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Abstract

This Note deals with the influence of high-frequency translational oscillations on the onset of convection in a two-layer system of
weakly heterogeneous immiscible fluids with deformable interface. The averaging method is applied to the generalized Oberbeck–
Boussinesq equations. Vibration-generated forces and tensions appear as the result. A transition to the Oberbeck–Boussinesq
approximation is made in the averaged equations. Analysis of averaged equations leads to the following conclusions. Horizontal
vibrations are obtained not influencing the onset of convection, and in the cases of other directions the influence of vibration is
determined by a single parameter, depending on velocity amplitude and direction. Vibration is shown to generate effective surface
tension, smoothing the interface. Critical parameters are calculated for the case of homogeneous fluids. To cite this article: S.M.
Zenkovskaya, V.A. Novosiadliy, C. R. Mecanique 336 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Influence des vibrations hautes fréquences sur le déclenchement de la convection dans un système à deux couches. Le
but de ce travail est d’analyser l’influence des vibrations translationnelles haute fréquence sur le dèclenchement de la convection,
dans un système à deux couches de fluides non miscibles faiblement inhomogènes, oú l’interface est déformable. On applique
une méthode de moyennisation sur le système des équations d’Oberbeck–Boussinesq généralisé. Il en résulte l’apparition d’une
densité supplémentaire de forces extérieures et une nouvelle tension à l’interface. On étudie le seuil d’instabilité de la solution de
conduction stationnaire, sur le système moyenné. Un premier résultat est que les vibrations en translation horizontale n’influencent
pas le seuil d’instabilité. Un seul paramètre, fonction de l’amplitude et de la direction, intervient pour les autres directions de
vibrations. On montre alors que les vibrations engendrent une tension de surface effective qui aplanit l’interface. On calcule
les paramètres critiques dans le cas de fluides homogènes (cas sans pesanteur). Pour citer cet article : S.M. Zenkovskaya, V.A.
Novosiadliy, C. R. Mecanique 336 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The influence of high-frequency vertical oscillations of small amplitude on the onset of convection was first con-
sidered in [1], where averaging method was applied to Oberbeck–Boussinesq (OB) equations. Vibrations were shown
to have a stabilizing effect. The case of vibration of arbitrary direction was investigated in [2]. For convection prob-
lems in a region with rigid boundaries the averaging method was implemented in [3,4]. For mechanical systems with
constraints imposed, this method was developed in [5], where a unified standpoint was presented for numerous vibra-
tion effects. Vibrational Rayleigh–Marangoni convection in thin layer with deformable free boundary was researched
in [6], where generalized OB equations, suggested in [7], with variable density retained also in inertia terms were used.
Convection without vibrations in two-layer systems was considered in [8] for water–benzene combination, where sta-
tionary convection for heating from above was predicted theoretically, but had not been found experimentally, possibly
due to interfacial contamination. Extensive theoretical and experimental research is presented in [9] with reports of
experimental observation of stationary convection with heating from above, as well as oscillatory convection for heat-
ing from below for acetonitrile–n-hexane system. The fluid combination of Fluorinert–silicone oil with heating from
below was studied numerically and theoretically in [10]. Rayleigh–Benard–Marangoni convection under influence of
vibrations is the subject of present Note. Our approach, was already suggested in [6]. Vibration-generated forces and
tensions are shown to appear as a result of averaging. One of the effects of vibration is the appearance of effective
surface tension which can smoothen the interface. The same effect also exists in the case of an isothermal fluid [6,11].
Moreover, horizontal vibrations do not appear to influence the main terms of high-frequency asymptotics.

2. Problem formulation

Consider a two-layer system of infinite horizontal extension consisting of viscous incompressible immiscible fluids
bounded from above and below by solid walls and separated by an interface x3 = ξ(x1, x2, t) with the surface tension
coefficient σ = σ0 − σT T̂ k . Fluids are heterogeneous with densities ρ̂k = ρ̂0k(1 − βkT̂

k). The x3 axis is directed
downwards, γ = (0,0,1) is its unit vector, x3 = 0 plane coincides with flat interface. Mean layer depths are H1
and H2 respectively (the lower layer is denoted with index 1, upper—with index 2). System as a whole is subjected
to translational oscillations governed by the law x3 = â/ω̂f (ω̂t) along the vector s = (cosϕ,0, sinϕ), where f is
a 2π -periodic function with zero average. Dimensionless convection equations in a moving coordinate system are
written in the generalized OB approximation:

ρk

(
∂vk

∂t
+ (vk · ∇)vk

)
= −∇pk + μk�vk + ρkg(t), divvk = 0,

∂T k

∂t
+ (vk · ∇)T k = Ck�T k (1)

x3 = ξ(x1, x2, t): v1 = v2, vk · � = ∂ξ

∂t
, −(p1 − p2)ni + (τ 1

ij − τ 2
ij )nj = −2Kσni − (∇Γ σ)i (2)

T 1 = T 2, 1
∂T 1

∂n
− 2

∂T 2

∂n
= 0, � = (−ξx1 ,−ξx2,1), n = �

|�| , τ k
ij = μk

(
∂vk

i

∂xj

+ ∂vk
j

∂xi

)
(3)

∇Γ (σ )i = ∂σ

∂xi

− ∂σ

∂xk

nkni, σ = C − MT k, 2K = ∇2
∇2ξ√

1 − |∇2ξ |2 , ∇2 =
(

∂

∂x1
,

∂

∂x2

)
(4)

x3 = h1,−h2: vk = 0, B1k

∂T k

∂x3
+ B0kT

k = bk (5)

Dimensionless quantities are defined using the following scales: L for length, T for time, ρ for densities, AL for
temperature. μk , Ck = χ̂kT /L2, εk = βkAL, k = ̂k/ are dynamic viscosity, thermal diffusivity, thermal expansion
and thermal conductivity coefficients, g(t) = Q0γ − aωf ′′(ωt)s is the variable gravity, Q0 = g0T 2/L is its mean
part, C = σ0T 2/ρL3 is the surface tension coefficient, M = σT AT 2/ρL2 is the Marangoni number. The scales are
left undefined up to now.

3. High-frequency asymptotics

We now consider the case of large vibration frequency ω → ∞ and finite velocity amplitude a = O(1). Under such
assumptions the averaging method of Van der Pol–Krylov–Bogolubov can be applied to the system (1)–(5). Following
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[1,6] the asymptotic representation of the solution is given by a sum of slow and fast components, having zero time
τ = ωt average:

vk = v̄k(x, t) + ṽk(�x, t, τ ), pk = p̄k(x, t) + ωp̃k(�x, t, τ ) (6)

T k = T̄ k(x, t) + 1

ω
T̃ k(�x, t, τ ), ξ = ξ̄ (x1, x2, t) + 1

ω
ξ̃(x1, x2, t, τ ) (7)

Substituting (6), (7) into (1)–(5) and retaining the leading terms in powers of ω, we reduce the problem to the fast
components, from which we derive the following expressions:

ṽk = awkf ′(τ ), T̃ k = −a(wk,∇T̄ k)f (τ ), p̃k = aρ0kΦ
kf ′′(τ ), ξ̃ = a(wk, �̄�)f (τ) (8)

(1 − εkT
k)(wk − s) = −∇Φk, divwk = 0 (9)

w1
n|x3=ξ = w2

n|x3=ξ , ρ01Φ
1|x3=ξ = ρ02Φ

2|x3=ξ , wk
3|x3=h1,−h2 = 0 (10)

Substituting (8) into expressions (6), (7), then into the problem (1)–(5), we average the equations and boundary
conditions by τ and leave the terms of order of unity setting ω → ∞. In the averaged system we convert to the OB
approximation, obtaining:

∂vk

∂t
+ (vk,∇)vk = − 1

ρ0k

∇pk + νk�vk + (1 − εkT
k)Q0γ + F k

v, divvk = 0, νk = μk/ρ0k (11)

∂T k

∂t
+ (vk,∇)T k = Ck�T k, F k

v = Re2(wk,∇)∇Φk, Re2 = a2

2π

2π∫
0

f ′2(τ )dτ (12)

x3 = ξ(x1, x2, t): v1 = v2, (vk · �) = ∂ξ

∂t
, T 1 = T 2, 1

∂T 1

∂n
− 2

∂T 2

∂n
= 0 (13)

(τ 1
ij − τ 2

ij )nj − (p1 − p2)ni = −(2Kσ + τv)ni − (∇Γ σ)i, τv = Re2
(

ρ01
∂Φ1

∂x3
w1 − ρ02

∂Φ2

∂x3
w2,�

)
(14)

x3 = h1,−h2: vk = 0, B1k

∂T k

∂x3
+ B0kT

k = bk (15)

Hence averaging has led to the appearance of vibration-generated forces Fv in the equations of motion and vibration-
generated tensions τv in dynamic boundary condition. Vibration-generated forces Fv can be shown to be potential
[12] in the case of homogeneous fluid, and if the fluid is heterogeneous they are of order εk or higher.

4. Equilibrium solution. Spectral problem, dispersion relation

The problem (9)–(15) has the following solution:

v0k = 0, T 0k = Akz, ξ0 = 0, w0 = (cosϕ,0,0), Φ0k = (z − εkAkz
2/2) sinϕ (16)

p0k = ρ0k(z − εkAkz
2/2)Q0 + Re2/2ρ0k cos2 ϕ (17)

We assume that gradients Ak are uniquely defined by boundary conditions (13) and (15). To study the linear stability
of the solution (16)–(17) we set vk = v0k + uk , ξ = ξ0 + η̄, pk = p0k + ρ0k Re2 cosϕ∂Φ̄k/∂x + qk , T k = T 0k + θ̄ k ,
wk = w0k + W̄ k , Φk = Φ0k + Φ̄k and obtain the following problem for disturbances:

∂uk

∂t
= − 1

ρ0k

∇qk + νk�uk − εk(θ̄
kQ0 + Re2 sinϕAkW̄

k
3 )γ , divuk = 0, div W̄ k = 0

∂θ̄k

∂t
+ uk

3Ak = Ck�θ̄ k, (1 − εkAkz)W̄
k = −∇Φ̄k − sinϕεkθ̄

kγ

x3 = 0: u1 = u2, W̄ 1
3 = W̄ 2

3 , uk
3 = ∂η̄

∂t
, ρ01(Φ̄

1 + sinϕη̄) = ρ02(Φ̄
2 + sinϕη̄)

μ1

(
∂u1

3 + ∂u1
1
)

− μ2

(
∂u2

3 + ∂u2
1
)

= M

(
∂θ̄k

+ Ak

∂η̄
)

, θ̄1 + A1η̄ = θ̄2 + A2η̄

∂x1 ∂x3 ∂x1 ∂x3 ∂x1 ∂x1
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μ1

(
∂u1

2

∂x3
+ ∂u1

3

∂x2

)
− μ2

(
∂u2

2

∂x3
+ ∂u2

3

∂x2

)
= M

(
∂θ̄k

∂x2
+ Ak

∂η̄

∂x2

)
, 1

∂θ̄1

∂x3
= 2

∂θ̄2

∂x3

2

(
μ1

∂u1
3

∂x3
− μ2

∂u2
3

∂x3

)
− (

q1 − q2 + (ρ01 − ρ02)Q0η̄ − Re2(ρ01 − ρ02) sinϕW̄ 1
3

) = −C�2η̄

x3 = h1,−h2: uk = 0, W̄ k
3 = 0, B1k

∂θ̄ k

∂x3
+ B0kθ̄

k = 0

The vibrational terms contain only one sinϕ multiplier, hence high-frequency horizontal vibrations have no effect
on the linear stability of solution (16), (17). Consequently, we can substitute W̄ k = sinϕW̃k , Φ̄k = sinϕΦ̃k . As-
suming that the disturbances are flat, introducing flow functions ψ̄k and ζ̄ k , so that uk

1 = ∂ψ̄k/∂z, uk
3 = −∂ψ̄k/∂x,

W̃ k
1 = ∂ζ̄ k/∂z, W̃ k

3 = −∂ζ̄ k/∂x, excluding pressures qk and functions Φ̃k , separating time t and variable x1 by sub-
stitution (ψ̄k(x, z, t), ζ̄ k(x, z, t), θ̄ k(x, z, t), η̄(x, t)) = eλt+iαx(ψk(z), ζ k(z), iαθk(z), iαη) we obtain the following
spectral problem for normal disturbances:

λLψk = νkL
2ψk − εkα

2(θkQ0 − μvAkζ
k), λθk − Akψ

k = CkLθk

Lζ k = εk

(−α2θk + Ak(zLζ k + Dζk)
)
, L = (D2 − α2), D = ∂

∂z
, μv = Re2 sin2 ϕ

z = 0: ψ1 = ψ2, Dψ1 = Dψ2, ζ 1 = ζ 2, ρ01Dζ 1 − ρ02Dζ 2 = −α2(ρ01 − ρ02)η

ψk = −λη, μ1D
2ψ1 − μ2D

2ψ2 + α2(μ1 − μ2)ψ
1 = −α2M(θk + Akη), 1Dθ1 = 2Dθ2

(
3α2(μ1 − μ2) + λ(ρ01 − ρ02)

)
Dψ1 − (μ1D

3ψ1 − μ2D
3ψ2)

+ α2((Q0(ρ01 − ρ02) + Cα2)η + μv(ρ01 − ρ02)ζ
1) = 0, θ1 + A1η = θ2 + A2η

z = h1,−h2: ζ k = 0, ψk = 0, Dψk = 0, B1kDθk + B0kθ
k = 0

It can be easily seen that the influence of vibration is described by a single vibrational parameter μv . When vibrations
are vertical, the same result can be also obtained when initial equations are taken in OB approximation [12]. Under the
assumption of weakly heterogeneous fluids, we retain only the main εk terms by setting ζ k = ζ k

0 + εkζ
k
1 + ε2

kζ
k
2 + · · · .

For ζ k
0 we obtain:

ζ 1
0 = αηS(chαz − cthαh1 shαz), ζ 2

0 = αηS(chαz + cthαh2 shαz), S = ρ01 − ρ02

ρ01 cthαh1 + ρ02 cthαh2

With this solution a the spectral problem for unknown disturbances is received:

λLψk = νkL
2ψk − α2(θkGrk − Ak(Gv1kζ

k
0 + Gv2kζ

k
1 )

)
(18)

λθk − Akψ
k = CkLθk, Lζ k

1 = −α2θk + AkDζk
0 , Grk = εkQ0, Gv1k = εkμv, Gv2k = ε2

kμv (19)

z = 0: ψ1 = ψ2, Dψ1 = Dψ2, ζ 1
1 = εζ 2

1 , ψk = −λη, ρ01Dζ 1
1 = ρ02εDζ 2

1 , ε = ε2/ε1 (20)

μ1D
2ψ1 − μ2D

2ψ2 + α2(μ1 − μ2)ψ
1 = −α2M(θk + Akη), θ1 + A1η = θ2 + A2η (21)(

3α2(μ1 − μ2) + λ(ρ01 − ρ02)
)
Dψ1 − (μ1D

3ψ1 − μ2D
3ψ2) + α2((Q0(ρ01 − ρ02) + αCv

)
η

+ Gv11(ρ01 − ρ02)ζ
1
1

) = 0, 1Dθ1 = 2Dθ2, Cv = Cα + μv

(ρ01 − ρ02)
2

ρ01 cthαh1 + ρ02 cthαh2
(22)

z = h1,−h2: ζ k
1 = 0, ψk = 0, Dψk = 0, B1kDθk + B0kθ

k = 0 (23)

Here Grk are Grashof numbers, Gv1k and Gv2k are vibrational Grashof numbers. Second vibrational Grashof num-
ber Gv2k is included because the first vibrational Grashof number Gv1k is multiplied by a function depending on the
interface deformation, which can become small, for example for the case of large surface tension. Cv is the effec-
tive surface tension, thus, vibration increases the surface tension, smoothing the interface. Dispersion relations are
obtained from (18)–(23) in explicit form M = Γ (α,λ,μv,Grk,Gv1k,Gv2k) in the case of homogeneous fluids, and
Γ̃ (α,λ,M,μv,Grk,Gv1k,Gv2k) = 0 in the case of heterogeneous fluids. Functions Γ , Γ̃ also depend on all other
parameters of the system. The dispersion relations themselves are rather cumbersome, for detailed derivation see [12].
The obtained relations can be used for calculating the spectral parameter λ, or the critical parameter values with
Reλ = 0.
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Fig. 1. Fluorinert FC70–silicone oil 10 cSt, h1 = 0.6, h2 = 0.4. Solid line corresponds to deformable interface with g0 = 0; dashed
line—deformable interface with g0 = 9.8; dot-dashed line—undeformable in average interface.

Fig. 1. L’huile Fluorinert FC70–silicone 10 cSt, h1 = 0,6, h2 = 0,4. La ligne continue correspond à l’interface déformable avec g0 = 0 ; en
pointille—à l’interface déformable avec g0 = 9,8 ; petits traits—l’interface en moyenne non déformable.

5. Numerical results

For the purpose of numerical calculations, we define the scales as follows: T = ρL2/(μ̂1 + μ̂2), ρ = ρ̂01 + ρ̂02,
L = H1 + H2, A = Â1 + Â2,  = ̂1 + ̂2. The results are provided for the case of oscillatory instability (λ = ic)
of homogeneous fluids. Quantitative agreements have been reached for the cases of fluid combinations taken from
[8,9] for heating from above where thermocapillary forces are leading in destabilizing the equilibrium. Qualitative
agreement for heating from below has also been reached, for example, oscillatory convection exists for system of
acetonitril–n-hexane in homogeneous approximation. We take the system fluorinert FC70–silicone oil 10 cSt (flu-
orinert fills the lower layer) for investigations. The parameters of this system are given in [10]. The total depth of
the system is 5 mm. Fig. 1 shows the calculated critical Marangoni number M∗ (absolute value minimized by wave
number α) and corresponding critical oscillation frequency c∗ for gravity values g0 = 0 and g0 = 9.8. When vibration
reaches sufficient force (μv ≈ 1.6 × 105), both M∗ and c∗ for deformable interface come within 2% of the values
of undeformable in average interface. Critical wave number also slightly lowers from 3.96 to 3.58, always staying in
thermocapillary range. Thus calculations support theoretical conclusions, given in Section 4.
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