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Abstract

We derive various models of assemblies of thin linearly elastic plates by abutting or superposition through an asymptotic analysis
taking into account small parameters associated with the size and the stiffness of the adhesive. They correspond to the linkage of
two Kirchhoff–Love plates by a mechanical constraint which strongly depends on the magnitudes of the previous parameters.
To cite this article: C. Licht, C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Modélisation asymptotique d’assemblages de plaques minces linéairement élastiques. On obtient divers modèles d’ assem-
blages de plaques minces par aboutage ou superposition à partir d’une analyse asymptotique prenant en considération de petits
paramètres associés à la taille et à la rigidité de l’adhésif. Ils correspondent au couplage de deux plaques de Kirchoff–Love par
une liaison mécanique dont la nature dépend fortement des ordres de grandeur des paramètres précédents. Pour citer cet ar-
ticle : C. Licht, C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Setting the problem

We consider the structure constituted by two linearly elastic thin plates linked by a soft elastic adhesive, the as-
sembly being done by abutting (case p = 1) or superposition (case p = 2). We make no difference between R3 and
the Euclidean physical space whose orthonormal basis is denoted by {e1, e2, e3}, Greek coordinate indexes will run
in {1,2} and Latin ones in {1,2,3}; for all ξ = (ξ1, ξ2, ξ3) of R3, ξ̂ stands for (ξ1, ξ2). Let η and ε two small positive
real numbers, ω a domain of R2 with a Lipschitz-continuous boundary ∂ω, and Ωε := ω × (−ε, ε). We assume that
the intersection l of ω with {x2 = 0} is of positive length. The reference configurations of the adhesive layer and of

the two plates are respectively B
η,ε
p = {x ∈ Ωε; |xp+1| < ηεp−1} and Ω

η,ε
p = Ωε \ B

η,ε
p . We denote the strain energy
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density of the adhesive layer and of the two plates by Wλ,μ and Wε respectively. For almost all x in Ω
η,ε
p , Wε(x, .)

is a positive-definite quadratic form of the linearized strain tensor e and Wλ,μ corresponds to the homogeneous Hook
law: Wλ,μ(e) = λ/2(tr e)2 + μ|e|2, λ,μ > 0. The structure, clamped on Γ ε

0 := γ0 × (−ε, ε), is subjected to body
forces f ε and surface forces gε on Γ ε

1 = ∂Ωε \ Γ ε
0 ; we assume that (f ε, gε) ∈ L2(Ωε)3 × L2(Γ ε

1 )3 and that the
length of the part γ0 of ∂ω is positive. The plates being perfectly stuck to the adhesive layer, the problem of finding
an equilibrium configuration involves a quadruplet s = (ε, η,λ,μ) and reads as:

(Ps
p) Min

{
F s

p(v) − Lε(v); v ∈ H 1(Ωε)3, v = 0 on Γ ε
0

}
with

F s
p(v) :=

∫
Ω

η,ε
p

Wε
(
x, e(v)(x)

)
dx +

∫
B

η,ε
p

Wλ,μ
(
x, e(v)(x)

)
dx, Lε(v) :=

∫
Ωε

f ε · v dx +
∫
Γ ε

1

gε · v dσ

Clearly, (Ps
p) has a unique solution us

p , but determining numerical approximations of us
p may be tricky because of

the large number of degrees of freedom implied by the meshing of the very thin adhesive layer and the ill-conditioned
system due to the low stiffness of the glue. Thus, it is of interest to propose a simpler but accurate enough modeling
of this structure. For that purpose, we will consider s as a quadruplet of small parameters and derive our models (see
Section 3) through a rigorous mathematical study of the asymptotic behavior of us

p when s goes to zero.

2. A convergence result

Classically [1], we come down to a fixed open set Ω := ω × (−1,1) through the mapping x = (x1, x2, x3) ∈ Ω �→
xε = πε(x) = (xε

1, xε
2, εxε

3) ∈ Ωε . Let Γ0,Γ1 the images by (πε)−1 of Γ ε
0 ,Γ ε

1 , Γ± = ω × {±1}, Γlat = ∂ω × (−1,1),

B
η,1
p = {x ∈ Ω; |xp+1| < η}, Ω

η,1
p = Ω \B

η,1
p , Sp = {x ∈ Ω; xp+1 = 0}, Ωp = Ω \Sp , Ω±

p = {x ∈ Ω; ±xp+1 > 0}.
In the sequel, for any open set G of Rn, H 1

g (G) denotes the subset of H 1(G) whose elements vanish on g ⊂ ∂G.
The magnitude of the external loading is chosen as follows:⎧⎪⎨⎪⎩

f ε
α (πεx) = εfα(x), f ε

3 (πεx) = ε2f3(x), ∀x ∈ Ω

gε
α(πεx) = ε2gα(x), gε

3(π
εx) = ε3g3(x), ∀x ∈ Γ1 ∩ Γ±

gε
α(πεx) = εgα(x), gε

3(π
εx) = ε2g3(x), ∀x ∈ Γ1 ∩ Γlat

(1)

where (f, g) is an element (independent of ε) of L2(Ω)3 × L2(Γ1)
3 and there exists η0 > 0 such that support(f, g) ∩

B
η0,1
p = ∅. Let Sn the space of symmetric n × n matrices, we denote the space of linear operators on Sn by L(Sn) and

ξ ⊗s ζ stands for the symmetrized tensor product of ξ ∈ Rn by ζ ∈ Rn. We assume that the bulk energy density Wε

satisfies:{
∃a ∈ L∞(

Ω,L(Sn)
); Wε(πεx, e) = W(x, e) ∀e ∈ S3, a.e. x ∈ Ω

∃α > 0; W(x, e) � α|e|2 ∀e ∈ S3, a.e. x ∈ Ω
(2)

For all e ∈ S3, ê is the element of S2 such that êαβ = eαβ , so that a strictly convex quadratic form WKL is well-defined
on S2 by:

WKL(x, q) = Min
{
W(x, e); e ∈ S3, ê = q

} ∀e ∈ S3, a.e. x ∈ Ω (3)

With any displacement v defined on Ωε is associated a scaled displacement S(ε)v defined on Ω by:

Ŝ(ε)v(x) = ε−1v̂(πεx),
(
S(ε)v

)
3(x) = v3(π

εx), a.e. x ∈ Ω (4)

then u(s)p := S(ε)us
p is the unique solution of the problem:

(Pp(s)) Min
{
Fp(s)(v) − L(v); v ∈ H 1

Γ0
(Ω)3}

with
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Fp(s)(v) :=
∫

Ω
η,1
p

W
(
x, dεe(v)(x)dε

)
dx +

∫
B

η,1
p

Wλ,μ
(
dεe(v)(x)dε

)
dx, L(v) :=

∫
Ω

f · v dx +
∫
Γ1

g · v dσ

and dε the diagonal element of S3 such that (dε)ii = εmin (2−i,0).
Henceforth, we assume that (λp,μp,μp′) := (λ/4η ε4(p−1),μ/2η ε4(p−1),μ/4η ε2) has a limit (λp,μp,μp′) in

[0,+∞]3 with, moreover, ε4(2p−3)η3/μ goes to zero if λp = +∞. Let Xp defined by:

(i) lim supη2/μ = 0: Xp = L2(Ω)3,
(ii) lim supη2/μ < +∞: X1 = Lq(Ω)3,X2 = Lq(Ω)2 × L2(Ω), q arbitrary in [1,2),

(iii) lim supη2/μ = +∞: X1 = ⋃
h L2(Ωh,1)3:

– lim supη2ε4/μ = 0: X2 = ⋃
h L2(Ωh,1)2 × L2(Ω),

– lim supη2ε4/μ < +∞: X2 = ⋃
h L2(Ωh,1)2 × Lq(Ω), q arbitrary in [1,2),

– lim supη2ε4/μ = +∞: X2 = ⋃
h L2(Ωh,1)3.

Its topology τ is the strong topology unless one previous lim sup is not finite where τ then involves the strong topology
on L2(Ωh,1) for every positive h. The asymptotic behavior of the scaled displacement depends strongly on the relative
behavior of the parameters but can be described in an unified way as follows. Let

VKL(Ωp) = {
v ∈ H 1

Γ0
(Ωp)3; ei3(v) = 0 in the sense of distributions on Ωp

}
whose an equivalent characterization is:

p = 1: ∃!(vM,vF ) ∈ H 1
γ0

(ω \ l)2 × H 2
γ0

(ω \ l); vα(x) = vM
α (x̂) − x3 ∂αvF (x̂), v3(x) = vF (x̂) ∀x ∈ Ω1

p = 2: ∃!(vM±, vF±) ∈ H 1
γ0

(ω)2 × H 2
γ0

(ω); vα�
Ω

±
2

(x) = vM±
α (x̂) − x3∂αvF±(x̂),

v3�
Ω

±
2
(x) = vF±(x̂) ∀x ∈ Ω2.

We denote the jump across Sp in the direction of ep+1 of the membrane and flexural parts vM,vF of v ∈ VKL(Ωp) by
[vM ], [vF ]: when p = 1, [vM ], [vF ] are the differences of the traces on l of vM , vF , whereas [vM ](x̂) = vM+(x̂) −
vM−(x̂), [vF ](x̂) = vF+(x̂) − vF−(x̂) ∀x̂ ∈ ω when p = 2. The functional

v ∈ VKL(Ωp) �→ Gp(v) :=
∫

Ωp

WKL
(
x, ê(v)(x)

)
dx

will supply the variational limit of the total strain energy of the adherents while the variational limit of the total strain
energy of the adhesive will be:

v ∈ VKL(Ωp) �→ H(v;λp,μp,μp′) :=
∫
Sp

h
([v]x;λp,μp,μp′)dσ

h being the mapping h : R3 �→ [0,∞] well-defined by h(w;λp,μp,μp′) := lims→0 1/2ηWλ,μ(dεw ⊗s ep+1dε) and
[v] the jump of v across Sp in the direction of ep+1. Of course, if some coefficients λp,μp,μp′ equal +∞, H involves
the indicator function IVq of a suitable subspace Vq of VKL(Ωp). Eight cases indexed by q can be distinguished and
we will use the notation Hq(v) in place of H(v;λp,μp,μp′):

q = 1: p = 1, μ1′ < ∞, λ1 < ∞, μ1 = 0, H1(v) = 2
∫
l

μ1′[vF ]2 + λ1
([vM

2 ]2 + [∂2v
F ]2/3

)
dx1

V1 = VKL(Ω1)

q = 2: p = 1, μ1′ < ∞, λ1 = ∞, μ1 = 0, H2(v) = 2
∫
l

μ1′[vF ]2 dx1 + IV2

V2 = {
v ∈ V1; [vM ] = [∂2v

F ] = 0
}

2



778 C. Licht / C. R. Mecanique 335 (2007) 775–780
q = 3: p = 1, μ1′ = ∞, λ1 < ∞, μ1 < ∞
H3(v) = 2

∫
l

(μ1 + λ1)
([vM

2 ]2 + [∂2v
F ]2/3

) + μ1[vM
1 ]2 dx1 + IV3, V3 = {

v ∈ V1; [vF ] = 0
}

q = 4: p = 1, μ1′ = ∞, λ1 = ∞, μ1 < ∞, H4(v) = 2
∫
l

μ1[vM
1 ]2 dx1 + IV4

V4 = {
v ∈ V2; [vF ] = 0

}
q = 5: p = 1, μ1′ = ∞, μ1 = ∞, H5(v) = IV5 , V5 = {

v ∈ V1; [vF ] = [∂2v
F ] = [vM ] = 0

}
q = 6: p = 2, λ2,μ2 < ∞, H6(v) = (λ2 + μ2 )

∫
ω

[vF ]2 dx̂, V6 = VKL(Ω2)

q = 7: p = 2, {λ2,μ2} 
 ∞, μ2′ < ∞, H7(v) = μ2′
∫
ω

∣∣[vM ]∣∣2 dx̂ + IV7; V7 = {
v ∈ V6; [vF ] = 0

}
q = 8: p = 2, {λ2,μ2} 
 ∞, μ2′ = ∞, H8(v) = IV8, V8 = {

v ∈ V6; [vM ] = [vF ] = 0
}

We extend Fq := Gp + Hq by +∞ on Xp \ VKL(Ωp), then the limit behavior of the scaled structure is given by:

Theorem 2.1. When s goes to 0, the unique solution u(s)p of the problem (Pp(s)) converges in Xp to the unique
solution uq of the problem (Pq(s)): Min{Fq(v) − L(v); v ∈ Vq} and Fq(uq) − L(uq) = lims→0(Fp(s)(u(s)p) −
L(u(s)p). Moreover, the restriction to Ω

η,1
p of e(u(s)p) converges strongly to e(uq) in L2(Ωp;S3).

Proof. Due to the very structure of the problem, and thus of the functional Fp(s), the proof juxtaposes classical
arguments of the mathematical analysis of adhesively bonded joints [2,3] and an extension to the heterogeneous and
anisotropic cases of the mathematical derivation of the Kirchhoff–Love plate theory [4]. To simplify, we confine to
the case p = 2, the arguments being similar if p = 1.

First step. Let vs a sequence such that F2(s)(vs) is bounded. The standard estimates

|v|2
L2(B

η,1
2 )3

� Cη
(∣∣e(v)

∣∣2
L2(Ω

η,1
2 ;S3)

+ η
∣∣e(v)

∣∣2
L2(B

η,1
2 ;S3)

) ∀v ∈ H 1
Γ0

(Ω)3

|w|2
L2(B

η,1
2 )

� Cη
(|∂3w|2

L2(Ω
η,1
2 )

+ η|∂3w|2
L2(B

η,1
2 )

) ∀w ∈ H 1
Γ0

(Ω)

and a combination of the arguments of [2,3] imply that there exist v in H 1
Γ0

(Ω2)
3 and a not relabelled subsequence

such that vs
τ→ v, the restriction of e(vs) to Ω

η,1
2 weakly converges to e(v) in L2(Ω2;S3) and vs�x3=η

−vs�x3=−η
→ [v]

in L2(ω)3. Moreover, (2) implies v ∈ VKL.
Second step. We show that for all u ∈ Vq , there exists us ∈ H 1

Γ0
(Ω)3 such that

us
τ→ u, lim sup

s→0
F2(s)(us) � Fq(u) (5)

From the very definition of WKL there exists qs in C∞
0 (Ω

η,1
2 )3 such that

∫
Ω

W(x, e(u) + qs ⊗s e3)dx �
G2(u) + |s| and we define u1

s in H 1
Γ0

(Ω)3 by: (u1
s )α(x) = ε

∫ x3
0 {2(qs)α(x̂, y) − ε

∫ y

0 ∂α(qs)3(x̂, z)dz}dy, (u1
s )3(x) =

ε2
∫ x3

0 (qs)3(x̂, y)dy. Let u2
s the field whose components are those of u except (u2

s )α equal to (Rηu)α if q = 7 and
(u2

s )3 equal to (Rηu)3 if q = 6, Rη being the smooth operator:

v ∈ H 1
Γ0

(Ω2)
3 �→ Rηv = 1/2

(
v(x̂, x3) + v(x̂,−x3) + min

(
1, |x3|/ε

)(
v(x̂, x3) − v(x̂,−x3)

)) ∈ H 1
Γ0

(Ω)3

clearly, us := u1
s + u2

s satisfies (5).
Third step. We establish that for all sequence vs in H 1

Γ0
(Ω)3 which τ -converges toward u in X2

Fq(u) � lim infF2(s)(vs) (6)

s→0
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The first step and the weak sequential L2(Ω;S3) lower semicontinuity of q �→ ∫
Ω

WKL(x, q(x))dx imply

lim inf
s→0

∫
B

η,1
2

Wλ,μ
(
dεe(vs)(x)dε

)
dx + G2(u) � lim inf

s→0
F2(s)(vs)

When q = 7,8, we obtain u ∈ Vq by noticing that, for all (ϕ,ψ) in C∞
0 (ω)×C∞

0 (ω)2, the first step and an integration

by parts in B
η,1
2 yield:∣∣∣∣∫

ω

ϕ [uF ]dx̂

∣∣∣∣ � C lim
s→0

(η1/2ε2/μ1/2) |ϕ|L∞(ω)

∣∣∣∣∫
ω

ϕ [uF ]dx̂

∣∣∣∣ � C
{

lim
s→0

(η1/2ε2/λ1/2) |ϕ|L∞(ω) + lim
s→0

(η3/2ε2/μ1/2) |∇ϕ|2L∞(ω)

}
∣∣∣∣∫
ω

ψ · [̂u]dx̂

∣∣∣∣ � C
{

lim
s→0

(η1/2ε2/μ1/2)|ψ |L∞(ω)2 + lim
s→0

(η3/2ε2/μ1/2)|∇ψ |L∞(ω;S2)

}
Eventually, when q = 6,7, the sub-differential inequality and the second step imply:

lim inf
s→0

F2(s)(vs) � Fq(u) + lim inf
s→0

∫
B

η,1
2

DWλ,μ
(
dεe(u

2
s )(x)dε

) · (dεe(vs − u2
s )(x)dε

)
dx

which establishes (6), because the last term vanishes (see [2]).
Last step. Classically [5], the first two assertions of the theorem are a consequence of the first step and (5), (6),

while the last one stems from the convergences obtained in the first step and from

lim sup
s→0

∫
Ω

η,1
2

WKL
(
x, ̂e

(
u(s)2

)
(x)

)
dx � lim sup

s→0

∫
Ω

η,1
2

W
(
x, dεe

(
u(s)2

)
(x)dε

)
dx

= Fq(uq) − L(uq) − lim inf
s→0

∫
B

η,1
2

Wλ,μ
(
dεe

(
u(s)2

)
(x)dε

)
dx � G2(uq)

as established in the third step. �
Remark 1. The previous arguments about the variational convergence of

∫
Ω

η,1
p

W(x, e(v)(x))dx toward∫
Ωp

WKL(x, ê(v)(x))dx allows one to derive the Kirchhoff–Love theory of thin linearly elastic plates by Γ -
convergence, which generalizes [4] to the case of anisotropic and heterogeneous materials (see [8,9] also).

3. A proposal of a simplified but accurate model

Let Ωε
p = (πε)−1(Ωp), Ωε±

p = (πε)−1(Ω±
p ), the de-scaled field of displacement us

q := S(ε)−1uq solves the mini-
mization problem

(Ps
q) Min

{∫
Ωε

p

WKL
(
x, ê(v)(x)

)
dx + Hε

q (v) − Lε(v); v ∈ V ε
q

}

the expression of Hε
q (v) being deduced from the one of Hq(v) by replacing vM by ε1/2vM and vF by ε3/2vF while

the spaces V ε
q are the analogues of Vq with Ωp replaced by Ωε

p . This problem models the linkage of two Kirchhoff–

Love plates, occupying Ωε±
p , by a mechanical constraint along Sε

p := (πε)−1(Sp). This constraint which takes place
of the thin adhesive layer depends strongly on the relative behaviors of ε, η,λ,μ. When p = 2, it can be pure adhe-
sion (q = 8), isoflexion with membrane pull-back or membrane separation without resistance (q = 7), separation with
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or without flexural pull-back (q = 6). From a material stand-point, it can be said that when the strength of the glue
increases transversal adhesion and longitudinal adhesion occur successively. Conversely, from the debonding point
of view, when the strength of the glue decreases the plates first separate longitudinally and next transversally. When
p = 1, the panel of constraints is wider. With increasing values of μ1′, three main stages occur successively: free
flexural separation, flexural elastic pull-back, isoflexion. In the first stage and with increasing values of λ1, free sep-
aration, e2-membrane and rotation around l pull-backs, longitudinal adhesion appear successively. The same occurs
in the second stage except that free separation is replaced by free longitudinal separation. In the last stage, increasing
values of λ1 supply free longitudinal separation, e2-membrane and rotation around l pull-backs, adhesion in the e1 and
e3 directions (but not in the e2 direction) while increasing values of μ1 yield free longitudinal separation, membrane
and rotation around l pull-backs, full adhesion.

Actually, the problem (Ps
q) is a two-dimensional problem, it reduces to a minimization problem in (vM,vF )

on H 1
γ0

(ω \ l)2 × H 2
γ0

(ω \ l) when p = 1 or in (vM±, vF±) on H 1
γ0

(ω)2 × H 2
γ0

(ω) when p = 2. When p = 1 and∫ 1
−1 x3WKL(., x3)dx3 = 0 (which is implied by W is an even function of x3), the problem breaks down into two

independent problems, one satisfied by the membrane displacement, the other by the flexural one. When p = 2,
generally a coupling occurs except, of course, if q = 8 and

∫ 1
−1 x3WKL(., x3)dx3 = 0. Clearly, this model is simpler

and easier to implement numerically than the genuine three-dimensional one. It is also accurate because of the previous
convergence result: us

q is asymptotically equivalent to us
p in the sense that lims→0 ε−2

∫
Ω

η,ε
p

|ê(us
q − us

p)|2 dx = 0 and

ε−3
∫
Ω

η,ε
p

|ei3(u
s
p)|2 is bounded.

In practice, s does not tend to 0 and we believe that a rational proposal for a simpler and efficient model of the
genuine structure is to replace λp,μp,μp′ by their actual values λ/4η ε4(p−1),μ/2η ε4(p−1),μ/4η ε2 in the formulae
giving Hε

q in order to obtain the problem:

(Ps) Min

{ ∫
Ωε

p

WKL
(
x, ê(v)(x)

)
dx + 1/2η εp−1

∫
Sε

p

Wλ,μ
([v] ⊗s ep+1

)
dx − Lε(v); v ∈ VKL(Ωε

p)

}

In this model, the strain energies of the adherents are replaced by Kirchhoff–Love plates strain energies while the
strain energy of the adhesive is replaced by a classical surface constraint energy (see [2,3]).

Remark 2. In these questions of modeling of adhesively bonded joints, the use of the framework of small strains,
which does not account for the impenetrability of the adherents, is questionable because it does not supply any unilat-
eral condition in the constraint along Sε

p . A first remedy is to include the condition vp+1(x +η εp−1ep+1)− vp+1(x −
ηεp−1ep+1) � 0 in the genuine problem, it is easy to show that the conclusions of Theorem 1 still hold but with the
vectorial spaces Vq replaced by the convex cones Cq := {v ∈ Vq; [v]p+1 � 0 on Sp} and the same for the models
proposed in this section.

Eventually, the present study may be considered as a framework to asses the models of soft abutting of thin plates
proposed in [6,7].
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