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Abstract

The present Note is devoted to the formulation of a micromechanics-based model of non-local anisotropic damage and its
application to concrete materials and structures. We first formulate a local anisotropic unilateral damage model on the basis of a
suitable homogenization scheme which takes into account interactions between penny-shaped microcracks as well as their spatial
distribution. The damage surface is built by using an energy release rate-based criterion. Then a non-local extension of the model
is proposed by replacing the local energy release-rate for each family of microcracks by its average over a characteristic volume
V of the material centered at a given point. In order to demonstrate the efficiency of the non-local model in mesh-independent
simulation of failure process in structures, some applications concerning failure of concrete materials and structures are presented.
To cite this article: Q.-z. Zhu et al., C. R. Mecanique 336 (2008).
© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

La présente Note est dédiée à la formulation d’un modèle micromécanique non local d’endommagement anisotrope ainsi qu’à
son application aux matériaux et structures en béton. Nous formulons d’abord un modèle local d’endommagement unilatéral
anisotrope en se basant sur un schéma d’homogénéisation adapté qui prend en compte l’interaction entre les microfissures ainsi
que leur distribution spatiale. La surface d’endommagement est construite à l’aide d’un critère basé sur le taux de restitution de
l’énergie. Une extension non locale du modèle est ensuite proposée en remplaçant le taux de restitution de l’énergie local associée
à chaque famille de microfissures par sa moyenne sur un volume caractéristique V du materiau centré au point matériel. Afin
d’illustrer l’efficacité du modèle non local, en particulier l’indépendence de ces prédictions vis-à-vis du maillage, on présente
quelques exemples concernant le processus de rupture de matériaux et structures en béton. Pour citer cet article : Q.-z. Zhu et al.,
C. R. Mecanique 336 (2008).
© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.
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1. Introduction

Damage by nucleation and growth of microcracks is an essential mechanism of inelastic behavior and failure
process in brittle materials. A number of phenomenological and multiscale damage models have been developed for
this class of materials. Compared to phenomenological models, the micromechanical approach is able to take into
account physical mechanisms involved in the damage process at the microscopic scale [1]. Therefore, with these
models, it is easier than by phenomenological models to take into account some specific aspects such as induced
anisotropy and unilateral effects due to microcracks closure [2–4]. Thanks to the significant progress in computing
techniques, micromechanical damage models of brittle materials can be now used in analysis of engineering structures
with reasonable cost (see, for instance, [5]). However, the local formulation of such existing micromechanical models
limits strongly their domain of applicability. Indeed, the deterioration of mechanical properties due to microcrack-
induced damage leads generally to material softening and material failure by strain localization. It is well known that
the analysis of failure process using continuum models without material length induces ineluctable spurious mesh
dependency.

When strain localization appears, the basic hypothesis of scale separation required for homogenization methods is
no longer fulfilled and the standard micromechanical approach cannot regularize the model, even interaction between
microcracks in the representative elementary volume is taken into account. However, it seems that there is a physical
link between crack interaction and strain localization as discussed by [6]. Different micromechanics-based methods
have been recently proposed for the regularization of ill-posed boundary value problems. For instance, Drugan and
Willis [7] (see also [8]) succeeded in deriving a non-local constitutive law for materials with graded properties. As
pointed out by Lorentz and Andrieux [9], this is facilitated by the fact that the interaction is given a priori. How-
ever, the task seems to be very difficult when the interaction between length scales results from the evolution of the
macroscopic fields themselves, as for brittle damage localisation. Another possibility, which results in a macroscopic
gradient damage model, consists to enhance the homogenization approach by accounting for gradient effects on the
boundary of the representative elementary volume (see [10]). The common point of all these approaches is to result in
the introduction of some characteristic length of microstructures in the macroscopic relations. A simple, but practical
approach, followed by many authors in brittle damage mechanics, consists in introducing a length scale in phenom-
enological damage models. In this framework, the non-local formalism appears easy to implement as a regularization
technique in computer codes. Even in this phenomenological context, few studies concern anisotropic damage of
brittle materials (see, for instance, [11]).

The contribution of this Note is to apply the non-local formalism to a new micromechanics-based anisotropic dam-
age model dedicated to brittle materials with unilateral effects. First, based on the homogenization procedure proposed
by Ponte-Castañeda and Willis [12] adapted here to unilateral damage, we derive an anisotropic thermodynamically
consistent damage model. A validation of this local model on the Willam’s test [13] is shown. Then, an integral form is
applied for the determination of non-local damage conjugated force. Finally, the proposed non-local damage model is
applied to two typical boundary values problems including a cement-based materials structure for which experimental
data are available. The results obtained clearly show the efficiency of the proposed model in predicting basic mechan-
ical behavior of brittle materials and in analysing the behavior of concrete structures. Comparisons with experimental
data are provided.

2. Linear homogenization methods applied to materials containing interacting microcracks

Consider a representative elementary volume (r.e.v.), occupying a domain Ω and having a boundary surface ∂Ω .
This r.e.v., viewed as a matrix-inclusion system, is made up of a solid matrix with elasticity tensor Cs and of inclusions
whose elasticity tensor is denoted Cr , r = 1, . . . ,N . The local behavior is then characterized by: σ (z) = C(z) : ε(z)

(∀z ∈ Ω) with σ (z) and ε(z) as the local stress and strain fields, respectively. By taking the average of the local strain
over Ω , the effective (homogenized) stiffness tensor takes the standard form:

C
hom = C

s +
N∑

r=1

ϕr(Cr − C
s) : A

r (1)

where ϕr is the volume fraction of the inclusions r . Ar is the so-called strain concentration tensor which relates in a
linear way the local strain ε to the macroscopic uniform strain E.
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Fig. 1. R.e.v. of the mi-
crocracked material.

Fig. 2. A penny-shaped crack.
The aspect ratio is ε = c/a.

Obviously, the determination of the macroscopic stiffness tensor requires the computation of Ar which depends
on the chosen homogenization scheme. Due to the possibility that it offers to take into account separately both the
influences of the inclusions shape and their spatial distribution, the Ponte-Castañeda and Willis [12] scheme is adopted.
The main results concerning the stiffness of the heterogeneous material predicted by this scheme is summarized in
Appendix A.

We are interested now in adapting the above method to microcracked materials. A family of penny-shaped cracks
can be approximated by a flat ellipsoid characterized by its unit normal vector (orientation) n and the aspect ratio
ε = c

a
, with a as the radius of the circular crack and c as the half-length of the small axis (see Figs. 1 and 2).

It is convenient to express the volume fraction ϕr of the rth cracks family in the form:

ϕr = 4

3
πa2

r crNr = 4

3
πεdr (2)

where Nr denotes the crack density (number of cracks per unit volume) of the family r , and dr = Nra
3
r (no summa-

tion) is the crack damage parameter widely used as internal variables in micromechanical analysis [15].
For open cracks, Cr is classically considered as Cr = 0 so as to account for the cancellation of the stress on the

crack faces. Following a methodology used by [14] for cracked materials, i.e. for low aspect ratios (ε � 1), the fourth
order tensor Cd in (A.5) can be determined for crack-like inclusions. The overall stiffness reads then:

C
hom = C

s −
N∑

j=1

dr
T

r :
(

I + Pd :
N∑

j=1

dr
T

r

)−1

(3)

where, still for open cracks and denoting Sr
ε the Eshelby tensor associated with the r th crack family:

T
r = 4

3
πC

s : lim
ε→0

ε(I − S
r
ε)

−1 (4)

By assuming a spherical spatial distribution for all cracks, Pd is given by (A.3). It must be noticed that due to direc-
tional character of the crack system, Chom presents a priori a general anisotropy.

Note that the case of closed cracks is readily treated by considering a concept of fictitious closed crack stiffness
Cr = ks1 ⊗ 1 (ks is the bulk modulus of the solid matrix), as suggested in [14]. In this way, the proposed local model
accounts for the unilateral effect due to microcrack closure.

3. Local and non-local formulations of the anisotropic damage model

3.1. The local micromechanics-based anisotropic damage model

With the macroscopic free energy W (= 1
2E : Chom : E) in hand, the overall stress–strain relation:

Σ = ∂W

∂E
= C

hom : E (5)

The strain energy release rate (conjugated force) associated with any damage variable dr is defined by:

Fdr = 1
E : T

r : E − 1
E : (Tr : B : C

d + C
d : B : T

r ) : E + 1
E : C

d : B : T
r : B : C

d : E (6)

2 2 2
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In the framework of thermodynamics of irreversible processes, the damage criterion should be determined as a func-
tion of the conjugated force Fdr

on the basis of experimental evidences. However, the experimental identification of
such a criterion is usually not easy. Noting that the expression of Fdr

contains two linear terms in Tr , Cd and B, and
one high order term, we propose to retain for the sake of simplicity as driving force for the damage process, only the
two linear terms.

Denoting then by F̃ dr
the contributions of the first two terms of (6), one has:

F̃ dr = 1

2
E : T

r : E − 1

2
E : (Tr : B : C

d + C
d : B : T

r ) : E (7)

The following simple damage criterion is proposed:

f r(F̃ dr

, d) = F̃ dr −R(dr) � 0 (8)

where R(dr ) is the local resistance against the damage propagation. Adapting a proposition of Marigo (1981) in the
context of isotropic damage, a linear form, R(di) = c0 + c1d

r is adopted in this work, with c0 and c1 two material
constants. Combining this damage function with the normality rule, the evolution of the damage variables reads:

ḋr = λ̇dr ∂f r(F̃ dr
, dr )

∂F̃ dr
= λ̇dr ; λ̇dr � 0 (9)

where the damage multipliers λ̇dr
are determined by the consistency conditions ḟ r = 0, r = 1, . . . ,N , for all families

considered. The damage evolution being known, the rate form of the elastic damage law can then be deduced by fol-
lowing the standard procedure which consists of reporting all ḋr in the differentiation of the stress–strain relation (5).
A detail of the procedure can be found in [5].

3.2. Predictions of the anisotropic unilateral damage model for the Willam’s test

A very interesting case for concrete constitutive modeling is the so-called Willam’s test [13]. This test is widely
used to evaluate the capabilities of damage models to follow the rotation of the principal axes of the stress tensor.
Although the test is purely theoretical, it has the merit of discriminating constitutive brittle damage laws and in
particular to check their capacity to properly account for damage-induced anisotropy and microcrack closure effects.
In this test, which has been a part of a benchmark (MECA) coordinated by EDF in France [16], the material is
successively subjected to two loading steps in plane strain conditions.

– The first step is a uniaxial tension until the peak stress is reached. The components of the strain tensor in the plane
(e1, e2), (E11, E22, E12), follow the path proportional to (1,−νs,0) where νs is the Poisson ratio of the undam-
aged material; in the undamaged elastic regime, this corresponds to a uniaxial tensile loading in direction e1.

– The strain state obtained at the end of the first step is pursued by setting the increments of the strain tensor
components (E11,E22,E12) proportional to (1,0.5,0.5). This loading step is equivalent to a biaxial extension
accompanied by a sliding in the plane (e1, e2); it induces a rotation of the principal axes of the strain tensor. The
evolution of the major principal direction during this test is shown in Fig. 4 by means of θE (angle between the
principal direction of the macroscopic strain and the axis along e1).

The basic material properties proposed in [16] are as follows: Young modulus Es = 3.2 × 10−4 MPa, Poisson ratio
νs = 0.2, compressive strength fc = 38.3 MPa, strain corresponding to peak stress Ef c = 2 × 10−3, tensile strength
ft = 3.0 MPa and fracture energy Gf = 110 J m−2. In agreement with the characteristics of the material, the following
values of the model parameters are adopted: c0 = 7.5×10−4J m−2 and c1 = 0. In the micromechanical damage model,
an initial microcracking state is implicitly assumed. The amount of this initial state must be in principle obtained from
experimental observations. Due to the lack of such data, a scalar low value of d0 = 0.01 is considered for the initial
crack density parameter.

The results predicted by the micromechanical model for the Willam’s test, Σ11,Σ22,Σ12 as function of the axial
strain E11, are illustrated in Fig. 3. For comparison purpose, the uniaxial tensile stress–strain response is also provided.
Due to the lack of experimental data for this test, we are interested in the qualitative response as it has been reported
by other authors. The following comments can be made on the mechanical response in the damage regime:
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Fig. 3. Willam’s test: in-plane stress components. Fig. 4. Willam’s test: evolutions of the angles be-
tween e1-axis and major principal directions of Σ

and E.

– For axial stress Σ11, a softening behavior similar to the uniaxial tensile case is observed. During this softening
phase, a slight plateau (or second peak) occurs at an axial strain near 0.03%. This plateau is simultaneously
observed for the stress component Σ22. It is noted that the Σ22–E11 curve passes over that of Σ11 and reaches a
peak at E11 = 0.03%.

– The shear stress Σ12 is first positive and then increases and reaches a peak before decreasing towards a second
negative peak.

The reader interested by more details on these predictions can refer to [5]. The specific features, expected in the
Willam’s test, may be interpreted in terms of the rotation of the principal axes of stresses. Fig. 4 shows the comparison
between the evolutions of the major principal stress direction θΣ and the similar θE for the strain tensor. A non-
monotonic evolution of the principal stress rotation is noted. The difference between the two curves is the signature
of the damage-induced anisotropy. It is interesting to notice that for the MECA benchmark, numerous models, even
anisotropic, were not able to describe these different aspects which are considered very essential for the Willam’s test.

3.3. Non-local formulation of the anisotropic damage model

As already underlined, the degradation of material by microcrack growth generally leads to a material softening
linked to a strain localization. It is well known that modeling of this phenomena by means of continuum models with-
out material length leads to spurious mesh dependency. The strain softening or damage-induced strength degradation
can be localized into a band of zero thickness with paradoxical consequences of structural failure with zero energy
dissipation. In order to overcome this shortcoming, various methods have been proposed. Among these, the so-called
non-local approaches are widely used. The basic idea implemented in the present study consists in replacing the local
damage force F̃ dr

for any considered family by its average over a representative volume V of the material centered at

a given point [17]. The damage variable dr is then function of the non-local driving force F̃ dr which will be defined
as:

F̃ dr
(x) =

∫
V

�(x, y)F̃ dr

(y)dV (y) (10)

In Eq. (10), �(x,y) is a space weighting function which describes the mutual non-local interactions and depends
only on the distance between the source point x and the receiver point y. Mathematically, the normalization condi-
tion

∫
V

�(x, y)dV = 1 is required for a uniform field. In this study, we adopt the following widely-used weighting
function,

�(x,y) = α(x, y)∫
V

α(x, y)dV
(11)

where α is the Gaussian function:

α(x, y) = exp

(
−‖x − y‖2

2l2

)
(12)

with l a material characteristic length which defines the size of interaction zone for failure processes.



Q.-z. Zhu et al. / C. R. Mecanique 336 (2008) 320–328 325
4. Numerical applications of the non-local damage model

4.1. Bar in uniaxial tension

The first application concerns a one-dimensional bar subjected to uniaxial traction. The bar is of length 110 mm
with a weak zone in the central 10 mm for triggering localization, as illustrated in Fig. 5. This central zone is weakened
by a 10% reduction in the Young’s modulus. The following material parameters are used: Es = 3.6 × 104 MPa,
νs = 0.2, c0 = 7.5 × 10−3 J m−2 and c1 = 1. × 10−3 J m−2. The numerical tests are controlled by displacement and
performed on three different meshes of 44, 88 and 176 elements. The material characteristic length is chosen to be 20
mm for the non-local analysis.

The load–displacement relations for the three meshes are shown and compared in Fig. 6. It is observed that the
non-local model predicts correctly material softening behavior independently of the mesh size. The load–displacement
curve is qualitatively in agreement with most data available in brittle materials under uniaxial tension.

For the analysis of the damage field, it must be first recalled that in the proposed model, the damage-induced
anisotropy is given by the distribution of crack density parameter d(n). Even in the present case, the anisotropy is
general and can be rigorously represented only through a rosette (polar) diagram d(n) (see details in [5]). However, for
illustration purpose, it is convenient to built a second order tensorial approximation D of the crack density parameter
distribution. This tensor, obtained by an integration over the surface of the unit sphere S2, is defined as:

D = 1

4π

∫
S2

d(n)(n ⊗ n)dS (13)

We provide in Fig. 7 the distribution profiles along the bar of the two principal values of D. Remarkably, a stationary
maximum damage principal value is obtained inside the weak zone.

4.2. Hassanzadeh’s direct tension test

The second numerical application of the proposed model concerns a direct tension test performed by Hassanzadeh
on a four-side notched concrete sample [18]. The geometrical description of the notched sample and the loading
condition are indicated in Fig. 8. The hypothesis of plane strain condition is adopted for the numerical analysis.

Fig. 5. Geometry (in mm) and loading condition of the bar in tension.

Fig. 6. Bar in tension: load–displacement response curves.
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Fig. 7. Comparisons of damage distributions in the bar: (a) for D11, and (b) for D22.

Fig. 8. Geometry (in mm) and loading condition of the Hassanzadeh test: (a) the structure; (b) the notch area.

Fig. 9. Force–displacement response curves and comparisons to the experimental data reported in [18].

In order to study the mesh sensitivity of the proposed non-local micromechanics based model, two different meshes
are considered: the first discretization with 960 rectangular elements and the second one with 1512 elements which is
obtained by refining the discretization in the central fracture zone. The material constants and model parameters are
those already given in Section 4.1.

Fig. 9 shows the force–displacement curves for the two meshes which are compared to the experimental data
reported by Hassanzadeh [18]. A good agreement is observed between the numerical results and experimental data.
The damage distributions at three different values of imposed displacements are presented and compared for the
considered meshes in Figs. 10 and 11. The mesh independence of the numerical predictions is again observed.
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Fig. 10. Distributions of the damage component D11 at three displacement levels for the two meshes.

Fig. 11. Distributions of the damage component D22 at three displacement levels for the two meshes.

5. Conclusions

In this study, we present a new homogenization-based non-local damage model for brittle materials. The microme-
chanical approach provides to the proposed model the capacity of dealing with main physical aspects of microcracking
including anisotropic unilateral effects related to crack closure, interaction between microcracks, microcracks spatial
distribution. It must be noticed that these features are generally neglected in widely-used macroscopic models. The
proposed model contains a small number of parameters and can be easily implemented into computer code. Its ex-
tension to the non-local version allows us to model material softening and progressive failure process. The numerical
applications show that the non-local model provides an efficient tool to analyze the mechanical deteriorating behaviors
of concrete structures under complex loading conditions.

Appendix A. Stiffness predicted by the Ponte-Castañeda and Willis [12] scheme

The corresponding overall stiffness tensor reads:

C
hom = C

s +
(

I −
N∑

ϕr
H

r : Pd

)−1

:
N∑

ϕr
H

r (A.1)

r=1 r=1
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where

H
r = [

(Cr − C
s)−1 + P

r
ε

]−1 (A.2)

The fourth order tensors Pr
ε and Pd are the Hill-type tensors, introduced in order to take into account the influences of

the shape form of inclusions and of its spatial distribution respectively [12]. For simplicity, we adopt throughout this
study a spherical spatial distribution for all inclusions; Pd reads then:

Pd = α

3ks
J + β

2μs
K; with α = 3ks

3ks + 4μs
; β = 6(ks + 2μs)

5(3ks + 4μs)
(A.3)

(A.1) can be rewritten in the form (see [5]):

C
hom = C

s − C
d : (I + Pd : C

d)−1 (A.4)

where, by using the Eshelby tensor (Sε = Pε : Cs ) [19]:

C
d =

N∑
r=1

ϕr(Cs − C
r ) : [I − S

r
ε : (I − (Cs)−1 : C

r
)]−1 (A.5)

For further simplifications, it is convenient to introduce B = (I + Pd : Cd)−1 : Pd and rewrite Eq. (A.4) in the form:

C
hom = C

s − C
d + C

d : B : C
d (A.6)
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