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Abstract

A general method for homogenization of the electromagnetic properties of a heterogeneous periodic medium is developed, based
on its microstructure. This method is inspired by micromechanics (Nemat-Nasser and Hori, 1999). Contrary to other conventional
techniques, commonly used in electromagnetism to calculate the overall properties of composites, this microstructurally-based
method does not require an explicit numerical solution of the Maxwell equations. We define the macroscopic field quantities as
volume averages of the spatially variable fields, taken over a representative volume element (RVE), consisting of a unit cell of
the periodic medium (Hill, 1963; Willis, 1981; Hashin, 1983; Nemat-Nasser, 1986). The boundary conditions are based on the
Bloch representation of wave propagation in the heterogeneous media. Instead of explicitly solving the Maxwell equations, these
equations are directly used in the averaging scheme. This distinguishes our method from others, where usually a known point-wise
solution is used to obtain the average field quantities. The resulting constitutive relations therefore may be used to directly estimate
the response of any heterogeneous periodic assembly of material constituents of given geometry and properties. To cite this article:
A.V. Amirkhizi, S. Nemat-Nasser, C. R. Mecanique 336 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Homogénéisation des propriétés électromagnétiques des milieux périodiques fondée sur une base microstructurelle. On
développe une méthode générale d’homogénéisation des propriétés électromagnétiques des milieux périodiques hétérogènes fondée
sur une base microstructurelle. Cette méthode est inspirée de la micromécanique (Nemat-Nasser and Hori, 1999). Contrairement
à d’autres techniques conventionnelles, couramment utilisées en électromagnétisme pour calculer les propriétés globales des com-
posites, cette méthode à base microstructurelle ne nécessite pas de solution numérique explicite des équations de Maxwell. Nous
définissons les champs macroscopiques comme des moyennes volumiques des champs spatialement variables sur un volume re-
présentatif élémentaire (VRE), qui consiste en une cellule de base du milieu périodique (Hill, 1963 ; Willis, 1981 ; Hashin, 1983 ;
Nemat-Nasser, 1986). Les conditions aux limites reposent sur la représentation de Bloch de la propagation d’ondes dans le milieu
hétérogène. Au lieu de résoudre explicitement les équations de Maxwell, ces équations sont directement utilisées dans l’opération
de moyenne. Ceci distingue notre méthode d’autres qui utilisent généralement une solution connue point par point pour obte-
nir les champs moyens. Les équations constitutives résultantes peuvent par conséquent être utilisées pour estimer directement la
réponse d’un assemblage périodique hétérogène de constituants matériels de géométrie et de propriétés données. Pour citer cet
article : A.V. Amirkhizi, S. Nemat-Nasser, C. R. Mecanique 336 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction and motivation

Modeling the mechanical behavior of heterogeneous solids is, by its nature, a complicated problem. It is usually
difficult to solve analytically the field equations for static or dynamic problems of heterogeneous media. In certain
cases, one can reduce the problem to a homogeneous one without losing important physical effects in the solution.
This is possible when the length scale associated with the heterogeneity of the medium is small enough compared
with the other length scales of the problem, including the dimensions of the body, the minimum length of the spatial
variation of the loading, and other problem-specific lengths. For example, for the case of periodic solids and structures,
the size of the periodic unit cell is the heterogeneity length scale; see Fig. 1. If this is small enough compared to the
macroscopic size of the body or structure, i.e., if the length scales can be separated, then the heterogeneous material can
be replaced with a macroscopically equivalent homogeneous one. Such equivalent materials are introduced for elasto-
plastic problems in a rational way, using micromechanics methods; for comprehensive discussions of these methods,
see Mura [1] and Nemat-Nasser and Hori [2]. Extension of such techniques to other physical phenomena such as
piezoelectricity is already a broad field of research (Dunn and Taya [3]; Benveniste [4]; Dvorak and Benveniste [5];
Chen [6]). We seek to use this same rational principle in electromagnetism. Most notably, Willis [7] has formulated
the variational principles and integral equations for electromagnetic waves in heterogeneous media.

There are several established methods of calculating the overall material properties in electromagnetism; see for
example Bensoussan et al. [12], Sihvola [13], and Milton [14]. Robinson [15] has demonstrated the difficulties in-
volved in the derivation of the macroscopic Maxwell equations from those involving microscopic fundamental fields,
E and B, the electric field and the magnetic induction, respectively. The averaging method required in the definition
of the fields D and H, the electric displacement and the magnetic field, respectively, based on the atomistic considera-
tions, is critically examined by Robinson. We suggest that similar care is necessary in examining the electromagnetic
homogenization schemes.

Fig. 1. Homogenization. The largest heterogeneity length scale, l, should be small enough compared to the smallest length scale, λ, that is of
physical importance. For a periodic medium (left) l is the unit cell size while in a random medium (right) it should be the smallest size of a sphere
which at any position is a statistical representative of the entire body, i.e., a representative volume element (RVE) (for further details, see [8–11].
λ depends on all attributes of a problem. For wave propagation problems (left), it is the smallest wavelength of interest. For a general loading
(right), it may be defined as the smallest wavelength in the spatial Fourier expansion of the imposed excitation.



26 A.V. Amirkhizi, S. Nemat-Nasser / C. R. Mecanique 336 (2008) 24–33
Fig. 2. A two-phase heterogeneous unit cell (left) and its equivalent homogeneous unit cell with the imposed polarization fields P and M (right).

Pendry [16,17] has developed a method for the calculation of equivalent homogeneous material properties us-
ing line and surface integrals of the field quantities. The application of this method to chiral media is given elsewhere
(Amirkhizi and Nemat-Nasser, [18]). Smith and Pendry [19] have also used this approach to estimate the bi-anisotropy
parameters of the split-ring resonator (SRR) medium. To apply this method to specific problems, one needs to obtain
point-wise solutions of the Maxwell equations and evaluate the appropriate averaging integrals. This has the disadvan-
tage that for any desired direction of wave propagation, a new numerical solution must be obtained. Here we develop
a method based on the direct volume average of the electromagnetic fields, and where applicable, we give the full
3-dimensional tensorial expressions of the overall material properties for any direction of wave propagation and given
frequency, provided that the wavelength is within the effective medium limit.

2. Description of the method for simple media

The microstructurally-based method relies on the assumption that only volume averages of the field variables are
measurable as macroscopic physical quantities. The solution to the Maxwell equations is then expressed as the sum
of the volume average and a local perturbation:

F = F0 + Fp (1)

Here F is any of the electromagnetic fields E, B, D, or H. We seek to derive a set of equations that includes only the
macroscopic quantities, using the Maxwell equations that contain both the average and the perturbation fields. The
coefficients of this new set of equations are the overall material properties. These material properties are uniform in
space. Here we present an outline of this method. However, its application to an arbitrary geometry requires lengthy
numerical calculations.

First we replace the heterogeneous unit cell with a homogenized cell. Then in the replacement medium we include
externally-imposed polarization fields such that point-wise the fields F coincide with the ones in the heterogeneous
cell; see Fig. 2.

Next we expand the fields in a spatial Fourier series. Here we consider the problem of propagation of a single
frequency wave in a periodic medium. We start with the Bloch form of the fields:

ˆ̂F(x, t) = Re
{
F̂(x)e−iωt

} = Re
{
F(x)ei(k·x−ωt)

}
(2)

Here ˆ̂F(x, t) represents any of the electromagnetic fields as functions of time and space. The Bloch representation (2)
separates the harmonic time dependence e−iωt and the macroscopic plane wave factor ei(k·x−ωt) from the microscopic
fields in the unit cell. It is the phasor form of a monochromatic wave traveling in the k direction. For a fixed frequency,
the Maxwell equations in the absence of external charge and current densities can be written as:

∇ · D̂ = 0 (3)

∇ · B̂ = 0 (4)

∇ × Ê − iωB̂ = 0 (5)

∇ × Ĥ + iωD̂ = 0 (6)
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Now, as explained before, we replace the heterogeneous unit cell with a homogeneous one having uniform εC(ω)

and μC(ω) material properties. We will drop the frequency dependence from now on with the understanding that the
problem is being solved for a given single frequency. In order to reproduce the actual electromagnetic fields in the
homogenized unit cell, the polarization fields P(x) and M(x) are introduced everywhere the material properties differ
from the selected uniform values (Nemat-Nasser and Amirkhizi [26]):

D(x) = εCE(x) + P(x) (7)

H(x) = μ−1
C B(x) − M(x) (8)

For simplicity, and without loss of generality, we have assumed that the uniform (reference) material properties
εC(ω) = εC(ω)1 and μC(ω) = μC(ω)1 are isotropic tensors; this assumption is not necessary and one may im-
prove the resulting estimates by choosing the reference uniform properties such that they reflect the expected final
values. Where the material properties are equal to the selected uniform values, the polarization fields vanish. The
wave equations for the fields E and B can now be re-written as follows:

∇ → ∇ + ik (9)

(∇ + ik) × (
(∇ + ik) × E

) − ω2μCεCE = ω2μCP + iωμC(∇ + ik) × M (10)

(∇ + ik) × (
(∇ + ik) × B

) − ω2μCεCB = −iωμC(∇ + ik) × P + μC(∇ + ik) × (
(∇ + ik) × M

)
(11)

Note that the fields in these equations would be uniform in space if it were not for the presence of the imposed polar-
ization fields. Based on the Bloch decomposition (2), the fields in these equations are periodic and can be expanded
as spatial Fourier series over the unit cell:

F(x) = F0 + Fp = 〈F〉U +
∑
ξ �=0

F(ξ)eiξ ·x (12)

〈F〉U = 1

U

∫
U

F(x)dVx (13)

F(ξ) = 1

U

∫
U

F(x)e−iξ ·x dVx (14)

U = 8a1a2a3 (15)

ξ = n1π

a1
e1 + n2π

a2
e2 + n3π

a3
e3; ni integers (16)

The quantities F0 = 〈F〉U denote the average fields taken over the unit cell and appear in the macroscopic descrip-
tion of the medium. The remainder, Fp = ∑

ξ �=0 F(ξ)eiξ ·x, represents the local perturbation from the average values.
In these equations, U is the volume and ai are half the length of the edges of the unit cell. Solving the wave equations
(10), (11) we have:

E(ξ) = 1

ζ · ζ − k2
0

(
ω2μC

(
1 − 1

k2
0

ζ ⊗ ζ

)
· P(ξ) − ωμCζ × M(ξ )

)
(17)

B(ξ) = 1

ζ · ζ − k2
0

(
ωμCζ × P(ξ ) + μCζ · ζ

(
1 − 1

ζ · ζ ζ ⊗ ζ

)
· M(ξ)

)
(18)

ζ = ξ + k (19)

k2
0 = ω2μCεC (20)

Therefore the perturbation fields can be written as sums of certain integrals of the polarization fields over the unit
cell. The coefficient matrices K,L,M , and L are calculated in Eqs. (17), (18):

Ep(x) =
∑
ξ �=0

(
K(ξ) · 1

U

∫
U

P(y)eiξ ·(x−y) dVy + L(ξ) · 1

U

∫
U

M(y)eiξ ·(x−y) dVy

)
(21)

Bp(x) =
∑
ξ �=0

(
M(ξ) · 1

U

∫
P(y) eiξ ·(x−y) dVy + N(ξ) · 1

U

∫
M(y)eiξ ·(x−y) dVy

)
(22)
U U
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To make the homogeneous unit cell equivalent with the original heterogeneous unit cell, the polarization fields
must satisfy the following consistency conditions:

ε(x) · (E0 + Ep) = εC(E0 + Ep) + P(x) (23)

μ−1(x) · (B0 + Bp) = μ−1
C (B0 + Bp) − M(x) (24)

Now by substituting the perturbation fields with their expression based on the polarization fields from Eqs. (21),
(22), we reach two coupled integral equations in series form. To obtain a general point-wise representation of the
original heterogeneous medium, these equations must be solved for the polarizations in terms of the average fields.
This gives the polarization fields that can fully replace the heterogeneity of the medium in any physical problem.
However, our primary objective is to find the average fields and the point-wise solution is not necessary for this
purpose.

Let us assume that the unit cell can be divided into a series of sub-regions, Ωα , each with some uniform material
properties. One can average the perturbation fields over any such region and arrive at,

〈Ep〉Ωα = 1

Ωα

∫
Ωα

Ep(x)dVx =
∑
ξ �=0

gα(ξ)

(
K(ξ) · 1

U

∫
U

P(y)e−iξ ·y dVy + L(ξ ) · 1

U

∫
U

M(y)e−iξ ·y dVy

)
(25)

〈Bp〉Ωα =
∑
ξ �=0

gα(ξ)

(
M(ξ) · 1

U

∫
U

P(y)e−iξ ·y dVy + N(ξ) · 1

U

∫
U

M(y)e−iξ ·y dVy

)
(26)

gα(ξ) = 1

Ωα

∫
Ωα

eiξ ·x dVx (27)

Note that the function g defined in the integral form (27) is only a geometrical quantity.
Our discussion up to this point involved exact equations. Here we introduce an approximation. We assume that the

integrals in (25), (26) can be estimated by the following sum:

1

U

∫
U

F(x)e−iξ ·y dVy ≈
∑
β

fβgβ(−ξ)Fβ (28)

fβ = Ωβ

U
(29)

Fβ = 〈F〉Ωβ (30)

Here F represents either of the polarization fields P or M. Therefore, Eqs. (25), (26) can be approximated by the linear
equations,

Ep
α =

∑
β

(Rαβ · Pβ + Sαβ · Mβ) (31)

Bp
α =

∑
β

(Tαβ · Pβ + Uαβ · Mβ) (32)

Now we average the consistency conditions (23), (24) over each sub-region. The result is a set of linear equations
for the average polarization fields in each sub-region in terms of the average fields F0,

∑
β

((
(εα − εC1) · Rαβ − δαβ1

) · Pβ + (εα − εC1) · Sαβ · Mβ

) = −(εα − εC1) · E0 (33)

∑
β

((
μ−1

α − μ−1
C 1

) · Tαβ · Pβ + (
(μ−1

α − μ−1
C 1) · Uαβ − δαβ1

) · Mβ

) = −(μ−1
α − μ−1

C 1) · B0 (34)

Here the coefficient tensors are given by:
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Rαβ =
∑
ξ �=0

gα(ξ)fβgβ(−ξ)K(ξ) (35)

Sαβ =
∑
ξ �=0

gα(ξ)fβgβ(−ξ)L(ξ) (36)

Tαβ =
∑
ξ �=0

gα(ξ)fβgβ(−ξ)M(ξ) (37)

Uαβ =
∑
ξ �=0

gα(ξ)fβgβ(−ξ)N(ξ) (38)

Each of the above equations is repeated for all α regions. They can be solved collectively to give Pβ and Mβ . It
must be noted here that this approximation can be made as accurate as desired by dividing the unit cell into a sufficient
number of subregions. Of course, as the number of subregions increases, the approximate solution approaches to the
exact solution of the problem. From the solutions of (33), (34) for Pβ and Mβ one calculates the average polarization
fields over the unit cell:

P0 =
∑
α

fαPα = χPE · E0 + χPB · B0 (39)

M0 =
∑
α

fαMα = χME · E0 + χMB · B0 (40)

The coefficient tensors in these equations are calculated by solving (33), (34). Now we are able to write down the
equivalent material properties as follows:

D0 = ε̄ · E0 = εCE0 + P0 = εCE0 + χPE · E0 + χPB · B0 (41)

H0 = μ̄−1 · B0 = μ−1
C B0 − M0 = μ−1

C B0 − χME · E0 − χMB · B0 (42)

Using the relations

B0 = k
ω

× E0 (43)

D0 = − k
ω

× H0 (44)

the overall material properties, for simple (non-chiral) media, can be written as,

ε̄ = εC1 + χPE − 1

ω
χPB · (e · k) (45)

μ̄−1 =
(

1 + 1

ω
χME · ε̄−1 · (e · k)

)−1

· (μ−1
C 1 − χMB) (46)

Here e is the permutation symbol used to replace the cross product of k with a matrix representation. It must be
emphasized that all of the above calculations are for a single macroscopic sinusoidal wave with frequency ω and wave
vector k. We did not impose any condition relating these two quantities. This condition which is the macroscopic
dispersion relation can now be found by substituting the two overall material properties (45), (46) into the macroscopic
wave equation,

k × μ̄−1 ·
(

1

ω
k × E0

)
+ ωε̄ · E0 = 0 (47)

In order for this equation to have non-trivial solutions, the determinant of the coefficient matrix must vanish,

Det
∣∣ω2ε̄ + (e · k) · (μ̄−1 · (e · k)

)∣∣ = 0 (48)

Eq. (48) involves 4 parameters: the frequency and the components of the wave vector. Given any 3, one can solve
for the other. For example one can find the frequency for any given wave vector, or one can calculate the wave number
for a given frequency and direction. After the dispersion relation is established, the overall material properties for any
direction of propagation are found from (45), (46). This completes the description of the method.
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3. Examples

For all non-magnetic materials, Eqs. (45), (46) simplify to,

μ̄ = μ01 (49)

ε̄ = εC1 + χPE (50)

For general geometries the infinite sums (35)–(38) have to be truncated to a finite number of terms. The series are
symbolically evaluated using Mathematica (Wolfram, [20]). To illustrate the method, we have solved 2 simple cases of
two-phase media and have compared our results with static estimates (2 bounds, an approximate random model, and
the Maxwell Garnett rule for the case of spheres) as well as with the simulation results using the code Ansoft-HFSS
(Ansoft, [21]). The static lower and upper bounds, respectively, are (Nemat-Nasser and Hori, [2]):

ε̄ = 1
f
εΩ

+ 1−f
εC

(51)

ε̄ = f εΩ + (1 − f )εC (52)

The static random model estimate is (Nemat-Nasser et al., [22]):

ε̄ = (εC + εΩ) − f (εC − εΩ)

(εC + εΩ) + f (εC − εΩ)
(53)

The selected geometries are shown in Fig. 3. For both cases the dielectric constant of the matrix was chosen to be 1
and that of the inclusion was 101 to amplify the effects. The volume fraction for the infinite cylinders and the spheres
were 9π/64 and 9π/128, respectively. The ratio of the effective wavelength (macroscopic, through the homogenized
material) to the length of the unit cell is 5π for the values reported here. The results from Mathematica calculation are
frequency-dependent, as expected. This is most notable for the cylindrical geometry.

For the infinite cylinders the static upper bound, lower bound, and random model give dielectric constants of 45.18,
1.78, and 2.53, respectively. The simulation (dynamic) predicts 48.11 and 2.55 for the electric field polarized parallel
and normal to the axis of cylinders, respectively. Our method gives 48.105 and 2.555, respectively. Note the close
agreement between the simulation and the present method. Also note that the value of the dielectric constant when the
electric field is polarized parallel to the axis of cylinders exceeds the static upper bound. This is due to the fact that
the upper bound is only applicable to infinite wavelength (static). In fact, when the limit of the wavelength is taken
to infinity (or equivalently, when the frequency is taken to zero) the value of the dielectric constant calculated from
our method converges to the static upper bound. Therefore our method estimates the dielectric constant successfully
for both the limiting value (f = 0, compared to the static upper bound) and a typical non-zero frequency dependent
case (compared to the simulation results). The method predicts correct overall dispersive results from non-dispersive

Fig. 3. Examples for the microstructurally-based homogenization method: left: 2D square array of infinite cylinders; right: 3D cubic array of
spheres.
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local material properties as expected from analytical solutions and simulations. The numerical results, however, are
reported here for a single frequency component corresponding to λ/2a = 5π .

For the case of spheres, the static upper bound, lower bound, and random model give dielectric constant values
of 23.09, 1.28, and 1.55, respectively. The simulation predicts 1.78 and our method calculates 1.834. The Maxwell
Garnett rule for spherical inclusions and isotropic material (Maxwell Garnett, [23])

ε̄ = εC

(
1 + 3f

εΩ − εC

εΩ + 2εC − f (εΩ − εC)

)
(54)

gives 1.821. The close agreement between the simulation and our method compared with the other models is satisfac-
tory.

4. Magnetic moment due to electric current distribution

The present method gives good results for dielectric materials. However, application to conductors and/or magnetic
materials requires further consideration. The application to the cases where magnetic permeability is heterogeneous
does not seem to pose any significant problem and it is, in fact, included in this work. The main issue is incorpo-
rating the magnetic effect of the oscillating electric field in the conductors into the formulation. The issue here is
that introducing complex properties for the conductors can modify the overall magnetic properties, but the proposed
microstructurally-based formalism does not introduce any such effect. Eq. (49), (50) in their current form do not show
any magnetic perturbations due to non-magnetic conductors. Furthermore, in a lossy or conductive heterogeneous
medium, the dispersion equation (48) will involve complex-valued solutions for the wave vector k. These complica-
tions and others introduce certain challenges that have to be addressed.

The overall magnetic response is modified when there are circular or solenoidal electrical currents. However, in
the present formulation such current densities are canceled out upon averaging. It is necessary to include such current
distribution directly in the formulation. We are currently working on this problem and the generalized formulation
along with results will be presented elsewhere.

Here, however, we consider the following heuristic approach. The magnetic polarization of a current distribution is
usually defined by (Jackson, [24]):

M = 1

2

∫
U

x × J(x)dVx. (55)

We start by assuming that there are no magnetic materials in the unit cell, i.e., μ(x) = μ01. Then, Eqs. (17), (18)
reduce to,

E(ξ) = ω2μ0

ζ · ζ − k2
0

(
1 − 1

k2
0

ζ ⊗ ζ

)
· P(ξ) (56)

B(ξ) = ζ

ω
× E(ξ ) (57)

All the resulting equations are also simplified, yielding

Rαβ =
∑
ξ �=0

gα(ξ)fβgβ(−ξ)K(ξ) (58)

∑
β

(
(εα − εC1) · Rαβ − δαβ1

) · Pβ = −(εα − εC1) · E0 (59)

P0 =
∑
α

fαPα = χPE · E0 (60)

Now we define the overall magnetic moment of the unit cell using (f = ∑
α fα)

Jsol.
β = ∂(Pβ − P0/f )

∂t
= −iω(Pβ − P0/f ) (61)

M0 = 1

2U

∫
x × Jsol.(x)dVx ≈ −iω

2

∑
β

fβxβ × (Pβ − P0/f ) (62)
U
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Here xβ is the position vector of the center of mass of region β , measured from the center of the unit cell. Using the
solutions of the system of Eqs. (59), Eq. (62) is rewritten as,

M0 = χME · E0 (63)

Note that χPE and χME are functions of both independent variables, k and ω. Their relation gives the dispersion
equation that is found by considering the wave equation,

D0 = εCE0 + χPE · E0 = − k
ω

× H0 (64)

H0 = 1

μ0
B0 − M0 = k

μ0ω
× E0 − χME · E0 (65)

(εC1 + χPE) · E0 + k
μ0ω

× k
ω

× E0 − k
ω

× χME · E0 = 0 (66)

Eq. (66) can be written in matrix form in terms of E0

A(k,ω) · E0 = 0 (67)

In order for (67) to have nontrivial solutions, the determinant of the coefficient matrix must vanish. The result-
ing expression is solved for the complex-valued k, given the frequency and the direction of k. For each solution,
the eigenvector solutions for E0 give the principal polarization. The other field quantities are then calculated from
Eqs. (64), (65).

The overall material properties are

D0 = (εC1 + χPE) · E0 (68)

H0 = μ−1
0 B0 − χME · E0 (69)

Or, equivalently,

B0 = μ0(H0 + χME · E0). (70)

Since from this formulation all the field vector quantities can be directly expressed in terms of only one field
quantity, say E0, the representation in Eqs. (68)–(70) is not unique. Ideally we would like to express this in a more
familiar form, such as (Lindell et al., [25])

D = ε̄(ω, k̂) · E + ξ̄(ω, k̂) · H (71)

B = ζ̄ (ω,k̂) · E + μ̄(ω,k̂) · H (72)

Here ξ̄ and ζ̄ are dyadic tensor quantities distinct from the previously used vector quantities. Also k̂ is the unit vector
in the propagation direction. The symmetry of the unit cell is now quite important. For example if it is known that the
structure is not chiral or bi-anisotropic, then the overall material properties can be written as

ε̄ = εC1 + χPE(ω, k̂) (73)

μ̄ = μ0

(
1 + χME(ω, k̂) · ε̄−1 · e · k

ω

)
(74)

As before e · k = elmnkmel ⊗ en is used to replace the cross product.
If the unit cell does not possess the mirror-image symmetry, then the composite may demonstrate chiral behavior.

However, since the permittivity and permeability tensors must remain invariant under spatial reflection (Lindell et
al., [25]), one may homogenize the mirror image unit cell and calculate the corresponding polarization fields, P0r and
M0r , as well as the associated D0r and B0r . The chirality tensors, and the permittivity and permeability tensors are
now obtained from the difference and sum of these solutions, as follows:

D0 + D0r = 2ε̄(ω, k̂) · E0 (75)

D0 − D0r = 2ξ̄(ω, k̂) · H0 (76)

B0 + B0r = 2μ̄(ω, k̂) · H0 (77)

B0 − B0r = 2ζ̄ (ω, k̂) · E0 (78)
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