function v in (16) is defined on the set R \ Σ .

Taking formulas (14), (16) and (5), (11) into account, we derive from (2) and (3) the relations

D(∇x)
�A1•(O)D(∇ξ )v(ξ) = 0, ξ ∈ R

2 \ Σ, v1(ξ1,±0) = 0, ξ1 > 0 (17)

and the transmission condition

v2(ξ1,±0) = w2(ξ1), ξ1 > 0 (18)

To complete the problem for v, we need to detect the second transmission condition on Σ for the vector function
v. To this end, we analyze ansatz (15). According to (11)–(13) the change of variables x �→ (η, ζ ) requires freezing
of coefficients at the point O and provides the following decompositions:

L0 = D(−∇x)
�A0(O)D(∇x) = τ−2β0h−2(L00 + hL01 + h2L02)

n1/2
± N0± = n1/2

± D(n±)�A0(O)D(∇x) = τ−β0h−1(N00± + hN01± + h2N02±) (19)

where n±(x1) = n±(x1)
−1/2(±1, b±(1 + γ )x

γ

1 ) are unit normal vectors on the arcs Γ ± forming the peak (1), and

n±(x1) = 1 + b±(1 + γ )2x
2γ

1 . Using the notation A0
(jk) = D(ej )

�A0(O)D(ek), we get

L00(∂ζ ) = −A0
(22)∂

2
ζ , L01(∂η, ∂ζ ) = −(

A0
(21) + A0

(12)

)
∂η, ∂ζ , L02(∂η) = −A0

(11)∂
2
η

N00±(∂ζ ) = ±A0
(22)∂ζ , N01±(η, ∂η, ∂ζ ) = ±A0

(21)∂η + b±(1 + γ )ηγ A0
(12)∂ζ

N02±(η, ∂η) = b±(1 + γ )ηγ A0
(11)∂η

Furthermore, the right-hand side of the second transmission condition (3) on Γ ± takes the form

τ 1−β0D(±e2)
�A1•(O)D(∇ξ )v(ξ1,±0) + · · · =: τ 1−β0Gv±(ξ1) + · · · (20)
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Inserting formulas (14), (15) and (19) into (2), (3) and gathering coefficients on similar powers of τ , we arrive at
the following recursive sequence of problems on the segment Υ (η) with the parameter η > 0:

L00Uq = Fq := −L01Uq−1 − L02Uq−2 + δq,4λρ(O)U0 on Υ (η)

N00±Uq = Gq± := −N01±Uq−1 − N02±Uq−2 + δq,4G
v± at ζ = ±b±η1+γ (21)

where U0 = e2w2 and Uq = 0 for q < 0. The dilation factor in (11) and the exponent β− in (14) were chosen in such
a way that the terms τ−2β−Λρ(O)u0 = λρ(O)U0 + · · · in (2) and Gv± in (20) come to the problem (21) with the
index q = 4. The problems (21) with q = 1 and q = 2 get the solutions

U1(η, ζ ) = e1
(
w1(η) − ζw2(η)

)
, U2(η, ζ ) = −(

A0
(22)

)−1
A0

(21)

(
ζ∂ηw1(η) − 2−1ζ 2∂2ηw2(η)

)
(22)

The compatibility condition∫
Υ (η)

F
q
p (η, ζ )dζ + G

q+
p (η) + G

q−
p (η) = 0 (23)

with q = 3, p = 2 is satisfied while the one with q = 3, p = 1 provides the relation

∂ηw1(η) = 2−1(b+ − b−)η1+γ ∂2
ηw2(η) (24)

In view of (22), (24) and (20), the compatibility condition (23) with q = 4, p = 2 reads

e�
2 D(−e2)

�A1•(O)
(
D(∇ξ )v(ξ1,+0) − D(∇ξ )v(ξ1,−0)

)

= λρ0(O)bξ
1+γ

1 w2(ξ1) − a

12
b3 ∂2

∂ξ2
1

ξ
3(1+γ )

1
∂2w2

∂ξ2
1

(ξ1), ξ1 > 0 (25)

and delivers the necessary transmission condition in the problem for v. The coefficient

a = e�
1 D(e1)

�(
A0(O) − A0(O)D(e2)

(
A0

(22)

)−1
D(e2)

�A0(O)
)
D(e1)e1

in (25) is known to be positive (see, e.g., [8], [5, Ch. 1.4]) and a = 4μ(1 − 2ν)−1 for an isotropic material with the
Poisson ratio ν < 1/2 and the shear modulus 2μ > 0.

3. The resultant spectral problem

Let C denote a linear space of smooth (up to the boundary) vector functions on R
2 \ Σ which satisfy the stable

conditions (17), (18) and have compact supports in R
2 \ 0. With any test function V ∈ C, we derive from (17), (18),

(25) the integral identity

(
A10(O)D(∇ξ )v,D(∇ξ )V

)
R2 + a

12
b3

(
ξ

3(1+γ )

1
∂2v2

∂ξ2
1

,
∂2V2

∂ξ2
1

)
Σ

= λρ0(O)b(ξ
1+γ

1 v2,V2)Σ (26)

where ( , )Ξ stands for the inner product in the Lebesgue space L2(Ξ).
Let H denote the completion of C with respect to the norm generated by the scalar product 〈v,V 〉 on the left of

(26). By Korn‘s and Hardy‘s inequalities, any vector function v ∈ E meets the estimates
∥∥ξ

(3γ−1)/2
1 v2;L2(Σ)

∥∥ � c
∥∥ξ

3(1+γ )/2
1 ∂2v2/∂ξ2

1 ;L2(Σ)
∥∥∥∥(1 + ξ1)

−1/2v2;L2(Σ)
∥∥ � c

(∥∥(1 + ξ)−1v;L2(R
2)

∥∥ + ∥∥∇ξ v;L2(R
2)

∥∥)
� c

(∥∥D(∇ξ )v;L2(R
2)

∥∥ + ∥∥ξ
(3γ−1)/2
1 v2;L2(Σ)

∥∥)
Since 3γ −1 > 1+γ due to the condition γ > 1, the operator K in H determined by 〈Kv,V 〉 = ρ0(O)b(ξ

1+γ

1 v2,V2)Σ,

v,V ∈ H, is compact. Obviously, it is continuous, symmetric, and non-negative while its kernel coincides with the
subspace H0 = {v ∈ H: v2 = 0 on Σ}. Thus, a general result of the operator theory (see, e.g., [9]) delivers the
following assertion:
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Fig. 2. The imperfect coating.

Lemma 3.1. The variational formulation (26) of problem (17), (18), (25) possesses the eigenvalue sequence (10).
The corresponding eigenvectors v(1), v(2), . . . , v(j), . . . in H can be subject to the orthogonality and normalization
condition ρ0(O)b(ξ

1+γ

1 v
(j)

2 , v
(k)
2 )Σ = δj,k , j, k = 1,2, . . . .

4. The result and open questions

A procedure of inverse and direct reductions, developed in [5, Ch. 7] and applied in [10,3,4], allows to derive
estimates of asymptotic remainders with majoring constants independent of the eigenvalue number. Since even a
formulation of such results needs a cumbersome notation, we restrict ourselves to present here only two facts. First,
an appropriate approximation to the eigenvector u(j+3) of problem (2)–(4) looks as follows:

U (j+3)0(x) = χ(x)τ−β1
(
e2v

(j)

2 (ξ1,0) + hU(j)1(ξ1, h
−1ξ2) + h2U(j)2(ξ1, h

−1ξ2)
)

U (j+3)1(x) = χ(x)τ−β1v(j)(ξ), β1 = 6−1(1 + 2γ −1) (27)

Here ξ is the stretched coordinate system (11), v(j) ∈ H is an eigenvector of problem (26), U(j)1 and U(j)2 are
constructed from v(j) according to (22), χ is a cut-off function with a small support and χ = 1 in the vicinity of the
peak tip O. The factor τ−β1 is put into (27) in order to satisfy approximately the natural normalization condition for
eigenvectors of problem (2)–(4), namely,∥∥ρ1/2U (j+3);L2(Ω)

∥∥2 = ρ0(O)b
∥∥ξ

(1+γ )/2
1 v

(j)

2 ;L2(Σ)
∥∥2 + · · · = 1 + · · ·

The asymptotic formula (27) shows that the eigenmode u(j+3)0 is mainly realized as transversal oscillations of the
peak end which stimulate localized oscillations of the framing medium.

Second, the following simplified assertion on the normalized eigenvalues (6) is valid:

Theorem 4.1. For any k > 3, convergence (9) holds true where (10) implies the eigenvalue sequence of problem (26).

This Theorem needs minor changes in the case when a part ΓD of the exterior boundary Γ is clamped, namely,
Λτ

j > 0 and τ−βΛΛτ
j → λj for j = 1,2, . . . . This observation does agree with the localization of eigenvectors of

problem (2)–(4) in a neighborhood of the peak end; indeed, an approach developed in [11] proves the decay properties
|v(j)(ξ)| = O(|ξ |−1/2) and |v(j)

2 (ξ1,0)| = O(ξ
−3γ−1/2
1 ) as |ξ | → +∞. This also explains why the point Λ = 0 cannot

belong to the spectrum of problem (26): The Dirichlet conditions on ΓD removes the eigenvalues Λτ
1 = Λτ

2 = Λτ
3 = 0

from sequence (6), but at the same time the limit problem (17), (18), (25) is not influenced by a boundary condition
imposed at a distance from the peak tip.

The same asymptotics are attributed to elastic field in a body with hard and heavy (cf. (5)) imperfect coating (see
Fig. 2): If the arc Γ 0 is a straight segment near the point O, the coating Ω0 is defined by the formulas 0 < x2 < H(x1),
H(x1) = |x1|1+γ (b0 + O(|x1|)), b0 > 0. Investigation of singularities of elastic fields at the point O was formulated
in book [12] as an open problem. In [13] it is proved that the stresses and strains are bounded (see also [14] where a
formal asymptotic analysis was performed).
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