Asymptotics of Neumann harmonics when a cavity is close to the exterior boundary of the domain

Giuseppe Cardone ${ }^{\text {a }}$, Sergey A. Nazarov ${ }^{\text {b }}$, Jan Sokolowski ${ }^{\text {c,* }}$, Jari Taskinen ${ }^{\text {d }}$
${ }^{a}$ Università del Sannio, Dipartimento di Ingegneria, Piazza Roma, 21, 84100 Benevento, Italy
${ }^{\mathrm{b}}$ Institute of Mechanical Engineering Problems, V.O., Bolshoi pr. 61, 199178 St. Petersburg, Russia
${ }^{\text {c }}$ Université Henri-Poincaré, Nancy 1, département de mathematiques, B.P. 239, 54506 Vandoeuvre les Nancy cedex, France
${ }^{\mathrm{d}}$ University of Helsinki, Department of Mathematics and Statistics, P.O. Box 68, 00014 Helsinki, Finland

Received 25 September 2007; accepted 2 October 2007
Available online 8 November 2007
Presented by Évariste Sanchez-Palencia

Abstract

We construct the asymptotics (as $\varepsilon \rightarrow 0$) of solutions to the Neumann problem for the Laplace equation and of the corresponding Dirichlet integral. The problem concerns a three-dimensional domain having two connected components of the boundary at the distance $\varepsilon>0$. To cite this article: G. Cardone et al., C. R. Mecanique 335 (2007). © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

\section*{Résumé}

Développements asymptotiques des solutions harmoniques d'un problème de Neumann lorsqu'une cavité est proche d'un bord extérieur du domaine. Nous construisons les développements asymptotiques (lorsque ε tend vers 0) des solutions d'un problème de Neumann pour l'équation de Laplace ainsi que le développement asymptotique de l'intégrale de Dirichlet correspondante. Le problème est défini dans un domaine tri-dimensionnel avec un bord ayant deux composantes connexes distantes de $\varepsilon>0$. Pour citer cet article: G. Cardone et al., C. R. Mecanique 335 (2007). © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Keywords: Singularly perturbed Neumann problem; Touching surfaces; Dirichlet integral; Thin ligament
Mots-clés : Problème singularement perturbé ; Surfaces en contact; Integrale Dirichlet; Ligament fin

1. Formulation of the problem

Let Γ and Γ_{0} be smooth closed surfaces in the Euclidean space \mathbb{R}^{3}; assume that they have the only common point O and that Γ envelopes Γ_{0}. We introduce the Cartesian coordinate system $x=(y, z)=\left(y_{1}, y_{2}, z\right)$ centered at O and such that the plane $\{x: z=0\}$ is tangent to both surfaces at the point O. Given the small positive parameter ε, we set

[^0]1631-0721/\$ - see front matter © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crme.2007.10.001

Fig. 1. Sketch of the problem.
$\Gamma_{\varepsilon}=\left\{x:(y, z-\varepsilon) \in \Gamma_{0}\right\}$ and denote by Ω_{ε} the domain between the surfaces Γ and Γ_{ε} (see Fig. 1(a) and (b)). We consider the Neumann problem for the Laplace equation

$$
\begin{align*}
& -\Delta_{x} u_{\varepsilon}(x)=0, \quad x \in \Omega_{\varepsilon} \\
& \partial_{\nu} u_{\varepsilon}(x)=0, \quad x \in \Gamma, \quad \partial_{\nu} u_{\varepsilon}(x)=g(y, z-\varepsilon), \quad x \in \Gamma_{\varepsilon} \tag{1}
\end{align*}
$$

where ∂_{ν} stands for derivative along the outward normal and g is a function in the Hölder space $C^{1, \alpha}\left(\Gamma_{0}\right), \alpha \geqslant 1 / 2$, with zero mean value. For $\varepsilon>0$, the boundary $\partial \Omega_{\varepsilon}$ is smooth and problem (1) has a solution u_{ε} in the Sobolev space $H^{1}\left(\Omega_{\varepsilon}\right)$ which is unique under the orthogonality condition

$$
\begin{equation*}
\int_{\Omega_{\varepsilon}} u_{\varepsilon}(x) \mathrm{d} x=0 \tag{2}
\end{equation*}
$$

The limit boundary $\partial \Omega_{0}=\Gamma_{0} \cup \Gamma$ gets the singularity point O of the specific type (cf. [1-3]). In the next section we show that, under the condition

$$
\begin{equation*}
g(0) \neq 0 \tag{3}
\end{equation*}
$$

the solvability in $H^{1}\left(\Omega_{0}\right)$ of the limit problem, with respect to the singularly perturbed problem (1),

$$
\begin{equation*}
-\Delta_{x} v(x)=0, \quad x \in \Omega_{0}, \quad \partial_{\nu} v(x)=0, \quad x \in \Gamma \backslash O, \quad \partial_{v} v(x)=g(x), \quad x \in \Gamma_{0} \backslash O \tag{4}
\end{equation*}
$$

depends crucially on the exponent $m \in\{1,2, \ldots\}$ in the formula

$$
\begin{equation*}
H(y):=H_{+}(y)+H_{-}(y)=\mathbf{H}(y)+\mathrm{O}\left(r^{2 m+1}\right), \quad r:=|y| \rightarrow 0 \tag{5}
\end{equation*}
$$

Here \mathbf{H} is a positive homogeneous polynomial of degree $2 m$ and $H_{ \pm}$are smooth functions in the ball $\mathbb{B}_{R}=\{y: r<R\}$ which determine the set $\Lambda_{\varepsilon}=\left\{x \in \Omega_{\varepsilon}: y \in \mathbb{B}_{R},|z|<d\right\}$ by the inequalities

$$
\begin{equation*}
-H_{-}(y)<z<\varepsilon+H_{+}(y) \tag{6}
\end{equation*}
$$

Note that (6) remains valid at $\varepsilon=0$ and $H_{ \pm}(0)=0, \nabla_{y} H_{ \pm}(0)=0$ because the surfaces Γ and Γ_{0} are smooth and tangential to each other.

The main goal of this Note is to describe the asymptotics as $\varepsilon \rightarrow 0^{+}$of the solution u_{ε} and of the energy functional

$$
\begin{equation*}
E\left(u_{\varepsilon} ; \Omega_{\varepsilon}\right)=\frac{1}{2} \int_{\Omega_{\varepsilon}}\left|\nabla_{x} u_{\varepsilon}(x)\right|^{2} \mathrm{~d} x-\int_{\Gamma_{\varepsilon}} g(y, z-\varepsilon) u_{\varepsilon}(x) \mathrm{d} s_{x}=-\frac{1}{2} \int_{\Omega_{\varepsilon}}\left|\nabla_{x} u_{\varepsilon}(x)\right|^{2} \mathrm{~d} x \tag{7}
\end{equation*}
$$

In particular, we show that functional (7) has a finite limit as $\varepsilon \rightarrow 0^{+}$if and only if the problem (3) is solvable in $H_{0}^{1}\left(\Omega_{0}\right)$.

2. The weighted trace inequality

The following proposition proves that, under condition (3), the right-hand side of the integral identity

$$
\begin{equation*}
\left(\nabla_{x} v, \nabla_{x} V\right)_{\Omega_{0}}=(g, V)_{\Gamma_{0}}, \quad V \in H^{1}\left(\Omega_{0}\right) \tag{8}
\end{equation*}
$$

defines a continuous functional on $H^{1}\left(\Omega_{0}\right)$ provided $m=1$ in (5):

Proposition 2.1. If a function $v \in H^{1}\left(\Omega_{0}\right)$ satisfies the orthogonality condition (2) at $\varepsilon=0$, the inequality

$$
\begin{equation*}
\left\|\rho^{m-1} v ; L^{2}\left(\Gamma_{0}\right)\right\| \leqslant c\left\|\nabla_{x} v ; L^{2}\left(\Omega_{0}\right)\right\| \tag{9}
\end{equation*}
$$

is valid; here $\rho(x)=|x|$ and the constant c is independent of v.
It is possible to verify that a function $v \in H^{1}\left(\Omega_{0}\right)$ cannot satisfy identity (8) if the inequalities $m>1$ and $g(0) \neq 0$ occur. Problem (8) admits a solution in $H^{1}(\Omega)$ if, e.g., $g(x)=\mathrm{O}\left(\rho(x)^{m-2+\delta}\right)$ with any $\delta>0$. In other words, the smooth function g, together with all its derivatives up to order $m-2$, must vanish at O. For the 'osculating' balls on Fig. 1(a), we have $m=1$ and a solution $v \in H^{1}\left(\Omega_{0}\right)$ exists. At the same time, if the ball of radius R_{0} touches the rotationally symmetric paraboloid with curvature $\left(2 R_{0}\right)^{-1}$ at its tip (see Fig. 1(c)), the problem (8) in case (3) is not solvable in $H^{1}\left(\Omega_{0}\right)$ because $m=2$.

The Neumann problem with the data $f \in L^{2}\left(\Omega_{0}\right)$ and $g \in L^{2}\left(\Gamma_{0}\right), h \in L^{2}(\Gamma)$, satisfying the compatibility condition

$$
\int_{\Omega_{0}} f(x) \mathrm{d} x+\int_{\Gamma_{0}} g(x) \mathrm{d} s_{x}+\int_{\Gamma} h(x) \mathrm{d} s_{x}=0
$$

has a solution in $H^{1}\left(\Omega_{0}\right)$ if and only if the function $y \mapsto r^{1-m}\left(g\left(y, H_{+}(y)\right)-h\left(y,-H_{-}(y)\right)\right)$ belongs to $L^{2}\left(\mathbb{B}_{R}\right)$.
The following weighted inequality justifies the asymptotics constructed below for the solution u_{ε} of problem (1):
Proposition 2.2. If a function u_{ε} satisfies the orthogonality condition (2), the inequality

$$
\begin{equation*}
\left\|\mathcal{R}_{\varepsilon} u_{\varepsilon} ; L^{2}\left(\Omega_{\varepsilon}\right)\right\|+\left\|\left(\varepsilon+\rho^{2 m}\right)^{1 / 2} \mathcal{R}_{\varepsilon} u_{\varepsilon} ; L^{2}\left(\partial \Omega_{\varepsilon}\right)\right\| \leqslant c\left\|\nabla_{x} u_{\varepsilon} ; L^{2}\left(\Omega_{\varepsilon}\right)\right\| \tag{10}
\end{equation*}
$$

holds, where $\mathcal{R}_{\varepsilon}(x)=\left(\varepsilon^{1 /(2 m)}+\rho(x)\right)^{-1}\left(1+\left|\ln \left(\varepsilon^{1 /(2 m)}+\rho(x)\right)\right|\right)^{-1}$ and the constant c is independent of u_{ε} and $\varepsilon \in\left(0, \varepsilon_{0}\right]$.

3. The asymptotics in the case $m>2$

The leading asymptotic term provides a boundary layer phenomenon and the solution u_{ε} is mainly located on the ligament Λ_{ε}. Indeed, the ligament is thin in the vicinity of the point O so that the standard asymptotic ansätz in thin domains (cf. [4,5]) and the coordinate scalings

$$
\begin{equation*}
y \mapsto \eta=\varepsilon^{-\mu} y, \quad \mu=(2 m)^{-1}, \quad z \mapsto \zeta=\varepsilon^{-1} z \tag{11}
\end{equation*}
$$

yield the second limit problem

$$
\begin{equation*}
-\nabla_{\eta} \cdot(1+\mathbf{H}(\eta)) \nabla_{\eta} w(\eta)=g(0), \quad \eta \in \mathbb{R}^{2} \tag{12}
\end{equation*}
$$

Eq. (12) has a unique smooth solution with the following behavior at infinity:

$$
\begin{equation*}
w(\eta)=g(0)|\eta|^{2-2 m} \Psi(\theta)+\mathrm{O}\left(|\eta|^{-2 m}\right), \quad|\eta| \rightarrow+\infty \tag{13}
\end{equation*}
$$

where $\theta=|\eta|^{-1} \eta \in \mathbb{S}$ and Ψ is a smooth function on the unit circle \mathbb{S}. Note that, due to (13), the following integral converges:

$$
\begin{equation*}
\mathbf{I}(w)=\int_{\mathbb{R}^{2}}(1+\mathbf{H}(\eta))\left|\nabla_{\eta} w(\eta)\right|^{2} \mathrm{~d} \eta \tag{14}
\end{equation*}
$$

Theorem 3.1. If $m \geqslant 3$, the following relation holds:

$$
\left\|\nabla_{x}\left(u_{\varepsilon}-\varepsilon^{-1+1 / m} \chi w\right) ; L^{2}\left(\Omega_{\varepsilon}\right)\right\| \leqslant c \varepsilon^{\mu(3-m)}(1+|\ln \varepsilon|)
$$

where the constant c does not depend on $\varepsilon \in\left(0, \varepsilon_{0}\right], \chi$ is a cut-off function which is equal to $\chi_{0}(y)$ on the ligament and vanishes on $\Omega_{\varepsilon} \backslash \Lambda_{\varepsilon}$, and $\chi_{0} \in C^{\infty}\left(\mathbb{R}^{2}\right)$ is such that $\chi_{0}(y)=0$ for $|y|>R$ and $\chi_{0}(y)=1$ for $|y|<R / 2$.

We emphasize that, under condition (3), $\varepsilon^{-1+1 / m}\left\|\nabla_{x}(\chi w) ; L^{2}\left(\Omega_{\varepsilon}\right)\right\|=\mathrm{O}\left(\varepsilon^{\mu(1-m)}\right)$ and, hence, Theorem 3.1 proves $\varepsilon^{-1+1 / m} \chi(x) w\left(\varepsilon^{-1 /(2 m)} y\right)$ to be the main asymptotic term of the solution u_{ε}.

Corollary 3.2. If $m \geqslant 3$ and $g(0) \neq 0$, then

$$
\begin{equation*}
E\left(u_{\varepsilon} ; \Omega_{\varepsilon}\right)=-\frac{1}{2} \varepsilon^{-1+1 /(2 m)}\left(\mathbf{I}(w)+\mathrm{O}\left(\varepsilon^{\mu}\right)\right) \tag{15}
\end{equation*}
$$

Since $m>2$ and $-1+1 /(2 m)<0$, relation (15) demonstrates that, under condition (3), the energy functional (7) tends to infinity as $\varepsilon \rightarrow 0^{+}$.

4. The asymptotics in the case $m=1$

The solution w to Eq. (12) takes the form

$$
\begin{equation*}
w(\eta)=g(0)\left(c_{0} \ln |\eta|+\Psi(\theta)\right)+c_{2}+\mathrm{O}\left(|\eta|^{-2}\right), \quad|\eta| \rightarrow+\infty \tag{16}
\end{equation*}
$$

where c_{0} is a certain constant and c_{2} is arbitrary. Thus, the weighted Dirichlet integral (14) diverges. At the same time, Proposition 2.1 delivers the solution $v \in H^{1}\left(\Omega_{0}\right)$ of the first limit problem (4). According to [3], the following representation holds:

$$
\begin{equation*}
v(x)=\chi(x) g(0)\left(c_{0} \ln |\eta|+\Psi(\theta)\right)+c_{1}+\tilde{v}(x) \tag{17}
\end{equation*}
$$

where c_{0} and Ψ are the same as in (16), the constant c_{1} is fixed by the orthogonality condition (2) at $\varepsilon=0$ and the remainder $\tilde{v}(x)$ decays as $\mathrm{O}(\rho(x))$ for $x \rightarrow 0$. Similarly to [1,7], we take the following approximate solution to the singularly perturbed problem (1):

$$
\begin{equation*}
U_{\varepsilon}(x)=(1-\chi(x)) V(x)+\chi(x) \varepsilon^{-1+1 / m} w\left(\varepsilon^{-\mu} y\right)+\left(1-\chi\left(\varepsilon^{-1} x\right)\right) \tilde{v}(y, \mathfrak{z}) \tag{18}
\end{equation*}
$$

Here V is an extension of v in the Hölder class $C_{\text {loc }}^{2, \alpha}(\bar{\Omega} \backslash O)$ on the domain $\Omega \supset \Omega_{0}$ bounded by the surface Γ, w is the solution (16) with $c_{2}=-g(0) \mu c_{0} \ln \varepsilon$ and the variable

$$
\mathfrak{z}=(\varepsilon+H(y))^{-1}\left(z H(y)-\varepsilon H_{-}(y)\right)
$$

belongs to the interval $\Upsilon_{0}(y)$ when $z \in \Upsilon_{\varepsilon}(y):=\left(-H_{-}(y), \varepsilon+H_{+}(y)\right)$.
Theorem 4.1. If $m=1$, the following relation holds

$$
\begin{equation*}
\left\|\nabla_{x}\left(u_{\varepsilon}-U_{\varepsilon}\right) ; L^{2}\left(\Omega_{\varepsilon}\right)\right\| \leqslant c \varepsilon^{\mu}(1+|\ln \varepsilon|)^{2} \tag{19}
\end{equation*}
$$

where U_{ε} denotes the asymptotic solution (18) and the constant c does not depend on $\varepsilon \in\left(0, \varepsilon_{0}\right]$.
The following assertion shows that the energy functional (7) gets the natural limit $E\left(v ; \Omega_{0}\right)$ in the situation of Fig. 1(b) and (a):

Corollary 4.2. If $m=1$, then $\left|E\left(u_{\varepsilon} ; \Omega_{\varepsilon}\right)-E\left(v ; \Omega_{0}\right)\right| \leqslant c \varepsilon^{\mu}(1+|\ln \varepsilon|)^{2}$.

5. The asymptotics in the case $m=2$

If (3) is valid, none of the limit problems any more has solutions v and w with finite Dirichlet integrals $\left\|\nabla_{x} v ; L^{2}\left(\Omega_{0}\right)\right\|^{2}$ and (14), respectively. However, Eq. (12) still admits the solution w in the form (13), while, in view of results in [3], problem (4) has the solution

$$
\begin{equation*}
v(x)=\chi(x) g(0) r^{-2} \Psi(\theta)+\hat{v}(x), \quad \hat{v} \in H^{1}\left(\Omega_{0}\right) \tag{20}
\end{equation*}
$$

Then the approximate solution U_{ε} of problem (1) keeps the form (18). Nevertheless, the energy functional is not bounded.

Theorem 5.1. If $m=2$, the conclusion of Theorem 4.1 remains valid with the bound $\varepsilon \varepsilon^{\mu}(1+|\ln \varepsilon|)$ in (19).

Corollary 5.2. If $m=2$, then

$$
\left|E\left(u_{\varepsilon} ; \Omega_{\varepsilon}\right)-\frac{1}{4 m}\right| \ln \varepsilon\left|g^{2}(0) \int_{\mathbb{S}} \Psi_{0}(\theta) \mathrm{d} \theta\right| \leqslant c
$$

where Ψ_{0} is the function on the circle \mathbb{S} from representation (20) and the constant c is independent of $\varepsilon \in\left(0, \varepsilon_{0}\right]$.

6. Discussion

The weighted trace inequality (9) is still valid in the n-dimensional domain Ω_{0} defined by formulas (6) and (5). Under the condition (3), the Neumann problem (4) and the similar Dirichlet problem have solutions in $H^{1}\left(\Omega_{0}\right)$ if and only if the following relations are valid, respectively:

$$
\begin{equation*}
2 m<n+1 \quad \text { and } \quad 2 m<n-1 \tag{21}
\end{equation*}
$$

The Dirichlet integral $\left\|\nabla_{x} u_{\varepsilon} ; L^{2}\left(\Omega_{\varepsilon}\right)\right\|^{2}$, where u_{ε} is the solution of the Neumann or Dirichlet problem of type (1), has the finite limit $\left\|\nabla_{x} v ; L^{2}\left(\Omega_{0}\right)\right\|^{2}$ provided the conditions (21), respectively, are satisfied. The conclusions remain valid if \mathbf{H} in (5) is a positive homogeneous function of degree $2 m>1$ in the variables $y=\left(y_{1}, \ldots, y_{n-1}\right)$.

The two-dimensional Dirichlet and Neumann problems in singularly perturbed domains of type Ω_{ε} with thin ligaments were considered in $[6,1,2]$ and $[7,8]$, respectively. Asymptotics of stresses in two-dimensional elasticity problems with thin ligaments were constructed in [9,10], although the question on asymptotic behavior of the elastic fields in the three-dimensional case is still open.

Let the surfaces Γ_{0} and Γ be given by the formulas

$$
\begin{equation*}
y_{1}^{2}+y_{2}^{2}+(z-R)^{2}=R^{2} \quad \text { and } \quad 2 R z=y_{2}^{2} \tag{22}
\end{equation*}
$$

in other words, Γ_{0} is a sphere and Γ the parabolic cylinder in the vicinity of the point O. In case (22), relation (5) is valid with $m=1$ but the polynomial $\mathbf{H}(y)=(2 R)^{-1} y_{1}^{2}$ is not positive since it degenerates at the y_{1}-axis. The authors know neither a condition for existence of a solution $v \in H^{1}\left(\Omega_{0}\right)$ to problem (4), nor the asymptotics of the solution u_{ε} to problem (1) nor that of the Dirichlet integral.

Acknowledgements

The second author acknowledges the financial support of RFBR (grant 06-01-00257).

References

[1] V.G. Maz'ya, S.A. Nazarov, B.A. Plamenevskii, Asymptotics of the solution of the Dirichlet problem in domains with a thin crosspiece, Funkt. Anal. i Prilozhen. 16 (2) (1982) 39-46; English transl.: Funct. Anal. Appl. 16 (1982) 108-114.
[2] V.G. Maz'ya, S.A. Nazarov, B.A. Plamenevskij, The Dirichlet problem in domains with thin cross connections, Sibirsk. Mat. Zh. 25 (2) (1984) 161-179 (in Russian); English transl.: Sib. Math. J. 25 (4) (1984) 297-313.
[3] S.A. Nazarov, Asymptotics of the solution of the Neumann problem at a point of tangency of smooth components of the boundary of the domain, Izv. Ross. Akad. Nauk Ser. Mat. 58 (1) (1994) 92-120; English transl.: Math. Izvestiya 44 (1) (1995) 91-118.
[4] V.G. Maz’ya, S.A. Nazarov, B.A. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, Tbilisi Univ., Tbilisi, 1981 (in Russian); English transl.: in: Operator Theory: Advances and Applications, vol. 112, Birkhäuser-Verlag, Basel, 2000.
[5] S.A. Nazarov, Asymptotic Theory of Thin Plates and Rods. Dimension Reduction and Integral Estimates, Nauchnaya Kniga, Novosibirsk, 2001.
[6] D.I. Sherman, One particular Dirichlet problem for a doubly connected region whose boundaries are extremely close together in a narrow zone, Mech. Solids 15 (3) (1980) 76-87 (in Russian).
[7] S.A. Nazarov, O.R. Polyakova, Asymptotic expansions of eigenvalues of the Neumann problem in a domain with a thin bridge, Sibirsk. Mat. Zh. 33 (4) (1992) 80-96; English transl.: Sib. Math. J. 33 (4) (1992) 618-633.
[8] J.G. Huout, A. Munnier, On the motion and collisions of rigid bodies in an ideal fluid, Prépublications de l'IECN, 33 (2006).
[9] X. Markenscoff, J. Dundurs, Amplification of stresses in thin ligaments, Int. J. Solids Structures 29 (1992) 1883-1888.
[10] S.A. Nazarov, O.R. Polyakova, Deformation of elastic bodies with thin ligaments, Prikl. Mat. Mekh. 50 (5) (1992) 52-65; English transl.: J. Appl. Math. Mech. 56 (5) (1992) 651-664.

[^0]: * Corresponding author.

 E-mail addresses: gcardone@unisannio.it (G. Cardone), srgnazarov@yahoo.co.uk (S.A. Nazarov), Jan.Sokolowski@iecn.u-nancy.fr (J. Sokolowski), taskinen@cc.helsinki.fi (J. Taskinen).

