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Abstract

Within vegetation canopies, the turbulent kinetic energy (k) budget is mainly modelled through source terms added to the free-
air state formulation. The dependence of the modelled source term coefficients upon a dimensionless ratio (λ) between the mixing
length for turbulent transport (lm) and the relaxation length scale (lε) of Kolmogorov’s relation is proposed. Using dimensional
analysis, the order of magnitude variation of the terms involved in the newly proposed model for the coefficients of these source
terms are derived. When λ is a constant, this generalized model results in a similarity constant (Cε4) independent of the source
term model, lending support to an earlier conjecture by Seginer. To cite this article: C. Sanz, G.G. Katul, C. R. Mecanique 335
(2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Modélisation à 2 équations et 2 échelles de longueur de l’énergie cinétique turbulente dans la canopée. Dans la canopée,
la modélisation du bilan de sillage de l’énergie cinétique turbulente (k) repose principalement sur des termes source additionnels.
Nous avons déterminé la relation entre les coefficients des modèles usuels de termes source et le rapport sans dimension (λ) entre
l’échelle de longueur du transport turbulent (lm) et celle de la relation de Kolmogorov (lε). Nous avons généralisé les modèles de
termes source par analyse dimensionnelle et nous avons déterminé l’ordre de grandeur de la variation des différents termes. Lorsque
λ est une constante, le modèle de terme source généralisé présente une constante de similitude (Cε4) indépendante du modèle de
termes source, ce qui tend à confirmer la conjecture de Seginer. Pour citer cet article : C. Sanz, G.G. Katul, C. R. Mecanique 335
(2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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Cette Note présente deux raffinements du modèle de turbulence à deux équations pour application à la canopée.
Premièrement, nous reformulons le modèle sous l’hypothèse que la longueur de mélange (lm) diffère de lε , soit
λ(= lm/ lε) �= 1. Deuxièmement, nous généralisons les termes source et/ou puits : Sk pour l’énergie cinétique de la
turbulence (k) et Sε pour le taux de dissipation moléculaire de k (ε). L’hypothèse selon laquelle λ �= 1 est l’hypothèse
classique des modèles spécifiques de la turbulence dans un couvert végétal [1–3]. Nous avons calculé les coefficients
de Sk et Sε découlant de la contrainte que le modèle résultant reproduise la décroissance exponentielle de la vitesse
moyenne (U ) de l’écoulement dans le couvert, lorsque λ �= 1. Nous en déduisons l’expression du coefficient Cε4 =
Sε/ε
Sk/k

. Nous avons réitéré cette procédure pour un modèle de terme source généralisé. Dans le cas usuel où λ est
constant dans le couvert, l’indépendance entre Cε4 et le modèle de terme source atteste de la consistance physique
de Cε4 et tend à confirmer la conjecture de Seginer sur laquelle se fondent nos résultats. Cette conjecture permet
également de prédire la variation de l’ordre de grandeur des différents termes du modèle de termes source généralisé.
L’analyse dimensionnelle utilisée pour généraliser les modèles de termes source est justifiée par la difficulté à déduire
le bilan de sillage de k de celui de la quantité de mouvement. Certains termes du modèle généralisé sont susceptibles
de rendre compte de mécanismes secondaires mais significatifs et leur prise en compte pourrait améliorer les qualités
prédictives du modèle. La signification physique des termes correspondants du modèle généralisé demeure toutefois
une question ouverte.

1. Introduction

The interaction between canopies and the turbulent atmosphere within them is now receiving significant atten-
tion in both vegetated and urban settings. Modelling air quality within urban areas, designing improved peri-urban
environments that can maximize animal comfort and improve their water use efficiency, or explore the transfer of
scalars such as CO2 or NO from the forest floor to the free atmosphere are but a few of the applications that benefit
from advancements in modelling canopy–turbulence interactions. Such modelling tools must satisfactorily introduce
the aerodynamics of canopy architecture and their turbulent kinetic energy wake budget, which remains a bottleneck
to progress. Modelling the turbulent kinetic energy (k) budget within plant canopies starts from a canopy-free state,
which is then modified to include additional processes reflecting the effects of the canopy such as wake generation
and short-circuiting of the energy cascade [4]. The common model for k production accounts for two major processes
[5,6]: (i) the fine scale interaction between the air flow and the vegetation architecture, which breaks the scale of flow
motion through wake turbulent production, and (ii) the overall reduction of turbulent length scales, which modifies
the classical turbulence cascade and thereby enhances k destruction (often referred to as the spectral short-circuiting).
Early models relied on the specification of a single intrinsic (mixing) length scale for the entire turbulence regime
within the canopy [1], but this is not entirely satisfactory [6]. The two-equation modelling framework avoids prescrib-
ing a canonical mixing length but accounting for the emergent two length scales (production by shear and wakes) may
provide a more general treatment of these two effects on the k budget source term (Sk). There are two major diffi-
culties in deriving a model for Sk . First, the common [5–9] model for the form drag force (ρS−→u ) in the momentum
budget involves a quadratic function in the mean flow velocity (−→u ) magnitude, which makes the formal derivation Sk

from S−→u [5,9] an open problem. Second, despite the growing amount of mathematical evidence for the form of the
modelled turbulent kinetic energy dissipation rate (ε) budget equation [10], the Sε terms lack a rigorous physical basis,
which compounds the difficulties in estimating its coefficients. As early as 1974, Seginer [11] recognized the product
(α ≈ 0.06) of an intrinsic mixing length (lm) with the form drag coefficient (CX) as being a dimensionless constant
for canopy aerodynamics, which was later confirmed by experiments [1,2]. On the basis of Seginer’s conjecture about
a constant α, the coefficients of common models for Sk [6,8] may be determined by a dimensionless rate (βP ) of the
conversion into wake k of the mean kinetic energy lost by drag. The constraint imposed on the overall model is that
it must match the exponential decay of the mean velocity profile within a dense canopy for a stationary and planar
homogeneous flow case in the absence of subsidence. This approach was used in Sanz [12] to determine the model
constants for Sk , and we term this overall method as the [∧] method. However, the application of the [∧] method to
determine the coefficients of the standard Sk model has only been carried out under the assumption that lm matches lε
[13], thereby missing this distinction between lm and lε .
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2. Dual length scales turbulence modelling

Defining λ = lm/ lε , it can be shown that the classical two-equation turbulence model relies on the assumption
λ = 1. However, inside the canopy, lm and lε are no longer identical [1,3] and λ must diverge from unity. Below, we
show how the closure constants of classical two-equation models can be corrected for variations in λ. The expression
for the kinematic turbulent viscosity model is given by

νt = λCμ

k2

ε
(1)

Eq. (1) derives from the one-equation closure model

νt = C0lm
√

k (2)

and from the Kolmogorov relationship

lε = Cε

k3/2

ε
(3)

where Cε = C
3/4
μ and C0 = C

1/4
μ . In a stationary and planar-homogeneous flow, the problem becomes uni-dimensional

and its analytical solution for

k = U2

Cg

(4)

and

ε = λ

(
CX

4

)
U3 (5)

derive from the closure assumptions upon identification of Eqs. (2) and (1) with the Prandtl first order closure model
[12], where

dU

dz
=

[
CXCg

4
√

Cμ

]
U (6)

CX is the form drag coefficient defined such as SU = −CX

2 U2, Cg = ( 2
α
)2/3

√
Cμ, and z is the vertical direction. The

above expressions for νt , k and ε can now be used to derive the two coefficients Cε4 and βd [12] that relate Sk and Sε

to the basic variables U , k, and ε solved for by two-equation models:

βd = Cg

(
βP + 1 − λ

2

)
+ 3

σk

(7)

and

Cε4 =
(

Cμ

C2
gσε

) d2λ

dz2 + 7(
CXCμ

Cgσε
) dλ

dz
+ (CX

4 )2f (λ)

2λ(CX

4 )2[ 3
σk

+ Cg(
1−λ

2 )] (8)

where

f (λ) = Cg[Cε1 − λCε2] + 12

σε

λ (9)

and Cε1, Cε2, σk , σε are the closure constants of the k–ε turbulence model [14]. The de-coupling between Sk and Sε

leading to Eq. (8) is not necessary for the model to match the exponential velocity profile decay. However, it ensures
that the ε budget is independent of the βP value [12]. The above similarity constants must be unaltered for the flow
outside the canopy if the model is to reproduce the entire canopy sublayer.
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Table 1
Coefficients of the generalised Sk model

Term Scale (γi ) Suggested meaning Coefficient References

k2

U
.01 – � 0 [9]

k3/2 .03 – � 0 [9]
Uk .1 cascade bypass −βd [6,7,12]
U2k1/2 .3 return to isotropy � 0 [2]
U3 1 wake production βP [6,7,12]

Bold types refer to the standard source terms of the k–ε model.

3. Generalizing the model for k wake budget

A generalized expression for k wake source term can be expressed as

Sk = CX

2

∑
i∈Z

[
βi

(
U

k1/2

)i]
k3/2 (10)

This form relies on dimensional analysis with additional constraints that the power series expansions in U , k and ε

retain only the integer powers of U . Derivation details are provided in Appendix A. The derivation does not predict
whether the individual terms in the expansion are sources or sinks. However, Table 1 provides plausible links be-
tween key physical processes pertinent to k flow within the canopy and the five terms already identified (along with
corresponding references). Similarly, we derived a generalized source term model for ε

Sε = CX

2

∑
i∈Z

[
Cε4i

βi

(
U

k1/2

)i]
k1/2ε (11)

where

∀i ∈ Z: Cε4i
�= 0 (12)

Interestingly, when λ is a constant independent of z, the Cε4 value, which derives from the [∧] method, is the same as
the one predicted by Eq. (8), irrespective of (βi)i∈Z. Then,

Sk = CX

2

∑
i∈Z

γiU
3 (13)

where γi = C
(i−3)/2
g and Cg ≈ 10, derives by substitution of the analytical equation (4) for k inside the canopy within

Eq. (10). Eq. (13) provides a scale for the corresponding terms, as shown in Table 1. The γi values in Table 1 for
i = −1,0,1,2 already exhibit a 100-fold variation. This spread in γi values shows that modelling k wake budget
beyond these four terms could lead to numerical instabilities.

4. Conclusions

For k–ε simulations of canopy flows, we determined how the coefficients of the modelled wake source terms in the
turbulent kinetic energy budget vary with λ. Corresponding results for other two equation turbulence models derive
from our equations, by analogy. In the constant λ case, Cε4 remains the same for both the standard and the generalized
Sk model. This latter generalized model was derived from dimensional analysis. Our results support the argument that
Cε4 is a constant for the viscous dissipation of the wake turbulent kinetic energy within the canopy. Furthermore,
our analysis is consistent with Seginer’s conjecture that α is a key dimensionless constant representing canopy wake
turbulence in dense canopies. The dimensional analysis proposed here proves that the Sk model does not explicitly
involve ε. However, when the first order spatial derivative operator (∂/∂xi ) is used within the source term model, this
independence does not hold. When such spatial derivative is involved within the Sk , the source term can be shown to
be proportional to 1/ε by using a procedure similar to that presented in Appendix A. When the Sk model embeds more
than two terms, its coefficients cannot be determined by the [∧] method beyond the analytical expression of the least
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physically based coefficient from the other coefficients and model constants. Determining more than two Sk model
coefficients requires an additional method. Yet, even if our generalized model for Sk appears to encompass the main
published ones, most of its terms remain unexplained. Understanding these latter terms and measuring their influence
upon canopy wake budget modelling along the lines herein sketched may motivate further research and experiments.

Appendix A. Dimensional analysis of wake budget model terms

Generalized models for Sk and Sε may be derived from dimensional analysis applied to the power series in U , k

and ε

Sk [m2 s−3] = CX

2

∑
i∈I

βkiU
aki kbki εcki (A.1)

and

Sε [m2 s−4] = CX

2

∑
i∈I

βεiU
aεi kbεi εcεi (A.2)

where the quantities inside brackets represent dimensions and I is a fixed, though not herein defined, set of integers.
More general forms for Sk and Sε must use two distinct subsets: Ik for k and Iε for ε. However, the Kolmogorov
equation (3) implies a O(3/2) scaling between Sε/ε and Sk/k through its differential when lε remains almost constant
[6] and this scaling ought to be verified over the whole (U, k, ε) field. This implies that Iε = Ik(= I ) and thus

βki = 0 ⇔ βεi = 0 (A.3)

Eq. (A.3) proves that there exists a set of never vanishing (∀i ∈ I : Cε4i
�= 0) constants such as

βεi = Cε4i
βki (A.4)

for any i in I . Eq. (12) then derives when the symbols βki are replaced by the βi . Finally, both dimensional counterparts
for Eq. (A.1)

m2

s3
= m−1

∑
i∈I

(
maki

saki

m2bki

s2bki

m2cki

s3cki

)
(A.5)

and (A.2)

m2

s4
= m−1

∑
i∈I

(
maεi

saεi

m2bεi

s2bεi

m2cεi

s3cεi

)
(A.6)

have to be satisfied for any I = {i} so as to ensure the dimensional consistence of Eqs. (A.1) and (A.2). This implies
the generalized wake budget models (10) and (11) by retaining only the integer (aki = aεi = i, i ∈ Z) powers of U .
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