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Abstract

Various failure modes related to different kinds of bifurcations occur in nonassociated elastoplastic materials such as geomateri-
als. After presenting experimental evidence, we study this question by means of phenomenological constitutive relations and direct
numerical simulations based on the discrete element method. The second-order work criterion related to diffuse failure modes
is particularly considered within the framework of continuum and discrete mechanics. The equations of the bifurcation domain
boundary and unstable stress direction cones are established. Diffuse failure is simulated numerically by perturbing bifurcation
states. To cite this article: F. Darve et al., C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Bifurcations dans les milieux granulaires : approches macro- et micro-mécaniques. Différents modes de rupture reliés à
différents types de bifurcations apparaissent dans des matériaux élasto-plastiques non-associés tels que les géomatériaux. Après
avoir présenté quelques résultats expérimentaux typiques, cette question est abordée au moyen de relations constitutives phénomé-
nologiques et de simulations numériques directes basées sur la méthode des éléments discrets. Le critère du travail du second ordre
lié aux modes de rupture diffuse est particulièrement étudié dans le cadre de la mécanique des milieux continus et des milieux
discrets. Les équations des limites du domaine de bifurcation et des cônes de directions de contrainte instables sont établies. La
rupture diffuse est simulée numériquement par des perturbations des états de bifurcation. Pour citer cet article : F. Darve et al.,
C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Geomechanics is traditionally divided into two major parts: foundation settlements and the problems of failure in
geotechnical engineering. The first is based on elastic analyses using Hooke’s law for the soil, while the second is
based on the Mohr–Coulomb plastic criterion. Indeed, the development of elastoplastic finite element computations
were a necessary prerequisite to obtaining a unified geomechanics corpus.

It is remarkable that the elastic computations in soil and rock mechanics are essentially based on Boussinesq’s
formula (Boussinesq [1]), expressing the vertical stress field in a homogeneous isotropic linear elastic half space
subjected to a vertical force on the free surface. In a rather strange way, it appears that these vertical stresses are in-
dependent of any mechanical property (i.e., neither Young’s modulus nor Poisson’s ratio). The beauty and the success
of Boussinesq’s formula are probably due to this direct simplicity. The so-called oedometric modulus (measured in
the laboratory) can be used to deduce the vertical strains, which by vertical integration give the settlements of the free
surface below the applied foundation. Before the developments of the finite element method, it was the only way to
estimate the settlements of a building or an embankment. The first author of this paper carried out his first research
project (Darve [2]) on a specific analytical 3D integration of Boussinesq’s formula.

Today advanced geomechanics (in addition to the development of finite element computations with proper consti-
tutive relations for soils and rocks) means taking into account bifurcation criteria to describe the various modes of
failure (localized, diffuse, etc.) that occur in geomaterials as a result of the recent successes in the micro-mechanics
of granular media (which were called ‘milieux pulvérulents’ by J. Boussinesq [3]). This paper explores the question
of diffuse failure in granular materials using three different approaches: phenomenological incrementally nonlinear
constitutive relations, micro-mechanical models and discrete element simulations.

First of all, what is diffuse failure? This notion was introduced in geomechanics in 1998 (Darve and Roguiez [4])
to describe failure modes with no strain localization pattern in either shear bands or compaction/dilation bands. In
the second section of this paper, drained and undrained triaxial experimental results are presented and discussed to
characterise this type of failure on clear experimental bases.

While localized failure is described by the vanishing values of the determinant of the acoustic tensor (Rice [5]), it
has been conjectured and experimentally validated (Darve and Chau [6], Nova [7], Darve and Laouafa [8], Darve et
al. [9], Khoa et al. [10]) that the second-order work criterion (Hill [11], Mandel [12]) could be a proper indicator of
diffuse failure. This criterion is presented in Section 3. Its physical meaning in terms of leading to unstable behaviours
is discussed. The link between the second-order work at the macroscopic scale (i.e. the specimen) and the microscopic
level (i.e. the grains) is explained. Dynamic effects through bursts of kinetic energy are emphasised.

The fourth section is then devoted to the application of this criterion to sands whose mechanical behaviour is
described by incrementally piece-wise linear and nonlinear constitutive relations. Bifurcation domains and cones of
unstable stress directions are determined analytically and numerically.

Finally, in the fifth section, a discrete element model (Magnier and Donzé [13]) is used to compute macro- and
micro-values of second-order work in a specimen of spherical particles. The analytical relations of Section 3 are
numerically treated and diffuse failure modes are simulated and analysed.

2. Experimental analysis of instabilities in very loose sands

This section describes the modes of failure at the bifurcation state. A new test is proposed to apply a particular
path: a quasi constant shear stress undrained test (CSU). This type of loading program has the advantage of checking
whether excess pore pressure is the consequence of collapse, as was shown by Eckersley [14] for drained tests. In
other words, is excess pore pressure a trigger parameter under undrained conditions?

It will be established that collapse can occur inside a domain which is included in the Mohr–Coulomb limit surface
and that collapse depends on the direction of the loading (Darve et al. [9]). A definition of an unstable domain is
proposed for undrained compression triaxial tests (ICU), for constant shear drained tests (CSD) and for constant shear
undrained tests (CSU). All tests are isotropically consolidated.

2.1. Experimental setup

An experimental arrangement was developed to impose a constant shear stress on the soil specimen. Unlike in
previous experimental studies on dry sand (Skopek et al. [15]) and drained saturated sands (Sasitharan et al. [16],
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Fig. 1. Testing arrangement.

Fig. 1. Dispositif expérimental.

di Prisco and Imposimato [17], Gajo [18]) this particular loading path (detailed in Section 2.3) is applied under
undrained conditions. First, the components of the entire experimental setup will be briefly presented and then the
testing procedure and the characteristics of the tested sand will be described.

Axial displacement is imposed by a displacement-controlled loading frame. The displacement rate is chosen by
selecting a velocity in the range of 0.00001 to 5.99999 mm/min. However, the loading can be completely applied
via a piston-type cylinder which is assembled on the apparatus. So mixed loading (i.e. displacement-controlled then
load-controlled) can be applied. Two digital pressure/volume controllers (DPVC) are used to perform isotropic con-
solidated drained tests. Back pressure is measured with a pore pressure transducer. During testing, the measured value
is compared to the applied pressure in order to verify that the strain or the stress rate is not too high. Axial displace-
ment is measured by an external LVDT and volume changes by the piston displacement into and out of the DPVC. The
forces are measured by an internal submersible load cell. All test variables are stored in a microcomputer. A schematic
presentation is given in Fig. 1.

2.2. Tested material and sample preparation

The sand used for this study is Hostun S28 sand. The quartzic grains are subangular and the grain size distribution
is uniform. The principal characteristics are summarised in Table 1. The moist tamping (MT) method was used to
prepare the specimen. The sand had a moisture content of approximately 3–4% in order to reach the maximal void
ratio before and after isotropic consolidation (Table 1). In order to obtain homogeneous samples, sand was carefully
placed in five layers in the mould. During the saturation process, the B-Skempton coefficient was checked and samples
were assumed to be saturated if B � 96%.

2.3. Testing program

For a given void ratio, three effective mean pressures were applied: p′
o = 100,300 and 750 kPa. The first series of

tests concern undrained triaxial tests, the second series is constant shear drained tests, and the third series is quasi-
constant shear undrained tests.
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Table 1
Basic properties of Hostun S28 sand

Tableau 1
Propriétés du sable d’Hostun S28

Type Mean Size
(mm)

Uniformity
coefficient

Specific
gravity

Max void
ratio

Min void
ratio

Frictional
angle (◦)

Quartzic 0.3–0.35 2 2.65 1 0.656 32

Fig. 2. Comparison of our results with those of Matiotti et al. [19], Doanh et al. [20] and Servant et al. [21] for p′
o = 100,300,750 kPa.

Fig. 2. Comparaison entre nos résultats et ceux obtenus par Matiotti et al. [19], Doanh et al. [20] et Servant et al. [21], pour p′
o = 100,300,750 kPa.

2.3.1. Isotropically consolidated undrained compression tests
The results obtained for load-controlled tests are compared to those obtained by Matiotti et al. [19], Doanh et al.

[20] and described by Servant et al. [21] and Khoa et al. [10] for displacement-controlled tests on same sand with a
very close density. The experimental device described by Servant et al. [21] and Khoa et al. [10] is a displacement-
controlled device which was modified so that a constant stiffness could be applied at peak shear stress. The constant
stiffness results from a spring attached to the displacement-controlled device. At the peak of stress, it is noted that
η = q/p′ is equal to 0.6, which corresponds to a mobilised angle of friction of approximately 16◦. Good agreement is
shown for all these experimental results in Fig. 2.

2.3.2. Constant shear drained (CSD) tests
This test was originally developed by Sasitharan et al. [16] on saturated loose Ottawa sand sheared under drained

conditions with dead load. This special stress path was performed to simulate the loading of soil within a slope or an
embankment subjected to a low increase in pore pressure. Di Prisco and Imposimato [17] and Gajo [18] conducted
similar tests on Hostun sand for approximately the same void ratio as in our experiments. The constant shear stress
is also applied using dead load. Fig. 3 presents the main results, obtained either by increasing the pore pressure (tests
# 58 and 61) or by decreasing total stresses (tests # 51 and 60).

2.3.3. Constant shear undrained tests
In the case of a sudden increase in pore pressure (heavy rainfall, for example), assuming that the material behaves

under drained conditions is no longer valid. A quasi-constant shear undrained test (CSU) is proposed to simulate, in a
more realistic way, the in situ conditions with a constant load and a rapid increase in pore pressure. After a shearing
phase, the shear stress is kept quasi-constant by decreasing total stresses and by closing the drainage valve (Fig. 4).
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Fig. 3. Constant shear drained tests on Hostun sand.

Fig. 3. Essais drainés à cisaillement constant sur un sable d’Hos-
tun.

Fig. 4. Constant shear undrained tests on Hostun sand.

Fig. 4. Essais non drainés à cisaillement constant sur un sable
d’Hostun.

Table 2
Mobilised angles of friction and stress ratios for ICU, CSD and CSU tests

Tableau 2
Angles de frottement mobilisés et rapports de contraintes pour les essais ICU, CSD et CSU

Type of test Test # p′
0 (KPa) eo φmob (◦) (q/p′)coll

ICU 6 100 1.086 15.26 0.58
42 300 1.060 15.67 0.59
7 750 1.083 14.89 0.56

CSD 51 100 1.192 15.06 0.57
58 300 1.068 14.49 0.55
60 300 1.161 16.53 0.62

CSU 31 100 1.136 13.91 0.52
26 300 1.070 14.72 0.56
41 300 1.101 13.64 0.51
27 750 1.136 15.36 0.58

2.4. Experimental evidence

Experimental collapse points obtained from ICU, CSD and CSU tests are plotted in Fig. 5. Collapse means here
that the sample is no longer controllable (Nova [22]). The loading program, with the chosen control parameters,
cannot be maintained. One can see that the stress ratios and the corresponding mobilised angles of friction at collapse
are very close (Table 2). It is relevant to note that collapse occurs strictly within a domain which is included in the
Mohr–Coulomb limit surface. Taking into account experimental uncertainties, the unstable line seems to be unique
for all the loading paths considered. This result is of course not generally valid and here could be due to the fact that,
at collapse, stress increments are parallel, as depicted in Fig. 7.

The deformation of all the samples seems to be homogeneous even for large strains (after collapse): we note no
strain localisation either by a single shear band or by a shear band pattern. The analysis of pore pressure variation at
collapse on Fig. 6 highlights two points:

– Collapse occurs while the pore pressure decreases, meaning that the increase in pore pressure is related to collapse
itself (Fig. 6(a)), as pointed out also by Imposimato and Nova [23];
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Fig. 5. Collapse points for ICU, CSD and CSU tests.

Fig. 5. Points d’effondrement pour les essais ICU, CSD et CSU.

Fig. 6. Changes in shear stress and variation in pore pressure (a), ax-
ial displacement (b) and second-order work (c) versus time (CSU).

Fig. 6. Evolutions de la contrainte de cisaillement et de la pression
interstitielle (a), de la déformation axiale (b) et du travail du second
ordre (c), en fonction du temps (CSU).

– The increase in pore pressure during collapse is more than likely the result of a diffuse mode of deformation rather
than a localised one since, upon localised deformation, no notable change in pore pressure should be observed.
This diffuse mode of failure will be analysed in Sections 3 and 4.

The collapses (or instabilities) detected experimentally in this section correspond more generally to bifurcation
states. Therefore, the next section investigates the collapse of a material point or a homogeneous sample in the general
context of bifurcation (Petrik [24], Bigoni [25]). A criterion is built to detect the occurrence of such collapses, and
finally this notion is applied to the case of a granular assembly.

3. The second-order work as a bifurcation criterion

In this section, it is established that a mechanical system, in equilibrium under prescribed boundary conditions,
may develop kinetic energy with no change in the control parameters governing the boundary conditions. As a bifur-
cation corresponds to a sudden change in the state of a system under continuous variations in the state variables, the
development of kinetic energy is a proper bifurcation mode. The vanishing of the second-order work, as defined by
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Fig. 7. Orientation of stress increments for ICU, CSD and CSU tests.

Fig. 7. Orientation de l’incrément de contrainte pour les essais ICU, CSD et CSU.

Hill [11], is shown to play a fundamental role in detecting whether a mechanical state of a given system corresponds
to such a bifurcation.

A system made up of a volume Vo of a given material, initially in a configuration Co (the position of a material point
is denoted �X in this initial configuration) is considered. After a loading history, the system is in a strained configuration
C and occupies a volume V , in equilibrium under a prescribed external loading (the position of a material point is
denoted �x in this current configuration). This loading is controlled by specific static or kinematic parameters, referred
to as the control parameters.

3.1. Loss of sustainability of a mechanical state: a bifurcation point

Let a volume of a rate-independent material, defined by both stress σ and displacement �u fields, be in equilibrium
under a loading governed by specific control parameters. The mechanical state of the system is reputed unsustainable if

and only if two related incremental displacement and stress fields δ�u and δσ exist, such that Lδt (where Lij δt = ∂(δui )
∂xj

is the component of the velocity gradient tensor L) and δσ are related by the constitutive relation, and such that the
state (which is not necessarily in equilibrium) defined by both stress σ + δσ and displacement �u + δ�u fields can be
encountered by the system with no changes in the control parameters. In this case, kinetic energy is created from an
equilibrium state with no change in the control parameters. This is therefore a proper bifurcation state.

3.2. Loss of sustainability and vanishing of the second-order work

The instantaneous change in the system, in the equilibrium configuration C at time t , is governed by the following
energy conservation equation:

δEc(t) =
∫
Γ

fiδui dS −
∫
V

σij

∂(δui)

∂xj

dV (1)

where δEc represents the current change in kinetic energy of the system and �f dS is the current external force acting
on the current boundary of the system. It is convenient to express the integrals in Eq. (1) with respect to the initial
configuration, which yields:

δEc(t) =
∫

Fiδui dSo −
∫

Πij

∂(δui)

∂Xj

dVo (2)
Γo Vo
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where Π denotes the Piola–Kirchoff stress tensor of the first kind, Γo is the Vo boundary, and �F dSo is the current
external force acting on the boundary of the system in the initial configuration. Differentiation of Eq. (2) gives:

δ2Ec(t) =
∫
Γo

δFiδui dSo +
∫
Γo

Fiδ
2ui dSo −

∫
Vo

δΠij

∂(δui)

∂Xj

dVo −
∫
Vo

Πij

∂(δ2ui)

∂Xj

dVo (3)

By taking advantage of Green’s formula, Eq. (3) yields:

δ2Ec(t) =
∫
Γo

δFiδui dSo −
∫
Vo

δΠij

∂(δui)

∂Xj

dVo (4)

The system is controlled either by the external force density �F , or by the boundary displacement �u. Imposing that
the control parameters do not change implies that

∫
Γo

δFiδui dSo = 0. In ignoring third-order terms, then δ2Ec(t) =
2Ec(t + δt), and it follows:

2Ec(t + δt) = −
∫
Vo

δΠij

(
∂(δui)

∂Xj

)
dVo (5)

Eq. (5) represents the rate expression of the system’s energy conservation from an equilibrium state. It must be em-
phasised that Eq. (5) no longer applies once the system is off-equilibrium. As Ec(t + δt) > 0, the system evolves
toward another mechanical state if and only if:∫

Vo

δΠij

(
∂(δui)

∂Xj

)
dVo < 0 (6)

Defining the second-order work as the quantity:

W2 =
∫
Vo

δΠij

(
∂(δui)

∂Xj

)
dVo (7)

expressed through a semi-Lagrangian formalism, the system evolves from the equilibrium configuration C toward
another mechanical state if and only if:

W2 < 0 (8)

An Eulerian expression of the second-order work can be given by making use of the Piola transform of the Cauchy

stress tensor. As δΠ = J (δσ + J div(δ�u)σ − σ(L)t δt)(F−1)t , then, by combining with Eq. (7), it follows that:

W2 =
∫
V

(
δσ + div(δ�u)σ − σ

(
L

)t
δt

) : Lδt dV (9)

For a material point or a homogeneous specimen (according to the meaning of continuum mechanics), Eq. (9) reads:

W2 = V
(
δσ + div(δ�u)σ − σ

(
L

)t
δt

) : Lδt (10)

The second-order work is thus a combination of three terms, namely V δσ : Lδt , V div(δ�u)σ : Lδt , and −V σ(L)t δt :
Lδt , which will be investigated from discrete numerical simulations in Section 5.

3.3. Application to the case of granular materials

A granular assembly composed of N grains ‘p’, with 1 � p � N , is considered (Fig. 8). The mass center of each
grain ‘p’ is denoted Gp . Each grain ‘p’ is in contact with np other grains ‘q’. The set of grains ‘q’ in contact with
grain ‘p’ is defined by the mapping q = Cp(k), with k = 1, . . . , np . Whatever p is, np is nonzero. Each grain ‘p’
belonging to the boundary ∂V of the volume is subjected to an external force �F ext,p . It will be assumed that no torque
is applied to the particles of ∂V : ∀p ∈ ∂V , δ �Mext,p = �0.
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Fig. 8. Definition of the granular assembly. Boundary of the volume and external forces.

Fig. 8. Définition de l’assemblage granulaire. Frontière du volume et forces externes.

Fig. 9. Definition of both the Galilean reference frame and the local frame attached to two contacting granules.

Fig. 9. Définition du repère galiléen de référence, et du repère local lié à deux grains en contact.

Let two particles ‘p’ and ‘q’ of the granular assembly be in contact. Let � be a Galilean frame. The local frame
�̂{�̂x, �̂y, �̂z} attached to the contact considered is introduced, where �̂z is normal to the tangent plane, and �̂x and �̂y belong
to the tangent plane so that {�̂x, �̂y, �̂z} defines a direct triad (Fig. 9). The time differentiation of any variable ψ with
respect to this frame will be denoted δ̂ψ .

Let δ̂�up,q
c define the relative displacement of particle ‘p’ with respect to particle ‘q’, and δ̂ �Fp,q the contact force

applied by particle ‘p’ onto particle ‘q’. It can be shown that the second-order work associated with the two contacting
granules ‘p’ and ‘q’ can be expressed from discrete variables as follows (Nicot and Darve [26]):

W
p,q

2 = δ̂ �Fp,q · δ̂�up,q
c (11)

Furthermore, starting from an equilibrium state, the rate formulation of the energy conservation reads:

W2 =
∑

δ �F ext,p · δ�up − δ2Ec(t) (12)

p∈∂V
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However, incremental kinetic energy of the granular assembly considered reads:

δEc(t) =
N∑

p=1

( �Fp · δ�up + �Mp · δ �ωp
)

(13)

where �Fp and �Mp are the external force and the external torque, respectively, exerted on any particle ‘p’ considered.
The incremental changes δ �Fp and δ �Mp are linked to an incremental displacement δ�up and to an incremental rotation
δ �ωp of particle ‘p’. After differentiation, Eq. (13) yields:

δ2Ec(t) =
N∑

p=1

( �Fp · δ2 �up + �Mp · δ2 �ωp + δ �Fp · δ�up + δ �Mp · δ �ωp
)

(14)

As �Fp = ∑np

k=1
�FCp(k),p + �F ext,p and �Mp = ∑np

k=1(
−−−−−→
GpCk

p ∧ �FCp(k),p), where �FCp(k),p represents the force applied

by particle ‘Cp(k)’ onto particle ‘p’ at the contact point Ck
p , and �F ext,p is the external force applied to particle ‘p’,

excluding contact forces; it follows after differentiation:

δ �Fp =
np(t+δt)∑

k=1

δ �FCp(k),p + δ �F ext,p (15)

and:

δ �Mp =
np(t+δt)∑

k=1

(−−−−−→
GpCk

p ∧ δ �FCp(k),p + δ
(−−−−−→
GpCk

p

) ∧ �FCp(k),p
) + δ �Mext,p (16)

Hence, it can be written that:

N∑
p=1

(
δ �Fp · δ�up + δ �Mp · δ �ωp

) =
N∑

p=1

N∑
q=1

(
δ �Fq,p · (δ�up − −−−−−−→

GpCp,q ∧ δ �ωp
) − �Fq,p · δ(−−−−−−→

GpCp,q

) ∧ δ �ωp
) + · · ·

+
∑

p∈∂V

(
δ �F ext,p · δ�up

)
(17)

Likewise, we have:

N∑
p=1

( �Fp · δ2 �up + �Mp · δ2 �ωp
) =

N∑
p=1

N∑
q=1

( �Fq,p · (δ2 �up − −−−−−−→
GpCp,q ∧ δ2 �ωp

)) +
∑

p∈∂V

( �F ext,p · δ2 �up
)

(18)

It follows that:

δ2Ec(t) =
N∑

p=1

N∑
q=1

(
δ �Fq,p · (δ�up − �rp,q ∧ δ �ωp

) + �Fq,p · (δ2 �up − δ�rp,q ∧ δ �ωp − �rp,q ∧ δ2 �ωp
)) + · · ·

+
∑

p∈∂V

(
δ �F ext,p · δ�up + �F ext,p · δ2 �up

)
(19)

where �rp,q = −−−−−−→
GpCp,q (resp. �rq,p = −−−−−−→

GqCp,q) is the branch vector joining the centre Gp (resp. Gq ) of particle ‘p’
(resp. ‘q’) to the contact point Cp,q between both particles ‘p’ and ‘q’ (Fig. 10).

In these conditions, as �Fp,q = − �Fq,p and δ �Fp,q = −δ �Fq,p , Eq. (12) can be expressed as:

W2 =
N∑

p=1

p−1∑
q=1

(
δ �Fp,q · δ�up,q

c + �Fp,q · (δ2 �up − δ2�uq − �rp,q ∧ δ2 �ωp + �rq,p ∧ δ2 �ωq
)) + · · ·

+
N∑ p−1∑( �Fp,q · (δ�rq,p ∧ δ �ωq − δ�rp,q ∧ δ �ωp

)) −
∑ ( �F ext,p · δ2 �up

)
(20)
p=1 q=1 p∈∂V
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Fig. 10. Spherical particles in contact.

Fig. 10. Particules sphériques en contact.

Expression of the macroscopic second-order work in Eq. (20) introduces the quantity δ �Fp,q · δ�up,q
c . This is not the

microscopic second-order work, W
p,q

2 = δ̂ �Fp,q · δ̂�up,q
c , defined on contact ‘c’ between particles ‘p’ and ‘q’, since

�Fp,q is differentiated with respect to � and not to �̂. However, the quantities δ �Fp,q · δ�up,q
c and W

p,q

2 = δ̂ �Fp,q · δ̂�up,q
c

are linked by the relation (Nicot and Darve [26]):

W
p,q

2 = δ �Fp,q · δ�up,q
c + (

δ�rq,p ∧ δ �ωq − δ�rp,q ∧ δ �ωp
) · �Fp,q + · · ·

+ (
δ2 �up − δ2�uq + �rq,p ∧ δ2 �ωq − �rp,q ∧ δ2 �ωp

) · �Fp,q (21)

By combining Eq. (20) with Eq. (21), the second-order work of the whole assembly can finally be expressed as:

W2 =
N∑

p=1

p−1∑
q=1

(
δ̂ �Fp,q · δ̂�up,q

c

) −
∑

p∈∂V

( �F ext,p · δ2 �up
)

(22)

This relation proves that the second-order work W2 of a granular assembly is equal to the summation W̄2 =∑N
p=1

∑p−1
q=1(δ̂ �Fp,q · δ̂�up,q

c ) of the microscopic second-order works over all of the assembly’s contacts, minus a

complementary boundary term,
∑

p∈∂V ( �F ext,p · δ2 �up), which takes into account the acceleration of the particles lo-
cated at the assembly’s boundary. This micro–macro correspondence can be regarded as fundamental since it links a
macroscopic variable, namely W2, to micro-structural elements, namely the relative displacement and the contact force
between adjoining granules. This basic relation, which bridges the ‘macro-world’ and the ‘micro-world’, provides the
means to investigate a macroscopic feature, such as the unstable behaviour exhibited experimentally in Section 2,
from a micro-structural point of view, as will be done in Section 5.

4. Phenomenological bifurcation analyses

In Section 2, we saw that some diffuse failure modes can occur strictly inside the Mohr–Coulomb limit surface.
In Section 3, the essential meaning of negative second-order work (i.e. bursts of kinetic energy through a bifurcation
point) was discussed and the link between macroscopic second-order work and microscopic discrete second-order
works was established for granular media. Now it is shown that, considering incrementally piece-wise linear and
nonlinear constitutive relations, it is possible to exhibit analytically and numerically bifurcation domains and cones of
unstable stress directions according to the second-order work criterion.

For that we use the Eulerian expression given by Eq. (10), we assume small deformations and we neglect the
changes in the geometrical configuration and obtain the classical expression:

W2 = V
(
δσ : Lδt

) = V (δσ : δε) (23)

In addition, homogeneous specimens subjected to uniform stress–strain fields are considered for these purely material
analyses.
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Fig. 11. Circular diagrams of the normalised second-order work W2/(V ‖δε‖‖δσ‖) in axisymmetric conditions (σ3 = 100 kPa) for a dense Hostun
sand—incrementally nonlinear relation (on the left) and octolinear model (on the right)—(Darve and Laouafa [8]).

Fig. 11. Représentations circulaires du travail du second ordre normalisé pour un sable d’Hostun dense en conditions axisymétriques
(σ3 = 100 kPa)—relation incrémentalement non-linéaire (à gauche) et modèle octolinéaire (à droite)—(Darve et Laouafa [8]).

Consequently, the density of second-order work W2 appears essentially as a directional quantity:

W2 = V (δσ : δε) = V
(
δσ : M(

dσ

)
δσ

) = V
(
dσ : M(

dσ

)
dσ

)‖δσ‖2 (24)

with dσ = δσ/‖δσ‖ and δε = M(dσ )δσ for rate-independent materials.
To check the sign of second-order work, it is necessary to proceed—at a given stress–strain state after a given

loading history—to a computation of second-order work in each stress direction. The results have been plotted in
polar diagrams in stress spaces or (for more readable figures in case of negative values) in ‘circular’ diagrams by
adding a given proper constant to the values of second-order work in order to always obtain positive values. These
computations have been carried out for axisymmetric conditions (Darve and Laouafa [8]), plane strain conditions
(Khoa et al. [10]) and more general 3D conditions (Darve and Laouafa [8]); in axisymmetric conditions see also Nova
and Imposimato [27].

Examples of such circular diagrams are given on Fig. 11 and examples of unstable stress direction cones on Fig. 12.
It appears that on the boundary of the bifurcation domain a first unstable stress direction occurs, quickly giving risen
(for higher values of the deviatoric stress) to a cone of unstable stress directions, and sometimes according to the
constitutive parameters to two cones.

The existence of bifurcation domains and cones of unstable stress directions for loose and dense sands were
obtained with our incrementally nonlinear and piecewise linear constitutive relations. The so-called incrementally
nonlinear relation of second order (INL2) is given by:

δεij = Mijklδσkl + 1

‖δσ‖Mijklmnδσklδσmn (25)

In fixed stress–strain principal axes, it takes its simplest expression given by:[
δε1
δε2
δε3

]
= 1

2

[
N+ + N−][

δσ1
δσ2
δσ3

]
+ 1

2‖δσ‖
[
N+ − N−][

(δσ1)

(δσ2)

(δσ3)

]
(26)

where the constitutive 3 × 3 matrices N+ and N− depend on state variables and memory parameters.
The “octolinear” model corresponds to:[

δε1
δε2

]
= 1

2

[
N+ + N−][

δσ1
δσ2

]
+ 1

2

[
N+ − N−][ |δσ1|

|δσ2|
]

(27)

δε3 δσ3 |δσ3|
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Fig. 12. Cones of unstable stress directions for dense (on the left) and loose (on the right) Hostun sand, computed with the incrementally nonlinear
relation (Darve et al. [9]). The arrows in the diagram for loose sand (right) indicate the direction of stress increment at collapse for experimental
tests 27 and 58 (cf. Fig. 7).

Fig. 12. Cônes de directions en contrainte instables pour un sable d’Hostun dense (à gauche) et lâche (à droite), calculés avec la relation incrémen-
talement non-linéaire (Darve et al. [9]). Les flèches sur la figure correspondant au sable lâche (à droite) indiquent la direction de l’incrément de
contrainte lors de l’effondrement pour les essais expérimentaux 27 et 58 (cf. Fig. 7).

With this last model, the analytical determination of the bifurcation domain boundary equations and cones of unstable
stress directions is made possible.

For simplicity, axisymmetric conditions and plane strain conditions are considered.
Proportional strain loading paths are used for these analyses. They are defined incrementally in axisymmetry by:{

δε1 = constant
δε2 = δε3 (axisymmetric condition)

δε1 + 2Rδε3 = 0 (R constant for a given path)

(28)

and in plane strain by:{
δε1 = constant
δε2 = 0 (plane strain condition)

δε1 + Rδε3 = 0 (R constant for a given path)

(29)

The second-order work takes the following forms in axisymmetry and plane strain, respectively:

W2 = V (δσ1δε1 + 2δσ3δε3) = V
[
(δσ1 − δσ3/R)δε1 + δσ3(δε1 + 2Rδε3)/R

]
(30)

W2 = V (δσ1δε1 + δσ3δε3) = V
[
(δσ1 − δσ3/R)δε1 + δσ3(δε1 + Rδε3)/R

]
(31)

The constitutive equation can be expressed, respectively, as:

[
δσ1 − δσ3/R

δε1 + 2Rδε3

]
=

⎡
⎢⎣ E−

1 2R
E−

1 V 1−
3

E−
3

− 1

1 − 2RV 3−
1

2R2(1−V 3−
3 −2V 3−

1 V 1−
3 )

E−
3

⎤
⎥⎦[

δε1

δσ3/R

]
(32)

[
δσ1 − δσ3/R

δε1 + Rδε3

]
=

⎡
⎢⎣

E−
1

1−V 2−
1 V 1−

2

E−
1 (V 1−

3 +V 2−
3 V 1−

2 )

E−
3 (1−V 2−

1 V 1−
2 )

R − 1

1 − V 3−
1 +V 2−

1 V 3−
2

1−V 2−
1 V 1−

2
R DR2

E−
3 (1−V 2−

1 V 1−
2 )

⎤
⎥⎦[

δε1

δσ3/R

]
(33)

with D = 1 − V 2−
1 V 1−

2 − V 3−
1 V 1−

3 − V 3−
2 V 2−

3 − V 2−
1 V 3−

2 V 1−
3 − V 1−

2 V 3−
1 V 2−

3 .
Taking into account the loading paths (δε1 + 2Rδε3 = 0 or δε1 + Rδε3 = 0), peaks of (dσ1 − dσ3/R) will exist

(leading to negative values of second-order work according to Eqs. (30) and (31)) if and only if the determinants of
the previous constitutive matrices are vanishing, giving rise to the respective bifurcation conditions:
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2E−
1

(
1 − V 3−

3

)
R2 − 2

(
E−

3 V 3−
1 + E−

1 V 1−
3

)
R + E−

3 = 0 (34)

E−
1

(
1 − V 3−

2 V 2−
3

)
R2 − [

E−
3

(
V 3−

1 + V 2−
1 V 3−

2

) + E−
1

(
V 1−

3 + V 2−
3 V 1−

2

)]
R + E−

3

(
1 − V 2−

1 V 1−
2

) = 0 (35)

These equations have two real solutions in R if their discriminants are strictly positive.
This becomes:

−2(E−
1 )2(E−

3 )2 detQs > 0 (36)

−4(E−
1 )2(E−

3 )2 detP s > 0 (37)

where P s and Qs are, respectively, the symmetric parts of the constitutive matrices given by:

Q =
⎡
⎢⎣

1
E−

1
−√

2
V 1−

3
E−

3

−√
2

V 3−
1

E−
1

1−V 3−
3

E−
3

⎤
⎥⎦ with

[
δε1√
2δε3

]
= Q

[
δσ1√
2δσ3

]
(38)

P =
⎡
⎢⎣

1−V 2−
1 V 1−

2
E−

1
−V 1−

3 +V 2−
3 V 1−

2
E−

3

−V 3−
1 +V 2−

1 V 3−
2

E−
1

1−V 3−
2 V 2−

3
E−

3

⎤
⎥⎦ with

[
δε1

δε3

]
= P

[
δσ1

δσ3

]
(39)

Thus in both cases the boundary of the bifurcation domains corresponds to the vanishing values of the determinants of
the symmetric part of the constitutive matrices or, equivalently, to their first vanishing eigen-values. However, for such
incrementally piecewise linear constitutive relations, it is necessary to check whether the unstable stress directions are
indeed inside the tensorial zone chosen at the beginning of the calculation (and given here by the indices + and −).
This condition has been checked numerically and verified.

The first unstable directions correspond to the double root of Eqs. (35) and (36) exactly for nil discriminants.
The eigen-vectors associated with the vanishing eigen-values are given by:

E−
1 δε1 +

(
2
E−

1

E−
3

V 1−
3 − 1

R

)
δσ3 = 0 (40)

E−
1 δε1 +

(
E−

1

E−
3

(
V 1−

3 + V 2−
3 V 1−

2

) − 1

R

)
δσ3 = 0 (41)

and characterise the bifurcation/collapse mechanism (Darve et al. [9], Khoa et al. [10]).

5. Numerical bifurcation analyses

Diffuse failure modes strictly inside the Mohr–Coulomb limit surface have been exhibited experimentally in Sec-
tion 2, a bifurcation criterion (the sign of second-order work) was proposed in Section 3 and was applied in Section 4
in a phenomenological context to determine the bifurcation domains and cones of unstable stress directions. In this
fifth section, the bifurcation criterion is considered in a numerical discrete context. The macro–micro correspondence
between the second-order work and micro-structural variables demonstrated in Section 3.3 is discussed. Then it is
shown that the occurrence of loss of sustainability corresponds to the vanishing of the second-order work.

5.1. The discrete numerical model

The numerical simulations were carried out with the 3D software SDEC (Magnier and Donzé [13]) based on the
discrete element method as proposed by Cundall and Strack [28] to describe the mechanical behaviour of granular
soils. Grains are rigid spheres of diameter Ds . The intergranular interaction is simulated in the direction normal to the
contact by a linear elasticity with a stiffness kn/Ds = 356 MPa, and in the tangential direction by a linear elasticity
(kt/kn = 0.42) and a tangential perfect plasticity with a friction angle ϕ = 35◦. The normal and the tangential contact
forces, Fn and Ft , respectively, are given by:{

Fn = knδn

} {
Ft = ktut

}
(42)
Fn > 0 Ft � tanϕFn
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where δn is the overlap at the contact point and ut is the incremental tangential displacement. At the beginning of a
computational time-step, contact forces are computed from sphere positions and then resultant forces and momentums
on each sphere. Finally new sphere positions are calculated by applying Newton’s second law. The integration in time
of Newton’s second law and the interaction contact law are both carried out by way of an explicit scheme.

The numerical specimen of volume V has a cubical shape and is composed of roughly 10 000 spheres whose size
distribution is continuous (2 mm � Ds � 9.5 mm). The loading path (strain, stress or mixed control parameters) is
imposed on the sphere assembly by controlling the positions of six frictionless walls in contact with spheres at the
boundaries of the specimen. In this paper, simulations are limited to axisymmetric stress–strain states (σ2 = σ3 and
ε2 = ε3).

5.2. Computation of macro- and micro-values of second-order work

Axisymmetric stress probes were performed to compute the semi-Lagrangian (Eq. (7)) and the Eulerian (Eq. (10))
expressions of the macroscopic second-order work. Stress probes are performed from an initial stress–strain state by
imposing a loading vector δ�σ defined in the Rendulic plane of stress increments (δσ1,

√
2δσ3) by its norm ‖δ�σ‖ =

1 kPa and the angle α between the
√

2δσ3 axis and δ�σ (see Fig. 13(a)). α is increased from 0◦ to 360◦ by increments
of 10◦ to check each stress direction. The corresponding response vectors δ�ε, defined in the Rendulic plane of strain
increments (δε1,

√
2δε3) (Fig. 13(b)) are computed. The initial stress–strain state of stress probes results from an

isotropic compression up to 200 kPa followed by an axisymmetric triaxial compression (σ2 = σ3 = cst.) stopped at
η = σ1−σ3

(σ1+2σ3)/3 = 0.77.

Fig. 14(a) shows the density of second-order work (i.e. the second-order work per unit of volume) through the

semi-Lagrangian formalism, the Eulerian formalism and its three components δσ : Lδt , div(δ�u)σ : Lδt , σ(L)t δt : Lδt

versus the stress-probe direction α. Note that values of the second-order work are higher in the central part of the di-
agram because (as explained below) stress probes in these directions (i.e. 50◦ < α < 260◦) lead to irreversible strains
larger than reversible strains found along the other directions. The most important contributing term in the Eulerian

expression of W2 is δσ : Lδt . Then the term div(δ�u)σ : Lδt , which takes into account the volumetric strain through

the factor div(δ�u), is nearly nil whatever the stress-probe direction. Finally, the term σ(L)t δt : Lδt is small but not
inconsiderable for stress probes leading to irreversible strains. Nicot and Darve [26] showed that this latter term can be
linked to the change in the fabric of the granular assembly. The reference state to compute the semi-Lagrangian expres-
sion of W2 is the initial state before stress probes. These semi-Lagrangian and Eulerian expressions of second-order

work are shown to be equivalent, as expected from analytical developments (Section 3.2). The expression δσ : Lδt ,
often used to compute the density of second-order work, misestimates the expression originally given by Hill [11],
Eq. (7), when strains are large.

The cones of unstable stress directions and the bifurcation domain computed with the discrete numerical model are
presented in Sibille et al. [29] and compared with those found with the INL2 and a micro-mechanical model.

In Fig. 14(b), the macroscopic density of second-order work (semi-Lagrangian or Eulerian expression) and the
expression 1

V

∑N
p=1

∑p−1
q=1(δ̂ �Fp,q · δ̂�up,q

c ), which is the density of the microscopic second-order work W̄2, are com-
pared. For α � 70◦ and α � 230◦ macro- and micro-values of second-order work are numerically equal, whereas it is

(a) (b)

Fig. 13. Definition of Rendulic planes; (a) stress probes and (b) strain responses.

Fig. 13. Définition des plans de Rendulic : recherches directionnelles en contrainte (a) et réponses en déformation (b).
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(a) (b)

Fig. 14. Density of second-order work; (a) macroscopic and (b) microscopic expression.

Fig. 14. Densité de travail du second ordre ; expressions macroscopique (a) et microscopique (b).

(a) (b)

Fig. 15. (a) Percentage of sliding and nonpermanent contacts; (b) maximum kinetic energy.

Fig. 15. Pourcentage de contacts glissants et non-permanents (a) ; maximums d’énergie cinétique (b).

no longer true for 70◦ < α < 230◦. Let us note that the complementary term
∑

p∈∂V ( �F ext,p · δ2 �up) of Eq. (22) has
not been taken into account even though accelerations of spheres at the boundaries of the specimen are not necessar-
ily nil for stress probes. On the contrary, by performing strain probes, sphere velocity at the boundaries can nearly
be maintained at a constant value; making the complementary term vanish. However, the gap between macro- and
micro-values of the second-order work is not modified. Therefore, we consider that the weight of the complementary
term is negligible for the simulations presented in this paper, whatever the control mode (constant stress or constant
strain rate).

Fig. 15(a) shows the percentage, with respect to the initial number of contacts, of nonpermanent contacts (i.e.
contacts which do not persist during the simulation) and contacts that reached Coulomb criterion at least during one
time-step (sliding contacts), versus the stress-probe direction α. We call the interval 50◦ < α < 260◦ the irreversible
strain range since the proportion of nonpermanent and sliding contacts is high compared to the complementary in-
terval, called the reversible strain range (even if it is not totally true since the number of sliding and nonpermanent
contacts is not strictly nil). Stress probe directions exist inside the irreversible range such that macro- and micro-
values of the second-order work are equal (α = 60◦; 70◦; 230◦; 240◦; 250◦); thus the difference found between both
expressions of second-order work is not directly related to the fact that some contacts slide, open or create. Fig. 15(b)
shows, for each stress-probe direction, the maximum value of kinetic energy found during the simulation. The interval
for which the kinetic energy is not negligible (70◦ < α < 230◦) is included inside the irreversible range. Irreversible
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strains can therefore be related to both quasi-static and dynamic regimes. Macro- and micro-values of the second-
order work are no longer equal as soon as dynamic irreversible strains, accompanied by substantial micro-structural
rearrangements, exist. We conclude that the micro–macro correspondence (Eq. (22)) is numerically verified for quasi-
static reversible or irreversible strains.

The disagreement found for dynamic irreversible strains can be explained by the fact that the second-order work is
an impulsive value valid at initial time t corresponding to an equilibrium state. From a numerical point of view, the
second-order work is computed over a finite time increment between an initial and a final state. When dynamic events
appear, the strain or the stress path (depending on the loading mode) is strongly nonlinear and rate terms appearing
in the definition of the second-order work cannot be assessed from finite increments as used in any experimental or
numerical tests. Consequently, the computation of the microscopic second-order work between the initial and final
states is no longer valid when local dynamic events occur.

5.3. Simulation of diffuse failure modes

Hereafter simulations are presented of diffuse failure modes for axisymmetric proportional strain paths defined in
Section 4 by Eq. (28). For R = 1, the path is characterised by isochoric strain, for 0 < R < 1 it is dilatant, while for
R > 1 it is contractant.

The conjugate variables with respect to energy are σ1 −σ3/R versus ε1 and ε1 +2Rε3 versus σ3/R, thus the second-
order work (by assuming small deformations and by neglecting the changes in the geometrical configuration) is taking
the form of Eq. (30). The control parameters are ε1 + 2Rε3 and ε1 or ε1 + 2Rε3 and σ1 − σ3/R. In Fig. 16(a) and
16(b) the proportional strain paths simulated are shown, after an isotropic compression up to 100 kPa, by imposing
the control parameter δε1 > 0 and for different values of R. For R values lower than 0.85, σ1 − σ3/R possesses a
maximum (Fig. 16(b)). The second term of Eq. (30) is nil so that the second-order work vanishes at the peak value of
σ1 − σ3/R and thereafter takes negative values. Loss of sustainability of the numerical sample may therefore occur
from the peak of σ1 − σ3/R and along the descending branch.

For R = 0.825 two equilibrium states denoted ESa and ESb in Fig. 16(b) are considered and the control parameters
chosen are (δε1 + 2Rδε3)/R = 0 (proportional strain path) and δσ1 − δσ3/R. If δσ1 − δσ3/R = 0 is strictly imposed,
both equilibrium states ESa and ESb do not evolve. Then ESa and ESb are perturbed by an infinitesimally small
perturbation, namely a positive value of δσ1 −δσ3/R that is very small with respect to the stress states at ESa and ESb.
For the state ESa , we choose δσ1 − δσ3/R = 500 Pa, which represents 2% of σ1 − σ3/R at ESa . Let us denote
χ = (σ1 − σ3/R)t/(σ1 − σ3/R)t=0, where t is the simulation numerical time. χ and kinetic energy K versus t

are shown in Fig. 17(a). The numerical specimen reaches a novel stress state (a little bit higher in the figure than
the previous one) and the values of kinetic energy remain very low: a novel equilibrium state is attained. For ESb,
δσ1 − δσ3/R = 250 Pa (half the perturbation imposed at ESa), which represents 1% of σ1 − σ3/R at ESb. Results

(a) (b)

Fig. 16. Proportional strain paths for R = 0.7; 0.8; 0.825; 0.85; 0.875; 0.9; 1.0.

Fig. 16. Chemins proportionnels en déformation pour R = 0,7 ; 0,8 ; 0,825 ; 0,85 ; 0,875 ; 0,9 ; 1,0.



F. Darve et al. / C. R. Mecanique 335 (2007) 496–515 513
(a) (b)

Fig. 17. Perturbation in σ1 − σ3/R: stress state and kinetic energy changing from equilibrium state ESa (a) and ESb (b).

Fig. 17. Perturbation en : évolution de l’état de contrainte et de l’énergie cinétique à partir des états d’équilibre ESa (a) et ESb (b).

(a) (b)

Fig. 18. Perturbation in kinetic energy: stress state and kinetic energy changing from equilibrium state ESa (a) and ESb (b).

Fig. 18. Perturbation en énergie cinétique : évolution de l’état de contrainte et de l’énergie cinétique à partir des états d’équilibre ESa (a) et ESa (b).

are shown in Fig. 17(b). In contrast to the previous case, the stress state does not reach the imposed value and finally
dramatically decreases at a high rate, while the kinetic energy increases exponentially: the numerical specimen totally
collapses (the equilibrium state of the specimen is not sustainable).

In the simulations presented above, equilibrium states are perturbed by the control parameters being perturbed.
However, in experimental tests, many sources of perturbation exist. We present in the following another way of
perturbing the equilibrium states.

The control parameter σ1 − σ3/R is maintained constant. Since gravity is not taken into account, some spheres,
included in the specimen, float at a given equilibrium state and they are not involved (for this state) in the contact
force network. Some of these spheres, chosen randomly, are perturbed by imposing a given instantaneous velocity in
a random direction. The perturbation therefore corresponds to an external input of kinetic energy.

Equilibrium states ESa and ESb are perturbed by injecting 1×10−4 J to the numerical specimen. By comparison,
the maximum value of kinetic energy for the proportional strain paths (Fig. 16(b)) is approximately 1 × 10−3 J.
Results for ESa and ESb are shown in Fig. 18(a) and 18(b), respectively. The responses are similar to the ones found
by perturbing σ1 − σ3/R, from state ESa a new equilibrium is reached (the kinetic energy, after some burst vanishes),
whereas from state ESb the total collapse of the specimen is observed.

We showed here that for proper control parameters and for bifurcation points detected by the second-order work
criterion, a ‘small perturbation’ of one of the control parameters or of the energy state of the system can cause a strong
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discontinuous change in the mechanical response of the system (i.e. the occurrence of a sudden diffuse failure mode)
under constant control parameters.

6. Conclusion

In the second section of this paper, failure states were exhibited experimentally, which cannot be described by a
Mohr–Coulomb plastic limit condition or a strain localisation criterion. These collapses seem to have a diffuse nature
after these experiments, among others.

The next section presented the second-order work (W2) criterion as a possible candidate to describe these collapses.
Eulerian and semi-Lagrangian expressions of W2 were established and it was proven that the existence of negative
values of W2 is related to bursts of kinetic energy. Thus the corresponding mechanical states of the material cannot be
sustained; a bifurcation point has been reached. Then the relation between the macroscopic second-order work and the
sum of the local discrete second-order works in granular media shows how the macroscopic instabilities are closely
related to local intergranular instabilities.

In Section 4, the second-order work criterion applied in a phenomenological context allowed us to analytically
determine and numerically verify the boundaries of the bifurcation domains and the unstable stress direction cone
equations.

Finally in the last section, using a discrete element numerical model, we checked and validated the relations es-
tablished in Section 3, to compare macro- and microscopic values of second-order work and to simulate numerically
diffuse failure modes exactly under the conditions predicted in Section 4.

In other papers (Nicot and Darve [30,31]), these questions were also explored by considering a micro-mechanical
model. As a last remark, let us conclude that all these analyses lead to a generalised vision of failure in civil engineering
by taking into account failure modes that have not been considered until now. Applications to landslides, rockfalls and
snow avalanches are in progress in European projects and national ANR projects.
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