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Abstract

This article focuses on the main aspects of the non-Boussinesq treatment that is required for analyzing the simplest flow regimes
occurring in a tall thermo-gravitational column, when the Soret coefficient ST is considered as depending upon temperature and
composition, ST (T ,C). As a main result, the horizontal dynamics is mainly governed by the Soret thermal sensitivity, and the
species vertical separation by its compositional one. To cite this article: G. Labrosse, C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Approximations de Boussinesq et au delà, en très haute colonne thermo-gravitationnelle. Cet article présente les points
essentiels d’un traitement non-Boussinesq nécessaire pour une analyse théorique des écoulements de base dans une colonne thermo-
gravitationnelle, où le coefficient de Soret ST dépend de la température et de la composition, ST (T ,C). Le résultat principal est
que la structure horizontale est contrôlée par la dépendance thermique de ST , alors que la dépendance compositionnelle de ST fixe
la structure de la stratification compositionnelle verticale. Pour citer cet article : G. Labrosse, C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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Version française abrégée

La colonne thermo-gravitationnelle est connue depuis les années 1930 pour sa capacité à séparer, partiellement ou
presque totalement, le mélange binaire qu’elle contient. Cette séparation est induite par la convection thermo-solutale
couplée à la thermo-diffusion, elle-même souvent appelée « effet Soret ». La séparation est obtenue sous la forme
d’une stratification verticale compositionnelle, avec un très faible gradient car il est contrôlé par le coefficient de
Soret, ST , dont la valeur est très petite. Des colonnes extrêmement hautes peuvent alors conduire à des séparations
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compositionnelles presque complètes, les deux extrémités, haute et basse, de la colonne contenant chacune l’un des
composants du mélange.

L’analyse théorique de l’hydrodynamique de cette configuration s’est d’abord faite de façon assez simplifiée ([3])
pour calculer le pouvoir de séparation isotopique de ces colonnes. Elles sont utilisées de nos jours comme système
de mesure des coefficients de Soret, en fixant les paramètres de fonctionnement de sorte que la thermique soit essen-
tiellement contrôlée par la diffusion. Bien connaître l’hydrodynamique correspondante est ainsi devenu essentiel. Ici
intervient la première difficulté. Il est expérimentalement établi que le coefficient de Soret dépend de la température
T et de la composition C du mélange, ST ≡ ST (T ,C). Comment modéliser cette dépendance ? Quel effet peut-elle
avoir sur les régimes de convection, et sur la séparation compositionnelle ? Comment aussi, et c’est la deuxième diffi-
culté, traiter analytiquement le problème dans le cas où les colonnes sont assez hautes pour permettre une séparation
compositionnelle importante et, donc, faire jouer la dépendance compositionnelle du coefficient de Soret ? Ces ques-
tions ouvrent un vaste champ d’analyse dont seule une toute petite partie a été faite ([8]) : l’identification des régimes
stationnaires d’écoulements de base. Il faudrait ensuite étudier leur stabilité pour pouvoir interpréter l’ensemble des
résultats expérimentaux.

Cet article présente les points essentiels de l’analyse théorique qui peut se faire pour des colonnes très allongées
dans lesquelles la thermique est de nature diffusive. Les écoulements sont supposés bi-dimensionnels et établis pa-
rallèlement aux parois verticales dans une grande partie de la colonne. Tout ceci correspond bien aux observations
expérimentales.

La première étape consiste à choisir un modèle de dépendance analytique du coefficient de Soret avec la tem-
pérature et la composition. A cet effet, il est tenu compte d’un constat expérimental montrant que les dépendances
thermiques des paramètres physiques sont généralement très lentes, tant que l’on reste loin du point critique, et mo-
notones. Par contre, les dépendances compositionnelles peuvent être très variées, non monotones par exemple. D’où
le choix de la relation (4) comme modèle pour ST (T ,C). Ceci ouvre la possibilité d’effectuer une analyse en « modes
normaux », c’est-à-dire de considérer des « cas purs » de mélanges pour lesquels la dépendance de ST se réduit à la
relation (5).

L’analyse de la dynamique distingue les deux directions, horizontale (coordonnée x) et verticale (coordonnée z).
Dans la direction horizontale, la thermo-diffusion agit autour d’une composition moyenne Ĉk(z) définie par la relation
(13). Les approximations usuelles de Boussinesq conviennent pour cette partie du traitement. Mais ce n’est plus le cas
pour l’analyse de la dynamique dans la direction verticale, comme l’indique la relation (16). Cependant, grâce au fait
que le coefficient de Soret est de très petite valeur (le paramètre εk défini par la relation (7)), un découplage s’introduit,
au premier ordre en εk , entre les deux parties, horizontale et verticale, de la dynamique. La dynamique horizontale
se résout directement, avec toutefois des nombres adimensionnels qui dérivent lentement avec z. Et la dynamique
verticale se résume à la relation différentielle (14) qui gouverne Ĉk(z), donc la stratification compositionnelle. On
constate ainsi que la structure horizontale des écoulements de base est contrôlée par la dépendance thermique de ST ,
alors que la dépendance compositionnelle de ST fixe la structure de la stratification compositionnelle verticale.

La dérive verticale lente de la dynamique horizontale fait que cette configuration (très haute colonne thermo-
gravitationnelle) est certainement d’une dynamique de stabilité très riche à analyser. L’expérimentation numérique de
situations réalistes est probablement difficile à mettre en œuvre, et coûteuse en temps calcul, de même que la recherche
expérimentale systématique des seuils de stabilité sera certainement de longue haleine.

1. Introduction

Thermal convection in binary mixtures is known, for several decades now, as offering very specific behavior (see
[1] and [2], for example).

The thermo-gravitational column is one of the typical illustrative configurations. Initially designed, more than 60
years ago, for the isotopic separation ([3,4]), the column (see its 2D cross-section sketched in Fig. 1) is mainly used,
nowadays, as a measuring device of the binary mixture Soret coefficient, see [5–7] for instance.

In this simple system, the thermal convection which is primarily driven by an horizontal thermal gradient imposed
in presence of gravity, �g, is used, coupled with thermo-diffusion, for carrying out a compositional separation, by
accumulation-depletion of the species in the vertical extremities of the column. An initially homogeneous binary
mixture can thus be separated into its solutal components, partially or almost completely, depending on whether the
vertical extension is moderately or extremely large compared to the distance separating the active vertical walls,
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Fig. 1. Two-dimensional model of the thermo-gravitational column.

Fig. 1. Modèle bi-dimensionnel de la colonne thermo-gravitationnelle.

those which are maintained at fixed temperature. The 2D approximation suits well the usual experimental working
parameters, chosen so that the flow regime be mainly controlled by thermal diffusion and, therefore, steady.

A first theoretical analysis ([3]) was proposed, essentially dedicated to evaluating the separation power of the
device, and based upon several simplifications, such as absence of solutal buoyancy, and constant Soret coefficient.

A recently published analysis ([8]) has significantly improved our knowledge of the possible steady basic states,
still controlled by thermal diffusion. Indeed, first, this work takes into account the solutal buoyancy coming from
thermo-diffusion, and, on the other hand, it allows the Soret coefficient, ST , to depend upon temperature T and mass
fraction C, ST = ST (T ,C).

This latter consideration is not gratuitous given the experimental evidence supplied, for instance, in [9–14,5]. It is
in particular shown in [8] that the ST compositional sensitivity plays the major role in constituting the species vertical
stratification (see Section 4.2 below), and also that its slope can be a misleading sensor of the ST thermal sensitivity
when the mean temperature T0 is such that ST (T0,C) � 0, as in the oceanic concentration solution of sodium chloride
in water about 12.09 ◦C ([10]).

The former hypothesis, that solutal buoyancy has to be taken into account, is essential. The Soret coefficient has
indeed small values, much smaller for molecular solutions, |ST | � (10−3–10−2) K−1, than for colloidal mixtures,
|ST | � (0.03–0.5) K−1. But the solutal buoyancy depends upon the relative importance of the solutal and thermal
expansions, this being measured through the so-called separation ratio parameter defined by

Ψ =
∂ρ
∂C

| �∇C|
∂ρ
∂T

| �∇T |
Also, even small values of Ψ can significantly influence the dynamics of a thermal free convection system. The
Rayleigh–Bénard configuration with binary fluid is a good illustration of the major effect the presence of solutal
buoyancy has on the stability behaviour of the layer (see [1]).

Introducing both the thermal and compositional Soret coefficient sensitivities led to phenomenologically separate
the T and C modelling of ST , and also, correlatively, thanks to the smallness of |ST |, to separate the horizontal and
vertical dynamics of the thermo-diffusive regimes, simplifying thereby the non-Boussinesq treatment of the balance
equations. The detailed physical and analytical treatment of this configuration is published in [8]. The present paper
merely aims at supplying the main steps and results.

2. The two-dimensional thermo-gravitational column

A binary mixture, of mean mass fraction C0, fills in a closed planar slender slot, Fig. 1, of height H much larger
than L, its horizontal size. Constant temperatures are uniformly imposed on the vertical rigid walls, with for instance
T0 − �T/2 and T0 + �T/2 respectively on the left and right walls, T0 being the mean temperature. The horizontal
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rigid boundaries are adiabatic and impervious. From the chosen working experimental parameters, the flow, mainly
governed by thermal diffusion and steady, can be, to a very good approximation, taken as parallel to the active (vertical)
walls in the major part of the cavity, obviously excluding the extremities where the flow has to close over itself.

What occurs in these extremities is essential for the separation process. There, the flow crosses the iso-thermal and
iso-compositional lines leading to a convective accumulation-depletion of heat and species in the fluid particles. This
part of the flow is thus responsible for the creation of the compositional vertical gradient. A thermal vertical gradient
is also generated in this way, but it can be considered as negligible with respect to the imposed horizontal gradient
provided the Rayleigh number be not too large ([15]). This part of the flow is not analytically tractable.

3. General approach

Let us first define a reference hydrostatic state (�v = 0, ρ0,p0, T0,C0), where the density ρ0 is

ρ0 = ρ(p0, T0,C0) (1)

and the pressure p0 verifies

�∇p0 = ρ0�g (2)

The quantities T0 and C0 are constant, corresponding to the initial-state thermo-compositional configuration, while,
by (1), (2), ρ0 and p0 are vertically stratified via a state equation which needs not be specified here. The state of
interest, the dynamic state, is defined by (�v, ρ,p,T ,C) with

ρ = ρ0 + δρ, p = p0 + δp, T = T0 + δT , C = C0 + δC

By (2) one has

−�∇p + ρ�g = −�∇(δp) + (δρ)�g
The key point of the thermo-gravitational column dynamics with respect to what occurs in any thermo-solutal

problem is that the range �C of variation of the mass fraction in the column is not controlled by the experimentalist,
but by the flow dynamics. It is known from [3] and [8] that �C can be almost 1, that is the solutal separation can be
almost complete, if the column aspect ratio A = H

L
is much larger than some typical aspect ratio As which increases

as S−1
T . The ratio �C

C0
turns out then to be non-bounded, implying the presence of non-Boussinesq effects, and also

requiring to take into account the C-sensitivity of ST .
The primary effect, thermo-diffusion, leads to a first species separation along the thermal gradient, that is, horizon-

tally. The separation amplitude, noted �H C, is supplied by the solutal flux density,

�j = −ρ(T ,C)D(T ,C)
[ �∇C + C(1 − C)ST (T ,C) �∇T

]
(3)

where, by thermodynamics, the solute diffusivity D(T ,C) is positive, whereas ST can have either sign. In diffusive
thermal regime, �∇T is constant and horizontal, and �H C is of the order of

|�H C| � C0(1 − C0)
∣∣ST (T0,C0)�T

∣∣ � C0

therefore small by |ST (T0,C0)�T |. But, accessing to a realistic estimate of �C in the whole column requires now to
look at the convection dynamics, and, therefore to write a model for ST (T ,C).

The phenomenological model adopted for ST (T ,C) leans on an experimental constatation. The thermal sensi-
tivity of this coefficient is mild, monotonic, whereas its mass fraction sensitivity, over C ∈ ]0,1[, can be whatever,
monotonic, or not. This is, by the way, not specific to ST (T ,C). For instance, the water–alcohol dynamical viscosity
exhibits a strong dependence upon C (see [16] for instance). This suggests writing the following phenomenological
decomposition:

ST (T ,C) =
∞∑

k=0, integer

S̃T ,k

(
T − T0

�T/2

)k

Sk(C) (4)

in which S̃T ,k is a positive partial Soret coefficient (in K−1), constant, and Sk(C) an O(1) dimensionless function.
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Then, a normal-mode like analysis can be carried out, by considering pure cases, those where ST (T ,C) contains
only one k term in (4),

ST (T ,C) = S̃T ,kΘ
kSk(C), integer k (5)

where

Θ = T − T0

�T/2
∈ [−1,1]

is the reduced temperature. In thermal diffusion regime, the only one here considered, it reads

Θ = x

L/2
(6)

Identifying the specific effects of each k contribution, for a couple of typical Sk(C) functions, leads to a deep under-
standing of the base behaviors of the hydrodynamics in thermo-gravitational column.

4. Survey of the separation dynamics

Understanding the separation dynamics is essential for carrying out the analytical handling of the balance equations,
based in particular upon the forthcoming relations (13). Here are recalled results coming from [8].

4.1. Horizontal separation

4.1.1. In absence of gravity
Let us first consider, as a guide, the hypothetic case where gravity is totally suppressed, that is where convection has

disappeared. The fluid is in a hydrostatic state, characterized by the absence of species flux because all the boundaries
are impervious, that is �j = 0. Using the relations (3), (5), (6) then supplies the hydrostatic-state solute distribution,
noted C̄k(x), in function of the reduced temperature. Indeed, starting from the following equivalent writing of (3),

dC̄k = −εkC̄k(1 − C̄k)Sk(C̄k)d(Θk+1), εk = S̃T ,k

k + 1

�T

2
� 1 (7)

where the quoted condition, εk � 1, is easily satisfied in the experiments (both ST and �T are small), and requiring
that the solution keeps C0 as horizontal average of the mass fraction, that is

1∫
−1

(
C̄k(Θ) − C0

)
dΘ = 0 (8)

one can analytically write the C̄k(Θ) field provided Sk(C) be given. In fact, C̄k is fairly well approximated by its first
order in εk . It reads

C̄k(Θ) = C0 − εkC0(1 − C0)Sk(C0)

(
Θk+1 − δk,2q+1

k + 2

)
(9)

δk,q being the Kronecker symbol, and q a positive integer. Hence the amplitude of the mass fraction horizontal
separation,

�H C̄k

2
= C̄k(Θ = 1) − C̄k(Θ = 0) = −εkC0(1 − C0)Sk(C0) (10)

from which Γ̄k(Θ), the reduced mass fraction field, is defined

C̄k(Θ) = C0 + �H C̄k

2
Γ̄k(Θ) (11)

Eqs. (9)–(11) supply the O(εk) mass fraction hydrostatic distribution. The horizontal variation is described by

the reduced field Γ̄k(x), and �H C̄k

2 is evaluated from Sk(C) taken at the horizontally averaged value of C which
thermodiffusion acts about, C0 here.

This result is now used, extended, in the real case where convection occurs within the cavity.
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4.1.2. With gravity
In presence of convection, now, a mass fraction vertical stratification sets in, and, at any height z, thermodiffusion

acts about an horizontal average noted Ĉk(z). The corresponding scale �H Ck

2 thus becomes z-dependent, and mimics
(10), namely

�H Ck

2
= −εkĈk(z)

[
1 − Ĉk(z)

]
Sk

(
Ĉk(z)

)
,

∥∥∥∥�H Ck

2

∥∥∥∥ � |εk|
4

(12)

where ‖f ‖ stands for the amplitude reached by f in its domain of variation,

‖f ‖ = [max−min]
(x,z)∈([− L

2 , L
2 ],[− H

2 , H
2 ])f (x, z)

The resulting mass fraction field can then be decomposed, following (11), and the reduced field distribution Γk(x)

introduced, all that according to

Ck(x, z) = Ĉk(z) + δCk(x, z), δCk(x, z) = �H Ck

2
Γk(x),

∥∥δCk(x, z)
∥∥ � Ĉk(z) (13)

with, by definition (see (8)),

L/2∫
−L/2

δCk(x, z)dx = 0

At first order in εk , the field Γk(x) turns out to be governed by an horizontal advection-diffusion balance, simplified
according to the specific Boussinesq approximation treatment which is presented in Section 5.

4.2. Vertical separation

Convection generates a species vertical stratification whose slope is shown (see relations (24), (25) below) to
be also scaled with �H Ck , up to a multiplicative constant K̂k bounded according to |K̂k| � 0.5. Then this vertical
stratification is governed by

dĈk

Ĉk(1 − Ĉk)Sk(Ĉk)
= −K̂kεk d

(
z

L/2

)
,

H/L∫
−H/L

(Ĉk − C0)d

(
z

L/2

)
= 0 (14)

This relation clearly shows the control that Sk(C) exerts on the vertical stratification structure. From (14) it also
becomes obvious that

�V C ≡ |Ctop − Cbottom|
can be of order 1 provided H � L, in fact provided the aspect ratio exceeds some characteristic aspect ratio As ,

H

L
� As = O

(
ε−1
k

)
(15)

This last requirement is necessary but not sufficient. It is indeed shown in [8] that the species separation cannot
be complete, that is over the [0,1] range, if Sk(C) has zeroes with C. The separation can only be complete in the
C-interval which contains C0 and is delimited by two successive zeroes of C(1 − C)Sk(C).

4.3. (T ,C)-sensitivity and (horizontal, vertical) separations

It is thus interesting to note that, at O(εk), the (T ,C)-sensitivities of ST play each one a particular role. Through
(14), the C-sensitivity controls the vertical stratification, and makes the horizontal dynamics, governed by the
T -sensitivity, drifting along the vertical.
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5. Non-Boussinesq dynamics

The overall analytical treatment of the problem is presented here, which leads to the aforementioned conclusions
and also to the analytical identification of the steady base states which are allowed in thermal diffusion regime.
Complements can be found in [8].

5.1. Density state equation approximation

The linear approximation of the density state equation proceeds as follows, making first a decomposition of the
density about its horizontally averaged value, ρ̂k(z),

ρ(T ,C) = ρ̂k(z) + δρk(x, z), ρ̂k(z) = ρ
(
T0, Ĉk(z)

)
then linearizing the departure δρk(x, z) about T0 and Ĉk(z),

δρk(x, z) = ∂ρ

∂T

∣∣∣∣
T0,Ĉk(z)

(T − T0) + ∂ρ

∂C

∣∣∣∣
T0,Ĉk(z)

δCk(x, z)

and finally introducing expansion coefficients which depend upon z,

αT

(
T0, Ĉk(z)

) = − 1

ρ̂k(z)

∂ρ

∂T

∣∣∣∣
T0,Ĉk(z)

, αC

(
T0, Ĉk(z)

) = 1

ρ̂k(z)

∂ρ

∂C

∣∣∣∣
T0,Ĉk(z)

5.2. Conductivities and diffusion approximation

The solute and momentum conductivities, respectively D and μ, as well as the momentum diffusivity ν, are con-
sidered as constant along the horizontal, and taken as slowly drifting along the vertical, according to

D = D
(
T0, Ĉk(z)

)
, μ = μ

(
T0, Ĉk(z)

)
, ν = μ

ρ(T0, Ĉk(z))

As regards the diffusion term, generically written for any quantity a whose corresponding conductivity is noted
λ(T ,C), it can be decomposed as follows:

�∇ · (λ(T ,C) �∇a) � λ
(
T0, Ĉk(z)

)∂2a

∂x2
+ ∂

∂z

(
λ
(
T0, Ĉk(z)

)∂a

∂z

)
(16)

At first order in εk , the last term is negligible, and one has

�∇ · (λ(T ,C) �∇a
) � λ

(
T0, Ĉk(z)

)∂2a

∂x2
(17)

5.3. Balance equations

Three balance equations are considered, and approximated at the leading order in the following three parame-
ters, αT �T � �T/T0 � 1, L/H and |εk|. The momentum balance is written taking into account the parallel flow
approximation, �v = W(x)êz. Making use of (17), it simply reads

dp

dz
= −ρg + μ

d2W

dx2
(18)

For the species balance, an overall mass balance is performed in the part (Ω) of the cavity (Fig. 1) which goes down
from the top boundary until an horizontal plane located at an arbitrary height z lying within the parallel flow region.
Since the walls are impervious, the transport of solute only occurs across the lower boundary of (Ω), through which
the net vertical convective supply must be balanced, in steady regime, by a vertical diffusion, that is∫

�∇.(ρ(x, z)�vC +�j)dΩ = 0
(Ω)
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Its leading part reads

L/2∫
−L/2

W(x)C(x, z)dx = D
d

dz

( L/2∫
−L/2

C(x, z)dx

)
(19)

A local mass balance can also be written,

ρ(x, z)W(x)
∂C

∂z
= ∂

∂z

(
ρ(x, z)D

∂C

∂z

)
− ∂jx(x, z)

∂x

where jx is the species flux density horizontal component, from �j given by (3). Taking ρ � ρ̂k(z), and realizing that
the vertical contribution of the right hand side is O(ε2

k ) whereas the other terms are of first order in this parameter,
lead to approximate this relation by

ρ̂k(z)W(x)
dĈk

dz
= −∂jx(x, z)

∂x
(20)

The dimensionless formulation of these balance equations is based on L/2, �H Ck and Vscale, as length, mass
fraction and velocity scales respectively, with

Vscale(z) = αT (z)
�T

2
g

(L/2)2

ν(z)

The scales �H Ck (see (13)) and Vscale, as well as all the numbers to come, drift very slowly with z. Combining the
previously mentioned Boussinesq/non-Boussinesq treatments together with the O(εk) approximation, and introducing
these scales lead one to separate the (x, z)-dependencies. The resulting dimensionless equations will thus consist of
purely horizontal differential problems controlled by parameters slowly drifting with z.

Let

�v = Wk(x)êz

be the dimensionless velocity describing the parallel flow within the column, associated with Γk(x) the dimensionless
mass fraction field, already introduced by (13).

Introducing the scales into (18) supplies the following dimensionless momentum balance:(
dp

dz
+ 2

αT �T

)
= Θ(x) + ΨkΓk(x) + d2Wk

dx2
= Π (21)

where the constant Π is the dynamical pressure vertical gradient, and

Ψk ≡ Ψk

(
T0, Ĉk(z)

) = −αC�H Ck

αT �T
(22)

is the partial separation ratio at height z. No-slip conditions are imposed on the vertical walls,

Wk(x = ±1) = 0 (23)

Exploiting (19) leads to two important results. The species vertical stratification slope also scales with �H Ck ,

dĈk(z)

dz
= �H Ck

dΓ̂ (z)

dz
(24)

where dΓ̂ (z)
dz

can easily be shown as being constant, according to

dΓ̂ (z)

dz
= Pe

2

1∫
−1

Wk(x)Γk(x)dx = constant = K̂k (25)

Pe being the compositional Péclet number,

Pe = Pe
(
T0, Ĉk(z)

) = Vscale
L/2
D
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At last, Eq. (20) leads to

dΓk

dx
= −Pe K̂kΦk(x) + (k + 1)xk (26)

with Φk(x) defined by

Wk(x) = −dΦk(x)

dx
, Φk(x = ±1) = 0 (27)

its boundary values being equal in order to satisfy
∫ 1
−1 Wk(x)dx = 0.

Eq. (26) and the second part of (21) govern the horizontal dynamics. They are coupled by the separation ratio Ψk .
Eliminating Φ(x) between (21) and (26) yields the following dimensionless differential equation (k � 3),

d4Ξ(x)

dx4
= RaC,kΞ(x) (28)

where

Ξ(x) = dΓk

dx
+ 1

Ψk

(29)

expresses the x-derivative of the dimensionless buoyancy, i.e. the reduced buoyant torque. Equation (28) has to be
completed with boundary conditions. By (26) together with (23), (27) one gets

dΓk

dx

∣∣∣∣
(x=±1)

= (±1)k(k + 1),
d2Γk

dx2

∣∣∣∣
(x=±1)

= (±1)k−1k(k + 1) (30)

The parameter involved in (28) is the compositional Rayleigh number

RaC,k = −(K̂kΨk)Pe ≡
(

αC

dĈk

dz

)
g

(L/2)3

νD
(31)

Based on the mass fraction dimensionless vertical slope, it also slowly drifts with z, and can have either sign.
Thus, the dimensionless horizontal dynamics is fully described by the relation set (28)–(30). It is monitored by

two numbers, Ψk and RaC,k , both slowly drifting with z since they follow, through the C-dependence of the physical
properties, the species vertical stratification of slope given by (14).

6. Conclusions

Analyzing the dynamics of the flow generated by Soret-induced thermo-solutal convection in very tall thermo-
gravitational column reveals itself to be difficult, even considering that the flow is two-dimensional, develops in the
regime of thermal diffusion and is mainly parallel to the active vertical walls. The convectively created vertical species
stratification, although of very small slope, imposes that one takes into account a vertical drift of all the material
properties, and also to introduce a compositional sensitivity of the Soret coefficient. However, the Soret coefficient
(ST ) and the imposed temperature difference (�T ) being very small, the analysis is greatly simplified if it is carried
out at the first order in εk � ST �T , a parameter introduced in (7) whose values are effectively very small. It is worth
noting that this parameter εk defines (see the relation (15)) the order of magnitude of a very large characteristic aspect
ratio As , such that, for H

L
� As , the species separation can start becoming complete in the meaning given at the end

of Section 4.2.
Then a specific non-Boussinesq approach allows one to uncouple the horizontal and vertical behaviors of the

thermo-gravitational column hydrodynamics, and to treat the realistic case where the Soret coefficient depends upon
temperature and mass fraction. Its temperature sensitivity governs the horizontal dynamics, while the species verti-
cal stratification is determined by the Soret coefficient compositional dependence. The slow vertical drift (within the
parallel flow region) of the horizontal flow structure (see Eqs. (28)–(30)) simply results from the drift of the composi-
tional Rayleigh number (defined by (31)) and of the separation ratio (defined by (22)). This might well lead, not only
in very tall columns, to localized instabilities.

The steady base states allowed in such thermo-gravitational column can thus be analytically determined as solutions
of the relations (28)–(30). They are given and analyzed in detail in [8]. Their stability is not known, so far.
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It would be worth confronting these results with experiments, in particular to pinpoint the peculiar influence the
Soret compositional dependence can have on the species vertical stratification structure. This is an ambitious task.

One could also appeal to numerical approaches for solving the non-Boussinesq balance equations, together with
the introduction of realistic temperature and compositional dependence of the material properties, and of the Soret
coefficient. This is also an ambitious task, even in 2D. Solving the Boussinesq coupled balance equations does not
present particular difficulties when the fluid is a binary mixture, but to treat configurations with very large aspect ratios
is expensive. Alternative numerical methods could be used, such as Molecular Dynamics methods, [17], or Lattice
Boltzmann methods. This former approach is still rudimentary as regards thermal convection in binary fluid, [18]. Are
these alternative methods capable of treating the non-Boussinesq balance equations ?

References

[1] J.K. Platten, J.C. Legros, Convection in Liquids, Springer-Verlag, 1984.
[2] W. Kohler, S. Wiegand, Thermal Nonequilibrium Phenomena in Fluid Mixtures, Lecture Notes in Physics, vol. 584, Springer-Verlag, Berlin,

Heidelberg, 2002.
[3] W.H. Furry, R.C. Jones, L. Onsager, On the theory of isotope separation by thermal diffusion, Phys. Rev. 55 (1939) 1083–1095.
[4] R.C. Jones, W.H. Furry, The separation of isotopes by thermal diffusion, Rev. Mod. Phys. 18 (2) (1946) 151–224.
[5] M.M. Bou-Ali, O. Ecenarro, J.A. Madariaga, C.M. Santamaría, J.J. Valencia, Thermogravitational measurement of the Soret coefficient of

liquid mixtures, J. Phys.: Condens. Matter 10 (1998) 3321–3331.
[6] E. Blums, S. Odenbach, Thermophoretic separation of ultrafine particles in ferrofluids in thermal diffusion column under the effect of an MHD

convection, Int. J. Heat Mass Transfer 43 (2000) 1637–1649.
[7] J.F. Dutrieux, J.K. Platten, G. Chavepeyer, M.M. Bou-Ali, On the measurement of positive Soret coefficients, J. Phys. Chem. B 106 (2002)

6104–6114.
[8] G. Labrosse, Free convection of binary liquid with variable Soret coefficient in thermogravitational column: The steady parallel base states,

Phys. Fluids 15 (9) (2003) 2694–2727.
[9] G. Farsang, H.J.V. Tyrrell, Thermal diffusion factors and heats of transfer in Benzene-Methanol and Benzene-Ethanol mixtures at 25◦ , J. Chem.

Soc. (A) (1969) 1839–1843.
[10] D.R. Caldwell, Measurement of negative thermal diffusion coefficients by observing the onset of thermohaline convection, J. Phys.

Chem. 77 (16) (1973) 2004–2008.
[11] P. Poty, J.C. Legros, G. Thomaes, Thermal diffusion in some binary liquid mixtures by the flowing cell method, Z. Naturforsh. 29a (1974)

1915–1916.
[12] H. Korshing, Thermodiffusionsfaktor von n-Heptan-Benzol mit einer Autokollimationsmethode, Z. Naturforsh. 29a (1974) 1914.
[13] V. Sanchez, J. Mahenc, Détermination du coefficient de Soret de systèmes binaires liquides par interférométrie holographique, J. de Chimie

Physique 73 (5) (1976) 485–490.
[14] P. Kolodner, H. Williams, C. Moe, Optical measurement of the Soret coefficient of ethanol/water solutions, J. Chem. Phys. 88 (10) (1988)

6512–6524.
[15] G.K. Batchelor, Heat transfer by free convection across a closed cavity between vertical boundaries at different temperatures, Quart. Appl.

Math. XII (3) (1954) 209–233.
[16] R.C. Reid, J.M. Prausnitz, T.K. Sherwood, The Properties of Gases and Liquids, McGraw–Hill Book Company, 1977.
[17] B. Hafskjold, Computer simulations of thermal diffusion in binary fluid mixtures, in: W. Kohler, S. Wiegand (Eds.), Thermal Nonequilibrium

Phenomena in Fluid Mixtures, in: Lecture Notes in Physics, vol. 584, Springer-Verlag, Berlin, Heidelberg, 2002, pp. 3–23.
[18] P. Lallemand, Private communication.


