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Abstract

We construct the asymptotics (as ε → 0) of solutions to the Neumann problem for the Laplace equation and of the corresponding
Dirichlet integral. The problem concerns a three-dimensional domain having two connected components of the boundary at the
distance ε > 0. To cite this article: G. Cardone et al., C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Développements asymptotiques des solutions harmoniques d’un problème de Neumann lorsqu’une cavité est proche d’un
bord extérieur du domaine. Nous construisons les développements asymptotiques (lorsque ε tend vers 0) des solutions d’un pro-
blème de Neumann pour l’équation de Laplace ainsi que le développement asymptotique de l’intégrale de Dirichlet correspondante.
Le problème est défini dans un domaine tri-dimensionnel avec un bord ayant deux composantes connexes distantes de ε > 0. Pour
citer cet article : G. Cardone et al., C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Formulation of the problem

Let Γ and Γ0 be smooth closed surfaces in the Euclidean space R3; assume that they have the only common point
O and that Γ envelopes Γ0. We introduce the Cartesian coordinate system x = (y, z) = (y1, y2, z) centered at O and
such that the plane {x: z = 0} is tangent to both surfaces at the point O . Given the small positive parameter ε, we set
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Fig. 1. Sketch of the problem.

Γε = {x: (y, z − ε) ∈ Γ0} and denote by Ωε the domain between the surfaces Γ and Γε (see Fig. 1(a) and (b)). We
consider the Neumann problem for the Laplace equation

−�xuε(x) = 0, x ∈ Ωε

∂νuε(x) = 0, x ∈ Γ, ∂νuε(x) = g(y, z − ε), x ∈ Γε (1)

where ∂ν stands for derivative along the outward normal and g is a function in the Hölder space C1,α(Γ0), α � 1/2,
with zero mean value. For ε > 0, the boundary ∂Ωε is smooth and problem (1) has a solution uε in the Sobolev space
H 1(Ωε) which is unique under the orthogonality condition∫

Ωε

uε(x)dx = 0 (2)

The limit boundary ∂Ω0 = Γ0 ∪ Γ gets the singularity point O of the specific type (cf. [1–3]). In the next section we
show that, under the condition

g(0) �= 0 (3)

the solvability in H 1(Ω0) of the limit problem, with respect to the singularly perturbed problem (1),

−�xv(x) = 0, x ∈ Ω0, ∂νv(x) = 0, x ∈ Γ �O, ∂νv(x) = g(x), x ∈ Γ0�O (4)

depends crucially on the exponent m ∈ {1,2, . . .} in the formula

H(y) := H+(y) + H−(y) = H(y) + O
(
r2m+1), r := |y| → 0 (5)

Here H is a positive homogeneous polynomial of degree 2m and H± are smooth functions in the ball BR = {y: r < R}
which determine the set Λε = {x ∈ Ωε: y ∈ BR, |z| < d} by the inequalities

−H−(y) < z < ε + H+(y) (6)

Note that (6) remains valid at ε = 0 and H±(0) = 0, ∇yH±(0) = 0 because the surfaces Γ and Γ0 are smooth and
tangential to each other.

The main goal of this Note is to describe the asymptotics as ε → 0+ of the solution uε and of the energy functional

E(uε;Ωε) = 1

2

∫

Ωε

∣∣∇xuε(x)
∣∣2 dx −

∫

Γε

g(y, z − ε)uε(x)dsx = −1

2

∫

Ωε

∣∣∇xuε(x)
∣∣2 dx (7)

In particular, we show that functional (7) has a finite limit as ε → 0+ if and only if the problem (3) is solvable in
H 1

0 (Ω0).

2. The weighted trace inequality

The following proposition proves that, under condition (3), the right-hand side of the integral identity

(∇xv,∇xV )Ω0 = (g,V )Γ0 , V ∈ H 1(Ω0) (8)

defines a continuous functional on H 1(Ω0) provided m = 1 in (5):



G. Cardone et al. / C. R. Mecanique 335 (2007) 763–767 765
Proposition 2.1. If a function v ∈ H 1(Ω0) satisfies the orthogonality condition (2) at ε = 0, the inequality∥∥ρm−1v;L2(Γ0)
∥∥ � c

∥∥∇xv;L2(Ω0)
∥∥ (9)

is valid; here ρ(x) = |x| and the constant c is independent of v.

It is possible to verify that a function v ∈ H 1(Ω0) cannot satisfy identity (8) if the inequalities m > 1 and g(0) �= 0
occur. Problem (8) admits a solution in H 1(Ω) if, e.g., g(x) = O(ρ(x)m−2+δ) with any δ > 0. In other words, the
smooth function g, together with all its derivatives up to order m − 2, must vanish at O . For the ‘osculating’ balls
on Fig. 1(a), we have m = 1 and a solution v ∈ H 1(Ω0) exists. At the same time, if the ball of radius R0 touches the
rotationally symmetric paraboloid with curvature (2R0)

−1 at its tip (see Fig. 1(c)), the problem (8) in case (3) is not
solvable in H 1(Ω0) because m = 2.

The Neumann problem with the data f ∈ L2(Ω0) and g ∈ L2(Γ0), h ∈ L2(Γ ), satisfying the compatibility condi-
tion ∫

Ω0

f (x)dx +
∫

Γ0

g(x)dsx +
∫

Γ

h(x)dsx = 0

has a solution in H 1(Ω0) if and only if the function y �→ r1−m(g(y,H+(y)) − h(y,−H−(y))) belongs to L2(BR).
The following weighted inequality justifies the asymptotics constructed below for the solution uε of problem (1):

Proposition 2.2. If a function uε satisfies the orthogonality condition (2), the inequality∥∥Rεuε;L2(Ωε)
∥∥ + ∥∥(ε + ρ2m)1/2Rεuε;L2(∂Ωε)

∥∥ � c
∥∥∇xuε;L2(Ωε)

∥∥ (10)

holds, where Rε(x) = (ε1/(2m) + ρ(x))−1(1 + | ln(ε1/(2m) + ρ(x))|)−1 and the constant c is independent of uε and
ε ∈ (0, ε0].

3. The asymptotics in the case m > 2

The leading asymptotic term provides a boundary layer phenomenon and the solution uε is mainly located on the
ligament Λε . Indeed, the ligament is thin in the vicinity of the point O so that the standard asymptotic ansätz in thin
domains (cf. [4,5]) and the coordinate scalings

y �→ η = ε−μy, μ = (2m)−1, z �→ ζ = ε−1z (11)

yield the second limit problem

−∇η · (1 + H(η)
)∇ηw(η) = g(0), η ∈ R2 (12)

Eq. (12) has a unique smooth solution with the following behavior at infinity:

w(η) = g(0)|η|2−2mΨ (θ) + O
(|η|−2m

)
, |η| → +∞ (13)

where θ = |η|−1η ∈ S and Ψ is a smooth function on the unit circle S. Note that, due to (13), the following integral
converges:

I(w) =
∫

R2

(
1 + H(η)

)∣∣∇ηw(η)
∣∣2 dη (14)

Theorem 3.1. If m � 3, the following relation holds:∥∥∇x(uε − ε−1+1/mχw);L2(Ωε)
∥∥ � cεμ(3−m)

(
1 + | ln ε|)

where the constant c does not depend on ε ∈ (0, ε0], χ is a cut-off function which is equal to χ0(y) on the ligament
and vanishes on Ωε�Λε , and χ0 ∈ C∞(R2) is such that χ0(y) = 0 for |y| > R and χ0(y) = 1 for |y| < R/2.

We emphasize that, under condition (3), ε−1+1/m‖∇x(χw);L2(Ωε)‖ = O(εμ(1−m)) and, hence, Theorem 3.1
proves ε−1+1/mχ(x)w(ε−1/(2m)y) to be the main asymptotic term of the solution uε .
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Corollary 3.2. If m � 3 and g(0) �= 0, then

E(uε;Ωε) = −1

2
ε−1+1/(2m)

(
I(w) + O(εμ)

)
(15)

Since m > 2 and −1 + 1/(2m) < 0, relation (15) demonstrates that, under condition (3), the energy functional (7)
tends to infinity as ε → 0+.

4. The asymptotics in the case m = 1

The solution w to Eq. (12) takes the form

w(η) = g(0)
(
c0 ln |η| + Ψ (θ)

) + c2 + O
(|η|−2), |η| → +∞ (16)

where c0 is a certain constant and c2 is arbitrary. Thus, the weighted Dirichlet integral (14) diverges. At the same
time, Proposition 2.1 delivers the solution v ∈ H 1(Ω0) of the first limit problem (4). According to [3], the following
representation holds:

v(x) = χ(x)g(0)
(
c0 ln |η| + Ψ (θ)

) + c1 + ṽ(x) (17)

where c0 and Ψ are the same as in (16), the constant c1 is fixed by the orthogonality condition (2) at ε = 0 and the
remainder ṽ(x) decays as O(ρ(x)) for x → 0. Similarly to [1,7], we take the following approximate solution to the
singularly perturbed problem (1):

Uε(x) = (
1 − χ(x)

)
V (x) + χ(x)ε−1+1/mw(ε−μy) + (

1 − χ(ε−1x)
)
ṽ(y, z) (18)

Here V is an extension of v in the Hölder class C
2,α
loc (Ω�O) on the domain Ω ⊃ Ω0 bounded by the surface Γ , w is

the solution (16) with c2 = −g(0)μc0 ln ε and the variable

z = (
ε + H(y)

)−1(
zH(y) − εH−(y)

)
belongs to the interval Υ0(y) when z ∈ Υε(y) := (−H−(y), ε + H+(y)).

Theorem 4.1. If m = 1, the following relation holds
∥∥∇x(uε − Uε);L2(Ωε)

∥∥ � cεμ
(
1 + | ln ε|)2 (19)

where Uε denotes the asymptotic solution (18) and the constant c does not depend on ε ∈ (0, ε0].

The following assertion shows that the energy functional (7) gets the natural limit E(v;Ω0) in the situation of
Fig. 1(b) and (a):

Corollary 4.2. If m = 1, then |E(uε;Ωε) − E(v;Ω0)| � cεμ(1 + | ln ε|)2.

5. The asymptotics in the case m = 2

If (3) is valid, none of the limit problems any more has solutions v and w with finite Dirichlet integrals
‖∇xv;L2(Ω0)‖2 and (14), respectively. However, Eq. (12) still admits the solution w in the form (13), while, in
view of results in [3], problem (4) has the solution

v(x) = χ(x)g(0)r−2Ψ (θ) + v̂(x), v̂ ∈ H 1(Ω0) (20)

Then the approximate solution Uε of problem (1) keeps the form (18). Nevertheless, the energy functional is not
bounded.

Theorem 5.1. If m = 2, the conclusion of Theorem 4.1 remains valid with the bound cεμ(1 + | ln ε|) in (19).
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Corollary 5.2. If m = 2, then∣∣∣∣E(uε;Ωε) − 1

4m
| ln ε|g2(0)

∫

S

Ψ0(θ)dθ

∣∣∣∣ � c

where Ψ0 is the function on the circle S from representation (20) and the constant c is independent of ε ∈ (0, ε0].

6. Discussion

The weighted trace inequality (9) is still valid in the n-dimensional domain Ω0 defined by formulas (6) and (5).
Under the condition (3), the Neumann problem (4) and the similar Dirichlet problem have solutions in H 1(Ω0) if and
only if the following relations are valid, respectively:

2m < n + 1 and 2m < n − 1 (21)

The Dirichlet integral ‖∇xuε;L2(Ωε)‖2, where uε is the solution of the Neumann or Dirichlet problem of type (1),
has the finite limit ‖∇xv;L2(Ω0)‖2 provided the conditions (21), respectively, are satisfied. The conclusions remain
valid if H in (5) is a positive homogeneous function of degree 2m > 1 in the variables y = (y1, . . . , yn−1).

The two-dimensional Dirichlet and Neumann problems in singularly perturbed domains of type Ωε with thin
ligaments were considered in [6,1,2] and [7,8], respectively. Asymptotics of stresses in two-dimensional elasticity
problems with thin ligaments were constructed in [9,10], although the question on asymptotic behavior of the elastic
fields in the three-dimensional case is still open.

Let the surfaces Γ0 and Γ be given by the formulas

y2
1 + y2

2 + (z − R)2 = R2 and 2Rz = y2
2 (22)

in other words, Γ0 is a sphere and Γ the parabolic cylinder in the vicinity of the point O . In case (22), relation (5) is
valid with m = 1 but the polynomial H(y) = (2R)−1y2

1 is not positive since it degenerates at the y1-axis. The authors
know neither a condition for existence of a solution v ∈ H 1(Ω0) to problem (4), nor the asymptotics of the solution uε

to problem (1) nor that of the Dirichlet integral.
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