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Abstract

The two-dimensional damped Boussinesq equation with a forcing term is considered in a unit disc. It governs forced, small,
nonlinear oscillations of a thin elastic membrane in the presence of viscosity. The eigenfunction expansion method is used for
constructing global-in-time solutions of the initial-boundary-value problem in question. Specially designed anisotropic Sobolev
spaces are introduced in order to reflect the effect of nonlinear smoothing in the angular coordinate. Existence and uniqueness in
these spaces are proved on the basis of the construction. To cite this article: V. Varlamov, C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

L’équation de Boussinesq à deux dimensions dans un disque et les espaces de Sobolev anisotropes. L’équation de Boussi-
nesq amortie à deux dimensions avec terme de forçage est considérée dans un disque unité. Elle gouverne les petites oscillations
non linéaires, forcées d’une membrane élastique fine en présence de viscosité. La méthode de développement en fonctions propres
est utilisée pour la construction des solutions globales en temps de problème mixte considéré. Des espaces anisotropes de Sobolev
spécialement conçus, sont introduits pour démontrer l’effet de régularité non linéaire dans la coordonnée angulaire. L’existence et
l’unicité dans ces espaces sont prouvées sur la base de cette construction. Pour citer cet article : V. Varlamov, C. R. Mecanique
335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The Boussinesq equation is well known in the context of describing small nonlinear oscillations of elastic beams.
It can be deduced from the system of equations originally proposed by J. Boussinesq in the papers [1,2] and can be
written in the form

utt = −αuxxxx + uxx + β(u2)xx (1)
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doi:10.1016/j.crme.2007.08.008
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where α = const > 0 is the dispersion parameter depending on the compression and rigidity characteristics of the
material, β = const ∈ R is the coefficient controlling nonlinearity, u(x, t) is the vertical deflection, and the quadratic
nonlinearity (u2)xx accounts for the curvature of the bending beam. Eq. (1) is known as the “good” Boussinesq
equation. It has a counterpart in the theory of long wave propagation on the surface of shallow water, namely (1) with
α = const < 0 [3]. The latter received the name of the “bad” Boussinesq equation due to its linear instability.

There exists an extensive literature on the spatially 1D Boussinesq equation and its generalization, when (u2)xx is
replaced by (f (u))xx (see [4–11] and the references therein). However, the 2D version of this equation was much less
studied. A 2D “bad” Boussinesq equation

utt = uxxxx + uxx + uyy + 3(u2)xx (2)

was proposed in [12] to describe the propagation of surface gravity waves and in particular the head-on collision of
oblique waves. In this model the main wave propagation takes place in the x-direction with weak transverse effects in
the y-direction. An initial-value problem for the 2D “bad” Boussinesq equation with a potential,

utt = 3�2u + �u − 12
(
V (x) ∗ �

(|u|λu)), x ∈ R2, t > 0

was considered in the paper [13]. For small initial data, higher-order nonlinearity, λ > 8, and sufficiently smooth
potential V (x) it was shown that a global-in-time solution exists and satisfies the estimate ‖u(·, t)‖L∞ � c(1 + t)−7.

In many practical situations damping effects are comparable in strength to nonlinear and dispersive ones and in
such cases (1) requires a dissipative term [14]. A convenient item responsible for internal friction is −2butxx with
b = const > 0 (see, e.g., [15]). After adding it to the left-hand side of (1) it takes the form

utt − 2butxx = −αuxxxx + uxx + β(u2)xx (3)

A 2D version of (3) (sometimes called a damped plate equation [16]) is

utt − 2b�ut = −α�2u + �u + β�(u2) (4)

where α,b = const > 0, �2 = �� and u(x, y, t) is a vertical deflection. It appears in the context of modeling small
nonlinear oscillations of elastic membranes in the presence of viscosity [16].

Initial-boundary-value problems for (3) in 1D, 2D and 3D with small initial data were considered in [17–19], and
the global-in-time mild solutions were constructed in the Sobolev spaces Hs(Ω) (where s < 1 for 2D and s < 3/2
for 3D). The method of eigenfunction expansions was used for constructing solutions of nonlinear problems. It is
important to emphasize an essential difference of this approach from Galerkin’s method (see [9] for comparison). The
latter is based on projection onto a finite-dimensional space of eigenvectors and the use of a subsequence converging
to the solution in question. In this way existence and regularity are established, but solutions are not constructed.
The method proposed in [17–19] uses projection onto an infinite-dimensional space of eigenvectors and the proof of
convergence of the corresponding series in an appropriate function space. As a result, solutions are constructed, and
solvability follows from the construction. In the present work for the first time the main function space is adapted for
the circular geometry. It is defined as anisotropic Sobolev space Hs,α(Ω) endowed with the norm (13). Here s is the
usual Sobolev index and α is responsible for additional smoothness in the angular coordinate θ . These spaces should
not be confused with anisotropic Sobolev spaces of [20]. In Hs,α(Ω) regularity of solutions can be raised due to the
smoothing effect with respect to θ . In the current paper, instead of restrictive assumptions on the initial data (see [18])
it is assumed only that the source term belongs to L2(Ω) with respect to spatial coordinates. The use of new special
functions, convolutions of Rayleigh functions with respect to the Bessel index, introduced in [21,22], allows us to
construct mild solutions in Hs,α(Ω) with s + α � 2 − ε and s < 3/2 for any ε > 0.

For a given Bessel function Jν(x) Rayleigh functions are defined by the series (see, e.g., [23], p. 502)

σl(ν) =
∞∑

n=1

λ−2l
ν,n

where l = 1,2, . . .; λν,n is the zero of the Bessel function and n is the number of the zeros. These functions have
been used in solving classical linear problems of vibrating drumheads, heat conduction in cylinders and Fraunhofer
diffraction through circular apertures. Convolutions of Rayleigh functions with respect to the Bessel index,

Ri,j (m) =
∞∑

σi

(|m − k|)σj

(|k|), m ∈ Z (5)

k=−∞
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were introduced in the papers [21,22] in order to treat quadratic nonlinearities for semi-linear equations in circular
domains. They have representations

Ri,j (m) =
|m|∑
k=0

σi

(|m| − k
)
σj (k) +

∞∑
k=1

σi

(|m| + k
)
σj (k) +

∞∑
k=1

σi(k)σj

(|m| + k
)

The use of these special functions allows one to reveal the smoothing effect due to periodicity in θ . The convolution
structure of Ri,j (m) is a consequence of orthogonality of the angular eigenfunctions {eimθ }∞m=−∞.

2. Problem statement and preliminaries

Denote by Ω a disk of a unit radius and put the origin of the coordinate system in its center, so that in polar
coordinates Ω = {(r, θ): r < 1, θ ∈ [−π,π]}. Let ∂Ω denote its boundary, i.e. ∂Ω = {(r, θ): r = 1, θ ∈ [−π,π]}.
Consider the following initial-boundary-value problem for a real function u:

utt − 2b�ut = −α�2u + �u + β�(u2) + f, (r, θ) ∈ Ω, t > 0

u(r, θ,0) = ut (r, θ,0) = 0, (r, θ) ∈ Ω

u|∂Ω = �u|∂Ω = 0, t > 0

u(r, θ + 2π, t) = u(r, θ, t), (r, θ) ∈ Ω, t > 0∣∣u(0, θ, t)
∣∣< ∞ (6)

where α, b = const > 0, β = const ∈ R and f = f (r, θ, t) is a real function. The above boundary conditions corre-
spond to a simply supported boundary (see [24,25]). We restrict our attention to the case of small damping α > b2

which is the most interesting one from both mathematical and physical points of view. It corresponds to existence of
an infinite number of damped oscillations. For b2 > α > 0 the analysis is even simpler, but aperiodic processes play
the main role. Therefore this case is less interesting. Considering inhomogeneous initial conditions is not a problem
and can be done along the lines of [18] with improvements offered in the current work but would make our formulas
somewhat unwieldy.

According to the method proposed in [17–19], we seek solutions of the problem (6) in the form of a series

u(r, θ, t) =
∑
m,n

ûm,n(t)χm,n(r, θ) (7)

Here and in the sequel
∑

m,n stands for
∑∞

m=−∞
∑∞

n=1 and χm,n(r, θ) are the eigenfunctions of the Laplace operator
in a disc, namely nontrivial solutions of the boundary-value-problem

�χ = −Λχ, (r, θ) ∈ Ω

χ |∂Ω = 0

χ(r, θ + 2π) = χ(r, θ), (r, θ) ∈ Ω∣∣χ(0, θ)
∣∣< ∞ (8)

corresponding to the eigenvalues Λm,n = λ2
m,n. They are

χm,n(r, θ) = Jm(λm,nr)e
imθ , m ∈ Z, n ∈ N

where Jm(x) are Bessel functions of index m and λm,n are their positive zeros numbered in the order of increasing
magnitudes (n = 1,2, . . . , is the number of the zero). In this way we satisfy the boundary and periodicity conditions
in (6). Notice that for m ∈ N:

J−m(z) = (−1)mJm(z) (9)

Introduce the complex space L2(Ω) endowed with the inner product 〈·, ·〉 and the norm ‖ · ‖. Then, according to
[26], p. 219, the following relations hold:

‖χm,n‖2 = 2π
∥∥Jm(λm,n·)

∥∥2
L2(0,1) =

1∫
rJ 2

m(λm,nr)dr = 1

2
J 2

m+1(λm,n)
0
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For sufficiently large q > 0 there exist such positive constants C1 and C2 that (see [26], p. 219)

C1

q
�
∥∥Jm(q·)∥∥2 � C2

q
(10)

For bounded m, large positive zeros of Jm(z) have the following asymptotic expansion (McMahon’s expansion,
see [27], p. 247):

λm,n = υm,n + O

(
1

υm,n

)
, υm,n =

(
m + 2n − 1

2

)
π

2
for n → +∞ (11)

We shall use L2(Ω)-based Sobolev spaces Hs(Ω), s ∈ R, equipped with the norm

‖u‖2
Hs(Ω) = ‖u‖2

s =
∑
m,n

λ2s
m,n|ûm,n|2‖χm,n‖2

where ûm,n = ‖χm,n‖−2〈u,χm,n〉 are the complex Fourier–Bessel coefficients of the function u and λm,n > 0 for all
m ∈ Z, n ∈ N. Let Hs

0 (Ω) with s � 0 be the completion of the space C∞
0 (Ω) endowed with the inner product 〈·, ·〉s

and the corresponding norm ‖ · ‖s . For s = 0 the subindex is omitted in the notation of the inner product and the norm.
The space L∞(R+,H s(Ω)) is equipped with the norm

‖u‖L∞
(
R+,H s(Ω)

) = ess sup
t�0

∥∥u(·, t)∥∥
s

Definition 2.1. For any s,α ∈ R anisotropic Sobolev space Hs,α(Ω) is defined as a closure of the space C∞(Ω) in
the norm

‖u‖2
s,α =

∑
m,n

(
1 + |m|2)αλ2s

m,n|ûm,n|2‖χm,n‖2 (12)

The representation (12) can also be written in the operator form

‖u‖2
s,α = ∥∥(I − ∂2

θ )α(I − �)su
∥∥2 (13)

Denote by Hs,α
0 (Ω) a closure of C∞

0 (Ω) in the norm (12).

3. Main results

Integration of Eq. (6) with respect to t leads to a nonlinear integral equation which serves for the definition of
a mild solution of the problem (6). Denote by A the operator −� defined on sufficiently smooth functions χ(r, θ)

satisfying the conditions (8) and let

ω(A) = (
μA2 + A

)1/2
, where μ = α − b2 > 0

Definition 3.1. A function u(t) is called a mild solution of the problem (6) if it satisfies the integral equation

u(t) =
t∫

0

exp
[−b(t − τ)A

](
ω(A)

)−1 sin
(
ω(A)(t − τ)

)
f (τ)dτ

− β

t∫
0

exp
[−b(t − τ)A

](
ω(A)

)−1 sin
(
ω(A)(t − τ)

)
Au2(τ )dτ

in the Banach space Cb(R
+,Hs,α

0 (Ω)). Here the operator function exp(−btA) and the nonlinear term Au2(t) are
understood via eigenfunction expansions (see below (23) and (26)).

Our main result is the following statement.
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Theorem 3.2. If α > b2, f ∈ L∞(R+, L2(Ω)) and ‖f ‖L∞(R+,L2(Ω)) � 3b
√

2πC1μ(2π2|β|C̃)−1, where C1 and
C̃ are the constants from (10) and (17), respectively, then there exists a mild solution of the problem (6) u ∈
Cb(R

+,Hs,α
0 (Ω)) with s + α � 2 − ε and s < 3/2 for any ε > 0. For s + α � −2 + ε and s � −3/2 this solution is

unique. It can be represented in the form

u(r, θ, t) =
∑
m,n

ûm,n(t)Jm(λm,nr)e
imθ (14)

where the coefficients ûm,n(t) are defined by (27) and (20) and convergence is understood in the sense of Hs,α(Ω).

The proof of the theorem is approached through a series of lemmas.

Lemma 3.3. If u ∈ L2(Ω), then

|ûm,n| � ‖u‖√λm,n√
2πC1

(15)

where C1 is the constant from the estimate (10).

Proof. Follows from the definition of Fourier–Bessel coefficients and the Cauchy–Schwartz inequality. �
The analysis to follow is essentially based on the expansion of the nonlinearity u2 into the eigenfunction series. This
involves the use of projection coefficients (see (23))

b(m,n;p,q, k, s) = 〈χp,q · χk,s, χm,n〉
‖χm,n‖2

=
∫ 1

0 Jm(λm,nr)Jp(λp,qr)Jl(λl,sr)r dr

‖Jm(λm,n·)‖2
. (16)

Lemma 3.4. The following inequality holds for all m,p, k ∈ Z and n, k, s ∈ N∣∣b(m,n;p,q, k, s)
∣∣� C̃

√
λm,n

λp,qλk,s

(17)

where the constant C̃ is independent of m,n,p,q, k and s.

Proof. See [18]. �
The next statement is a slight modification of Lemma 4.4 of [19].

Lemma 3.5. For any fixed integers n � 1, any integers m,p, k � 0; q, s � 1 and λp,q, λk,s → ∞ there exists a
constant C independent of m,n,p,q, k, s such that the following inequalities hold:

∣∣b(m,n;p,q, k, s)
∣∣� C2

√
λm,n

⎧⎪⎨⎪⎩
λ

−3/2
p,q λ

−1/2
k,s , λp,q > λk,s

λ
−1/2
p,q λ

−3/2
k,s , λp,q < λk,s

λ−1
p,q, λp,q = λk,s

The following lemma is a summary of asymptotics obtained in [21] and [22].

Lemma 3.6. The functions Ri,j (m), i, j = 1,2, defined by (5) are bounded for m ∈ Z ∪ {0} and have the following
asymptotic expansions for |m| → ∞:

R1,1(m) ∼ 1

4

[
ln |m|
|m| + 2γ − 1

2|m| − ln |m|
|m|2 + O

(
1

|m|2
)]

R2,1(m) ∼ 1

26

[(
π2

3
− 5

2

)
1

|m| +
(

π2

3
− 5

2

)
1

|m|2 + O

(
ln |m|
|m|3

)]
R2,2(m) ∼ 1

8

[(
π2

− 5
)

1
3

+
(

π2

− 5
)

1
4

+ O

(
ln |m|

5

)]
(18)
2 3 2 |m| 3 2 |m| |m|
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Set

v̂(0)
m,n(t) =

t∫
0

e−bλ2
m,n(t−τ) sin[ωm,n(t − τ)]

ωm,n

f̂m,n(τ )dτ (19)

v̂(N)
m,n(t) = −βλ2

m,n

ωm,n

t∫
0

e−bλ2
m,n(t−τ) sin

[
ωm,n(t − τ)

]
Q(N)

m,n

(
v̂(τ )

)
dτ for N � 1 (20)

where

ωm,n = λm,n

√
μλ2

m,n + 1

Q(N)
m,n

(
v̂(t)

)=
∑

p,q,k,s:
p+k=m

b(m,n;p,q, k, s)

N∑
j=1

v̂
(j−1)
p,q (t)v̂

(N−j)
k,s (t)

and the notation
∑

p,q,k,s:
p+k=m

=∑
p,k∈Z; q,s�1;

p+k=m

has been used.

Lemma 3.7. Assume that f ∈ L∞(R+,L2(Ω)) for m ∈ Z, n � 1. Then the functions v̂
(N)
m,n(t) satisfy the following

inequalities for m ∈ Z, n � 1 and t > 0:∣∣v̂(0)
m,n(t)

∣∣� c0

λ
7/2
m,n∣∣v̂(1)

m,n(t)
∣∣� c0c1

λ
3/2
m,n

R2,2(m)

∣∣v̂(2)
m,n(t)

∣∣� c0c
2
1

λ
3/2
m,n

R2,1(m)

∣∣v̂(N)
m,n(t)

∣∣� c0c
N
1

(N + 1)2λ
3/2
m,n

R1,1(m) for N � 3 (21)

where

c0 = ‖f ‖L∞(R+,L2(Ω))

b
√

2πμC1
, c1 = 2π2|β|c0C̃

3
√

μb
(22)

Proof. By Lemma 3.3, |f̂m,n(t)| � ‖f ‖L∞(R+,L2(Ω))(2πC1)
−1/2

√
λm,n for all t > 0. Therefore (19) implies that

∣∣v̂(0)
m,n(t)

∣∣� c0
√

λm,ne−bλ2
m,nt

t∫
0

ebλ2
m,nτ

∣∣∣∣ sin(ωm,n(t − τ))

ωm,n

∣∣∣∣dτ � c0

λ
7/2
m,n

For N = 1 applying Lemma 3.3 we can write the following chain of inequalities:

∣∣v̂(1)
mn(t)

∣∣� |β|λ2
m,n

ωm,n

t∫
0

e−bλ2
m,n(t−τ)

∑
p,q,k,s:
p+k=m

∣∣b(m,n;p,q, k, s)
∣∣∣∣v̂(0)

p,q(τ )
∣∣∣∣v̂(0)

k,s (τ )
∣∣dτ

�
|β|√λm,n

b
√

μ

∑
p,q,k,s:
p+k=m

1

λ4
p,qλ4

k,s

� c0c1

λ
3/2
m,n

R2,2(m)

where the function R2,2(m) is defined by (5). For N = 2 applying Lemma 3.4 we can write that
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∣∣v̂(2)
mn(t)

∣∣� 2|β|λ2
m,n

ωm,n

t∫
0

e−bλ2
m,n(t−τ)

∑
p,q,k,s:
p+k=m

∣∣b(m,n;p,q, k, s)
∣∣∣∣v̂(0)

p,q(τ )
∣∣∣∣v̂(1)

k,s (τ )
∣∣dτ

� c0c1

√
λm,n

λ2
m,n

∑
p,q,k,s:
p+k=m

R2,2(k)

λ4
p,qλ2

k,s

�
c0c

2
1

λ
3/2
m,n

R2,1(m)

Next, we use the induction on the number N . Assume that the inequalities (21) hold for all v̂
(l)
mn(t) with 2 � l � N − 1

and prove that they are true for l = N . First, we notice that uniformly with respect to N

N∑
j=1

1

j2(N + 1 − j)2
� 2

(N + 1)2

N∑
j=1

[
1

j2
+ 1

(N + 1 − j)2

]
� 4

(N + 1)2

∞∑
1

1

j2
= 2π2

3(N + 1)2

Then we have∣∣v̂(N)
mn (t)

∣∣� |β|
√

μλ
3/2
mn

2

(N + 1)2

N∑
j=1

c
j−1
1 c

N−j

1

[
1

j2
+ 1

(N + 1 − j)2

] ∑
p,q,k,s:
p+k=m

1

λ2
pqλ2

ks

�
c0c

N
1

λ
3/2
m,n

R1,1(m)

The proof is complete. �
Now we can prove Theorem 3.2.

3.1. Proof of Theorem 3.2

3.1.1. Existence and construction of solutions
Expanding the nonlinearity u2 into the eigenfunction series we can write that

u2 =
∑
m,n

û2
m,n(t)χm,n(r, θ)

where the Fourier–Bessel coefficients of u2 are

û2
m,n(t) = 〈u2(t),χm,n〉

‖χm,n‖2
= 1

‖χm,n‖2

〈∑
p,q

ûp,q(t)χp,q ·
∑
k,s

ûk,s(t)χk,s , χm,n

〉
=

∑
p,q,k,s:
p+k=m

b(m,n;p,q, k, s)ûp,q(t)ûk,s(t) (23)

and the coefficients b(m,n;p,q, k, s) are defined by (16). Here we have used the orthogonality relation
π∫

−π

ei(p+k−m)θ dθ =
{

2π, p + k = m

0, p + k �= m

Expanding the source term into the eigenfunction series

f (r, θ, t) =
∑
m,n

f̂m,n(t)χm,n(r, θ) (24)

where the coefficients f̂m,n(t) = ‖χm,n‖−2〈f (t),χm,n〉, and substituting (7), (23) and (24) into (6) we obtain the
following initial-value problem for the coefficients ûm,n(t) with m ∈ Z, n ∈ N

û′′
m,n(t) + 2bλ2

m,nû
′
m,n(t) + (αλ4

m,n + λ2
m,n)ûm,n(t) = −βλ2

m,nû
2
m,n(t) + f̂m,n(t), t > 0

ûm,n(0) = û′
m,n(0) = 0 (25)
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Integrating (25) with respect to t we reduce it to a nonlinear integral equation

ûm,n(t) = 1

ωm,n

t∫
0

e−bλ2
m,n(t−τ) sin

(
ωm,n(t − τ)

)
f̂m,n(τ )dτ

− βλ2
m,n

ωm,n

t∫
0

e−bλ2
m,n(t−τ) sin

(
ωm,n(t − τ)

)
û2

m,n(τ )dτ (26)

We seek its solutions in the form

ûm,n(t) =
∞∑

N=0

v̂(N)
m,n(t) (27)

Substituting (27) into Eq. (26) we obtain the recursion formulas (19) and (20) for v̂
(N)
mn (t). In order to guarantee the

absolute and uniform convergence of the series (27) we choose c1 < 1 in (22). It implies that ‖f ‖L∞(R+,H s(Ω)) �
3b

√
2πC1μ(2π2|β|C̃)−1, where C̃ and C1 are defined by (17) and (10), respectively. Thus, the solution in question is

constructed in the form (7), (27), (19) and (20).
In view of (27), Lemmas 3.6 and 3.7 we have uniformly with respect to t � 0∣∣ûm,n(t)

∣∣� ∞∑
N=0

∣∣v̂(N)
m,n(t)

∣∣� c0

[
1

λ
7/2
m,n

+ c1R2,2(m)

λ
3/2
m,n

+ c2
1R2,1(m)

λ
3/2
m,n

+ R1,1(m)

λ
3/2
m,n

∞∑
N=0

cN
1

(N + 1)2

]
(28)

Therefore, uniformly with respect to t � 0∣∣ûm,n(t)
∣∣� cR1,1(m)

λ
3/2
m,n

(29)

Recalling the definition of the norm in Hs,α(Ω) (12) and comparing the remainder of the corresponding series,

∞∑
m=M0

∞∑
n=N0

(
1 + |m|2)αλ2s

m,n

∣∣ûm,n(t)
∣∣2‖χm,n‖2

with the integral

∞∫
M0

(1 + m2)α ln2 m

m2

∞∫
N0

dn

λ4−2s
m,n

∼
∞∫

M0

(1 + m2)α ln2 m

m2

∞∫
N0

dn

(m + 2n)4−2s

we deduce that uniform convergence of the series (12) takes place for s < 3/2 and s +α � 2−ε with ε > 0. Therefore,
the constructed solution belongs to Cb(R

+,Hs,α
0 (Ω)) for s < 3/2 and s + α � 2 − ε.

3.1.2. Uniqueness
Assume that there exist two mild solutions u(1) and u(2) from the space Cb(R

+,Hs,α
0 (Ω)) with s < 3/2 and

s + α � 2 − ε. Then each of them can be expanded into the series (14), where the coefficients u
(1)
m,n and u

(2)
m,n satisfy

the integral equation (26) and the estimate (29). Setting w = u(1) − u(2) we expand it into the series of the type of (7)
and get

w =
∑
m,n

ŵm,n(t)χm,n(r, θ)

ŵm,n(t) = −βλ2
m,n

ωm,n

t∫
0

e−bλ2
m,n(t−τ) sin

(
ωm,n(t − τ)

)[
(̂u(1))2

m,n(τ ) − (̂u(2))2
m,n(τ )

]
dτ

Subdividing the sum representing the term in brackets into three we can write that
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(̂u(1))2
m,n(t) − (̂u(2))2

m,n(t) = S1 + S2 + S3

=
( ∑

p,q,k,s: p+k=m;
λp,q>λk,s

+
∑

p,q,k,s: p+k=m;
λp,q<λk,s

+
∑

p,q,k,s: p+k=m;
λp,q=λk,s

)
b(m,n;p,q, k, s)

[
û(1)

p,q(t)ŵk,s(t) + ŵp,q(t)û
(2)
k,s(t)

]
Taking the sum S1 as an example we choose sufficiently small δ > 0, apply Lemma 3.5, (10) and the Cauchy–

Schwartz inequality and deduce that

S1 � C
√

λm,n

∑
p,q,k,s: p+k=m;

λp,q>λk,s

|û(1)
p,q(t)|
λ

3/2
p,q

|ŵk,s(t)|
λ

1/2
k,s

� C
√

λm,n

∑
q,k,s: p+k=m;

λp,q>λk,s

q(1+δ)/2|û(1)
p,q(t)|

λ
3/2
m−k,qλ

ρ
k,s(1 + |k|)α

· |ŵk,s(t)|λρ
k,s(1 + |k|)α

λ
1/2
k,s q(1+δ)/2

� C
√

λm,n

( ∑
p,q,k,s:
p+k=m

R2
1,1(p)

λ
2(ρ+2)−δ1
k,s (1 + |k|)α

· q1+δ

λ
2+δ1
p,q

)1/2( ∞∑
q=1

1

q1+δ

)1/2

×
(∑

k,s

(
1 + |k|)2α

λ
2ρ
k,s

∣∣ŵk,s(t)
∣∣2∥∥χk,s

∥∥2

)1/2

Here we have taken δ1 > δ > 0 and have dropped the condition λp,q > λk,s . Due to the symmetry properties R1,1(m) =
R1,1(|m|) and λ−m,n = λm,n we can consider the case m � 0 without loss of generality. The sum

∑
p,q,k,s: p+k=m can

be rewritten in the following way:

∞∑
k=−∞

∞∑
q,s=1

R2
1,1(m − k)

λ
2(ρ+2)−δ1
k,s (1 + |k|)2α

· q1+δ

λ
2+δ1
m−k,q

=
∞∑

q,s=1

[
m∑

k=0

R2
1,1(m − k)

λ
2(ρ+2)−δ1
k,s (1 + k)2α

· q1+δ

λ
2+δ1
m−k,q

+
∞∑

k=1

R2
1,1(m + k)

λ
2(ρ+2)−δ1
k,s (1 + k)2α

· q1+δ

λ
2+δ1
m+k,q

+
∞∑

k=1

R2
1,1(k)

λ
2(ρ+2)−δ1
k,s (1 + k + m)2α

· q1+δ

λ
2+δ1
m+k,q

]
Consider the first sum on the right-hand side of the last formula. In order to establish the uniform convergence of this
series, we consider its remainder and use the asymptotics (11). Taking sufficiently large K0, S0,Q0 = const > 0 and
comparing this remainder with the integral

∞∫
K0

ln2(m + k)dk

(m + k)2(1 + k)2α

∞∫
S0

ds

λ
2(ρ+2)−δ1
k,s

∞∫
Q0

q1+δ

λ
2+δ1
m+k,q

dq

∼
∞∫

K0

ln2(m + k)dk

(m + k)2(1 + k)2α

∞∫
S0

ds

(k + 2s)2(ρ+2)−δ1

∞∫
Q0

q1+δ

(m + k + 2q)2+δ1
dq

It converges for ρ +α � −2 + ε and ρ � −3/2 + ε, where ε > 0 is arbitrarily small. The second condition is imposed
by convergence of the inner integral in s. Similar considerations allow one to establish convergence of the other two
series under the same restrictions. Therefore, we have

S1 � C
√

λm,n

∥∥w(t)
∥∥

ρ,α

The sums S2 and S3 can be estimated in a similar way, and the same inequality holds as a result.
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Thus, we deduce that

∣∣ŵm,n(t)
∣∣2 � Cλm,n

( t∫
0

e−bλ2
m,n(t−τ)

∥∥w(τ)
∥∥

ρ,α
dτ

)2

Multiplying both sides of the last inequality by (1 + |m|2)αλ
2ρ
m,n‖χm,n‖2 and summing the result with respect to m

and n we deduce that for some T > 0, t ∈ [0, T ] and ρ < 3/2

sup
t∈[0,T ]

∥∥w(t)
∥∥2

ρ,α
� CΦ(T )

(
sup

t∈[0,T ]
∥∥w(t)

∥∥
ρ,α

)2

where

Φ(t) =
∑
m,n

(
1 + |m|2)αλ2ρ

m,n

(1 − e−bλ2
m,nt )

λ4
m,n

2

Notice that Φ(t) is a nondecreasing continuous function on [0, T ] and Φ(0) = 0. Therefore(
sup

t∈[0,T ]
∥∥w(t)

∥∥
ρ,α

)2
� C(T )

(
sup

t∈[0,T ]
∥∥w(t)

∥∥
ρ,α

)2

where the constant C(T ) = CΦ(T ) can be made less than one by the appropriate choice of T . This contradiction
allows one to prove uniqueness for the interval [0, T ]. Then by standard arguments we extend this result for all t � 0.

4. Conclusions

In conclusion we would like to point out physical applications of the mathematical study presented above. The
current work is of interest in the context of modeling nonlinear oscillations of a circular elastic membrane under the
influence of an acoustic field. A circular geometry is a natural choice for ground sensors registering incident acoustic
waves (see e.g., [28] and the references therein), and the boundary conditions in (6) correspond to a simply supported
boundary. The source term f (r, θ, t) represents the given acoustic pressure on the surface of the membrane. The
eigenfunction expansion (14) allows one to compute the vertical deflection distribution. This formula can be used
for establishing long-time behavior and for numerical simulations since the algorithm shows excellent convergence
properties (see [29]).
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