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Abstract

In this Note we present a stochastic approach to model size effects in quasi-brittle materials structures. Contrary to Weibull’s
theory, the key ingredient is the use of correlated random fields in order to describe the material properties. Thus, a stochas-
tic problem has to be solved that we handle using Monte Carlo method. The numerical results show the capability to retrieve
size effects in a range between the two classical bounds which are Continuum Damage Mechanics and Linear fracture Mechanics.
To cite this article: J.-B. Colliat et al., C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Approche stochastique aux effets d’échelle pour les matériaux quasi fragile. Dans ce papier nous présentons une approche
stochastique pour modéliser les effets d’échelle des matériaux quasi fragiles. L’ingrédient clef de cette approche réside dans 1’uti-
lisation des champs corrélés pour les propriétés matériaux, principale différence par rapport a la théorie de Weibull. Ainsi, un
probléme stochastique se pose et peut étre résolue par la méthode de Monte Carlo. Les résultats obtenus montrent les capacités de
ce modele a retrouver les effets d’échelle compris entre les deux bornes que représentent la mécanique de 1’endommagement et la
mécanique de la rupture. Pour citer cet article : J.-B. Colliat et al., C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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Version francaise abrégée

Dans cette Note, nous proposons une approche probabiliste basée sur I’ utilisation de champs aléatoires spatialement
corrélés pour décrire les effets d’échelle rencontrés expérimentalement dans la rupture des structures du génie civil.
Les matériaux composant ces structures présentent un comportement quasi fragile, brutalement adoucissant apres
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une phase d’écrouissage positif, induisant pour celles-ci une dépendance de leurs charges ultimes a leurs tailles. Les
structure composées de matériaux purement fragiles, sans phase durcissante, présentent elles aussi un effet d’échelle
qui peut étre tres pertinemment décrit par la mécanique de la rupture et la théorie de Weibull, basée sur des champs
aléatoires non-corrélés. Un modele de covariance exponentielle simple reliant cette corrélation spatiale a un unique
parametre, une longueur de corrélation et un modele mécanique traitant efficacement la phase adoucissante sans dé-
pendance au maillage et sans utilisation d’autre longueur caractéristique, permettent de mettre en évidence sur un
simple exemple unidimmensionnel les différences existant entre la théorie de Weibull et I’utilisation de champs cor-
rélés. Grace a la décomposition de Karhunen—Logve, il est possible de résoudre un probleme stochastique de traction
simple sur trois barres de tailles différentes par des méthodes de Monte Carlo. Ces méthodes permettent de calculer
des grandeurs statistiques de 1’effort ultime de chacune de ces trois barres comme les fractiles de barres rompues. Le
report du logarithme de ces différents fractiles en fonction du logarithme de la taille des barres, diagramme classique
des effets d’échelle, montre qu’une relation non linéaire entre ces deux quantités peut étre trouvées par cette approche,
établissant ainsi un intermédiaire entre la mécanique de I’endommagement et la mécanique de la rupture.

1. Introduction

In this Note, we address the problem of modeling the size effect encountered in quasi-brittle materials structures
within a stochastic framework. In engineering, stochastic approach provides a very good basis for dealing with build-
ing materials such as soil, concrete, mortar and other geomaterials to take into account the intrinsic randomness of
their being heterogeneous. Such materials have a particular mechanical behavior. They are known as quasi-brittle ma-
terials which can be seen as a sub-category of softening materials (see [1] or [2]). This behavior can be described with
four material parameters in 1D context: the Young modulus E, the yield stress o, which induces micro-cracking and
the failure stress oy which induces macro-cracking after the sudden coalescence of the micro-cracks leading to a soft-
ening behavior (see Fig. 1(a)). The last parameter is the fracture energy G s [J m~2] which represents the amount of
energy necessary to create and open a macro-crack. Several theories exist on how to model the failure in quasi-brittle
materials and most of them link the micro-cracks coalescence phenomena to size effect, a dependency on the size of
a structure to its failure load. The aim of all those theories is to hook up together the continuum damage mechanic
(CDM) where the failure stress does not depend on the size of the structure to the linear fracture mechanic (LFM)
where size effect appears naturally as the logarithm of the failure stress depends linearly on the logarithm of the size
of the structure (see Fig. 1(b)). It can be experimentally demonstrated that even if purely brittle materials follow LFM,
quasi-brittle materials do not and follow a nonlinear relationship between the two previous logarithms of the failure
stress and the size of the structure. These materials exhibit a different size effect than the one encountered for purely
brittle materials.

An extensive literature exists on that topic, from the early studies of W. Weibull (see [3]) dealing with chains
built from independent purely brittle links (theory of the weakest link) to retrieve LFM, to the current two theories of
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Fig. 1. Quasi-brittle material model (a) and size effect (b).
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Z.P. Bazant on the one side and of A. Carpenteri on another. The first one tends to describe size effect as a deterministic
theory of strength redistribution in a fracture process zone (FPZ) which size is proportional to a characteristic length
leads to energetic dissipation. At some level, the micro-cracks coalescence that induces both heterogeneous behavior
and some kind of localization, is strongly intricate to size effect. Hence, a good mechanical model that describes the
fracture of quasi-brittle materials should be able to retrieve size effect. Recently, Z.P. BaZant has developed a new
theory as an amalgamion of this previous theory with the Weibull’s one leading to the so called energetic-statistical
size effect (see [4]). Another theory melting a nonlocal model and a stochastic approach has been developed by K. Sab
(see [S]). On the other hand, Carpenteri’s theory is based on the study of quasi-brittle materials seen as materials with
a fractal microstructure (see [6]).

Our goal in this Note is to propose an alternative solution to bridge together CDM and LFM (see Fig. 1(b)) in order
to accurately and physically model size effect in quasi-brittle materials. In the following, we will show that a way to
achieve our goal is to consider material properties as correlated fields.

2. Random fields as a tool to model quasi-brittle materials size effect

Dealing with softening materials and the Finite Elements Method is quite a hard task because of mesh dependency
(e.g. see [2]). Among several methods which exist to eliminate this mesh dependency, one can find the cohesive or
fictitious crack model (see [7]), the nonlocal approach (see [8]) and the strong discontinuity models (see [1]) which
consists in surface dissipation. The latter seems nowadays to play the dominant role, and for that reason we select it
(see [9]) as the most general among the available models. This model might also be coupled with diffuse (volume)
plasticity to describe the volume dissipation due to the homogeneous micro-cracking which takes place in the fracture
process zone (FPZ). The strong discontinuity part enables to describe the micro-cracks coalescence which leads to
fracture and the softening behavior without any mesh dependency. The reader might refer to an extensive literature
about the strong discontinuity models. Among them are [12,11] and [10].

2.1. Correlated random fields and the Karhunen—Loéve expansion

In this study, we consider the elastic yield stress o, and the gap e s between the maximum stress o ¢ and the elastic
yield stress o, of a quasi-brittle material as the main source of uncertainty. Young modulus and fracture energy are
assumed to be deterministic quantities. Following Weibull theory, we would have chosen to model this set of material
properties by two uncorrelated random fields—an infinite set of random variables indexed by the geometrical domain
(see [13])—modeling a white noise along the geometrical domain. Here, the key point, and thus the difference w.r.t
Weibull’s theory, is that we have chosen to take into account correlated random fields. To be more precise, we assume
that oy and ey can be modeled by stochastically homogeneous random fields. For these fields, the spatial correlation
is invariant by translation and can be described, following the second-order analysis (see [14]), by their marginal
distribution and their covariance function. Since Both o, and ey are positive and supposed to have a finite known
variance and assuming that our solution—here the displacement along the bar—is of the second order, the maximum
entropy theory (see [15,16]), leads to lognormally distributed marginal distribution. Without loss of generality, it is
convenient to consider that these two random fields are defined as nonlinear transformations of Gaussian random
fields y;1 and y» fully described by their expected values and their covariance functions written as,

Covy, (x, ) = Vi exp(—u) (1)
L¢
where V; is the marginal distribution variance and L. is the correlation length. This correlation length is the key

ingredient dealing with the description of the two random fields oy and e = oy — 0. The nonlinear transformation
leading to lognormally distributed random fields can be written:

oy (x, ) = exp(y1 (x, ®)) 2)
Applying this nonlinear transformation to the covariance functions of oy, and ey leads to (see [17])
Cove, = e+ exp(Covy1 (x,y)— 1) 3)

Using (1) and (3) leads to the parameters that should be given to both of the underlying Gaussian random fields y;
and y» (see Table 1).
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Table 1
Parameters of both material properties random fields and related under-
lying Gaussian ones

Y1 Oy Y2 ef
expectation [MPa] 1.59 5 —-1.5 0.5
variance [Ml:‘a]2 0.039 1 1.61 1
correlation length [m] 0.2 0.1 0.365 0.1

An effective computational representation of the random fields is needed. The latter can be provided by the
Karhunen—Loeve expansion (see [13]), which is basically an orthonormal projection in L2(D) onto the eigenvec-
tor basis which are obtained by solving the Fredholm eigenproblem of the second kind:

/COVy(x, VPi(x)dx =p;@i(y), yeD “4)
D

The actual solution of the eigenvalue problem for any domain D can be obtained using finite elements techniques, for
example with the finite element code FEAP (see [20]). Such problem always remains well posed since the covariance
function is symmetric and positive semi-definite, which implies positive and decreasing ordered eigenvalues {p; }i=1.c0
and a set of eigenfunctions {®;(x)};=1,00 Which is a complete and orthonormal basis of L(D). This yields to the
spectral decomposition,

[e¢)
y (o) = 7@+ ) Vo (0§ (@) 5)
i=1
and a way to synthesize two Gaussian random fields y;—; > and consequently o, and ey through relations (2). In
Eq. (5), the &; (w) are uncorrelated Gaussian random variables (with unit variance and zero mean) and thus stochasti-
cally independent. Using a truncated form of (5)—50 modes for a good accuracy (see [19])—it is possible to generate a
realization in two steps: first computing the truncated sum (5) using the Karhunen—Logve eigenmodes and a Gaussian
random vector of independent coefficients. Then using (2), this Gaussian realization is transformed into a lognormal
one.

2.2. Stochastic integration

In the first part of this section, we have described all the ingredients of our model, both from the mechanic
framework, and from the stochastic one. In order to show that correlated random fields are the key point to model
quasi-brittle materials size effect, we use a very simple 1D example of truss tensile test under displacement control.
Although this example leads to an homogeneous stress field along the bar, it is relevant because directly comparable
to Weibull’s theory. Three lengths are treated—0.01 m with 10 elements of length 0.001 m, 0.1 m with 100 elements
of length 0.001 m, 1 m truss with 100 elements of length 0.01 m—with a correlation length remaining constant and
equal to 0.01 m. These three cases are called respectively small, medium and large. For the medium case, the bar is
of the same size as the correlation length, contrary to the small case—the bar is ten times shorter than the correlation
length—and the large one.

When solving for the response of a stochastic system, usually the main goal is the computation of response statis-
tics, for example the expected value. To that end, we employ the so-called Monte Carlo method (other more efficient
methods are currently under development, see [18]) which requires to solve many deterministic systems, each of them
being built with realizations oy (-, ;) and ey (-,w;) of the random fields o}, and e . The normalized fluctuating parts
of one oy and e realization for each of these bars are shown on Fig. 2. One can see that the larger the bar is with
respect to the correlation length the more fluctuating the random fields are. Thus, the random fields corresponding
to the longest bar are more likely to have lower bounds, leading to a weaker structure. Although such simple analy-
sis might be done for every particular realization, the stochastic integration is needed in order to compute each bar
strength statistics. The Monte Carlo method is performed with 10000 integration points for each length using the
Platon environment (see [21] for software engineering aspects) linked with the finite elements code FEAP by using
the Components Template Library (see [22]). The numerical results are presented in the next section.
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Fig. 3. Cumulative distribution of the maximum load obtained after Monte Carlo simulation.

3. Numerical results and analysis

The maximum load cumulative density functions of these three bars are presented in Fig. 3(a). One can see that for
a given percentile of broken bars, for example 10%, the smaller the bar is, the bigger is its ultimate stress, respectively
from 3.68 MPa for the small truss, to 3.3 MPa for the medium one and 2.87 MPa for the largest (see Fig. 3(b)). In
other words, the strength of the structure is linked to its size according to the correlation length scale. The larger is
the structure comparing to the correlation length, the weaker is the structure. Hence, this stochastic way of modeling
quasi-brittle failure reveals the size effect through the correlation length. Fig. 3(a) shows the 99% confidence interval.
For each case, none of these error bars is overlapping, thus proving that the Monte Carlo simulation is accurate enough.

It is worth noting that the correlation length appearing in the probabilistic framework plays an equivalent role as
the characteristic length in nonlocal models. To be more precise, introducing this length leads to settle a scale and
allows to model size effects. It also can be linked to the size of a fracture process zone (FPZ) where micro-cracking
occurs before macro-cracking, due to the coalescence of micro-cracks. The more the size of this FPZ prevails on the
global size of the structure (which is the case for the small bar), the more similar to the Continuum Damage Mechanics
(CDM) the structure’s behavior is. On the other hand, if the size of the FPZ is neglectable with respect to the size of
the structure (for the large bar), the FPZ has no influence on the global behavior and the macro-crack occurs according
to Linear Fracture Mechanics (LFM). Moreover, Weibull’s theory is then retrieved as each element is stochastically
independent from the others. Fig. 3(b) shows that the probabilistic approach using correlated random fields is capable
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to link these two limit behaviors LFM and CDM as in Fig. 1.(a). Contrary to Weibull’s size effect theory, the key point
lies in using correlated random fields.

4. Conclusion

Size effect is a major issue in modeling quasi-brittle materials structures failure and usually two limit cases are
considered, Continuum Damage Mechanic and Linear Fracture Mechanic as in Weibull’s theory. In between, several
authors have proposed size effects laws corresponding to different kind of structures and loading paths, or tried to
model this particular feature. One attempt consists in using nonlocal models and retrieve size effect through their
characteristic lengths, although this length has no physical basement. In this work, we show how to link CDM and
LFM by using strong discontinuity models combined with correlated random fields.

Using correlated random fields through their Karhunen—Loeve expansion in a simple 1D context leads to a stochas-
tic problem which has been solved by Monte Carlo simulation. The results show that the correlation length appearing
in the random fields covariance functions is acting like a length scale. This particular feature leads to the possibility
to retrieve a size effect which is valid between the two limit cases of CDM and LFM. This method might be viewed
as an extension of Weibull’s theory which can be retrieved in our case considering uncorrelated random field — where
the correlation length is null.
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