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Abstract

In this article a comparison between two non-linear finite element approaches for the numerical estimation of the ultimate
failure load of masonry arches is presented. According to the first model, the geometry of the arch is divided into a number of
unilateral contact interfaces which simulate potential cracks. Opening or sliding for some of the interfaces indicates crack initiation.
The second model uses two-dimensional finite elements for the simulation of the arch. When tensile stresses appear, upon an
adaptive stepwise procedure, the corresponding elements are replaced by unilateral contact elements which represent cracks. In
both models the fill over the arch, that could strongly affect the collapse behaviour increasing the bridge load carrying capacity,
is taken into account. Moreover, the ultimate load and the collapse mechanism have been calculated by using a path-following
(load incrementation) technique. Both models are developed and applied on a real scale masonry arch; results are comparable with
both the experimental collapse mechanism and the ultimate load failure. To cite this article: M. Betti et al., C. R. Mecanique 336
(2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Deux modèles éléments finis non-linéaires développés pour le calcul de la ruine d’arches en maçonnerie. Dans cet ar-
ticle, on présente une comparaison entre deux approches par éléments finis non-linéaires permettant d’estimer numériquement la
charge ultime de ruine d’arches en maçonnerie. Dans le premier modèle, la géométrie de l’arche est divisée en un certain nombre
d’interfaces de contact unilatéral qui simulent des fissures potentielles. L’ouverture ou le glissement sur certains de ces interfaces
indiquent une initiation de fissure. Le second modèle utilise des éléments finis bidimensionnels pour la simulation de l’arche. Quand
des contraintes de traction apparaissent, les éléments correspondants sont remplacés, suivant une procédure pas-à-pas adaptative,
par des éléments de contact unilatéral qui représentent des fissures. Dans les deux modèles, on prend en compte le remplissage sur
l’arche, qui peut affecter considérablement le comportement à la rupture en augmentant la capacité portante du pont. De plus, la
charge limite et le mécanisme de ruine ont été calculés en utilisant une technique pas-à-pas tenant compte du trajet de chargement.
Les deux modèles sont développés et appliqués à une arche en maçonnerie en vraie grandeur ; les résultats reproduisent bien tant
le mécanisme de ruine expérimental et la charge limite de rupture. Pour citer cet article : M. Betti et al., C. R. Mecanique 336
(2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

A large number of arch bridges built in Europe during the 19th century according to codes and design criteria
developed for the 19th century loads [1] are still in service. Most of these bridges are nowadays subjected to heavier
loads, and sometimes show signs of deterioration. Due to their importance for the transportation systems, especially
for the European railway network, as well as due to their cultural value, tools for a reliable estimation of their actual
load carrying capacity are needed.

The most widely distributed and well-know method for the assessing of masonry arch bridges is, perhaps, the
Military Engineering Experimental Establishment (MEXE) [2] based on Pippard’s papers (e.g. [3,4]) and developed
with the aim to determinate the ability of masonry arches to survive the crossing of a military tank. Substantially the
MEXE method is a family of semi-empirical methods, including several reduction factors based on the condition noted
in visual inspection of the bridge. In fact, these methods consider a representative single-arch and the load carrying
capacity of the whole bridge is deduced from the single arch analysis, after introduction of some reducing factor.
These methods, which has been incorporated (with some modifications) into the UK standard for the assessment of
bridges, are crude, and the rational basis of the reduction factor has never been well established [5]. Despite their very
conservative features, they are widely used because of their simplicity.

The aforementioned procedures are questionable because it is known that the geometry of the bridge, the actual
position of the loads and the compliance of the arch and of the pier greatly affect the response. Masonry arch bridges
are complex three-dimensional systems, whose structural behaviour is affected by the interaction between their com-
ponents. Both full scale tests [6,7], and model scale experiments, show the significant contribution of the overlying
fill as well as the spandrel walls to the structural stiffness. The variation in the mechanical properties of the bridge’s
materials and components (barrel vaults, piers, spandrel walls, fill, etc.) makes the study of them quite demanding and
has led to the development of a number of theories in order to represent, as accurately as possible, the actual mechan-
ical behaviour of the masonry bridge. Experimental results obtained from collapse tests on full scale and model scale
bridges have shown the complexity of the collapse behaviour and highlight the strong influence of fill and spandrels
on the collapse mechanism and the load carrying capacity.

In order to understand, and to apprise, the mechanics of these structures within a reasonable degree of confidence
a classical method proposed in the literature is the mechanism method established by Heyman [8] who considered the
actual way in which arches failed (by the formation of hinges, therefore forming a mechanism). The hypotheses on the
masonry behaviour are: no tensile strength; infinite compressive strength and absence of sliding at failure. Under these
hypotheses, the masonry bridge at collapse can be approximated by an assemblage of rigid parts, held up by mutual
pressure, and the collapse of the structural elements is characterised by the development of non-dissipative hinges
transforming the structure into a mechanism. The term mechanism indicates that a displacement distribution in the
structure is produced by inelastic deformations (the formation of hinges) which occur in a finite number of sections
due to disconnections and cracking. It is based on the assumption that an arch fails by the development of a collapse
mechanism with four hinges. In fact, the classical collapse mechanism method of Heyman is based on the estimation
of the thrust line (a funicular polygon which defines the resultant force in a cross-section of the arch). When the thrust
line in a cross-section is adjacent to the ring of the arch, the eccentricity of the normal force, from the center line of
the arch at the given cross-section, becomes maximum. As a result, a bending moment is developed around the center
line of the arch and a hinge opens, on the assumption that the arch does not develop any tensile strength. Since a three-
pin arch is a statically determinate structure, opening of a fourth hinge converts the structure into a mechanism and
collapse occurs. Therefore, the four hinges collapse mechanism is the collapse mode for an arch loaded with a vertical
concentrated force in the quarter-span of the arch [9,10]. In addition, no compressive failure for the masonry is usually
expected. Collapse load predictions from this method depend on an assumed distribution of lateral soil pressures on
the extrados regardless of the arch’s deformed shape. A mechanism analysis is accurate only when all the forces and
their positions are known and the assumptions of the method are not violated. For example, friction and sliding failure
are not permitted. On the other hand, when transverse collapse mechanisms may be ignored, as discussed by Fanning
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et al. [11], two-dimensional models that include the strengthening effects of the fill can be useful for the longitudinal
bridge assessment and provide direct and simple information on the structural response. In this case, a reduced number
of constitutive parameters is required.

In the sequel several methods have been proposed for the assessment of masonry arches. Part of them are related to
the limit analysis of block structures with a frictional contact interface. Melbourne and Gilbert [12] studied the limit
analysis problem of stone arches using the upper bound theorem [13] and a linear programming formulation. Orduna
and Lourenço [14,15] developed two- and three-dimensional models of discrete structures (like stone arches) and they
took into account torsion failure mode as well as reinforcement elements.

Other methods are based on the development of a finite element model and incremental analysis. Crisfield [16,17]
proposed a model in which the arch is simulated with beam elements. He took into account the fill over the arch as
well as the active and passive soil pressure induced by the fill, by using non-linear one-dimensional elements. Lofti
and Shing [18] developed a discrete finite element model for the description of the mortar joints of masonry structures.
They simulated mortar with interface elements that obey to a non-linear constitutive law. Molins and Roca [19] used a
three-dimensional finite element model for the investigation of the behaviour of stone arches. They applied the Mohr–
Coulomb criterion for the shear failure of the masonry, and the perfect-plastic constitutive law for the simulation of
the tensile failure mode.

Cavicchi and Gambarotta [20] simulated arches and piers with beam elements having zero tensile strength. For the
fill they used two-dimensional plane strain finite elements with the Mohr–Coulomb failure criterion. For the arch–fill
interaction they applied interface elements. They presented applications in a single span as well as in a multi-span
masonry bridge. From another point of view, Ng and Fairfield [5] proposed a modification of the collapse mechanism
method by considering the interaction between the arch deflections and the backfill pressures.

A relatively recent technique, in order to assess the backfill interaction, is the discontinuous deformation analysis.
The method, originally developed in the field of rock mechanics, is adopted by Thavalingam et al. [21].

Due to the great variety of the approaches proposed in the inherent literature for the assessment of masonry arch
bridge, in this study a comparison between two approaches developed for the investigation of the mechanical behav-
iour is presented.

According to the first technique, the ultimate failure load is found by the use of a discrete-type model. In par-
ticular, the geometry of the structure is divided into a number of interfaces, perpendicular to the center line of the
ring. Those interfaces are uniformly distributed along the arch. Unilateral contact law governs the behaviour in the
normal direction of an interface, indicating that no tension forces can be transmitted in this direction. The behav-
iour in the tangential direction takes into account that sliding may or may not occur, by the use of the Coulomb
friction law. The backfill can be included in this model and it is simulated with two-dimensional finite elements.
The interaction between arch and fill is also simulated by a unilateral contact–friction interface. The either/or de-
cisions incorporated in the unilateral contact and friction mechanisms make the whole mechanical model highly
non-linear. Due to the presence of non-differentiable functions within these models, they are characterized as non-
smooth or inequality mechanics models [22–24]. In fact, contact analysis has been used in several works for the
non-linear study of masonry structure, including collapse, see e.g. [25]. Furthermore the limit analysis problem has
been recently studied within the framework of optimization with complementarity constraints, i.e. a problem known
as mathematical program with equilibrium constraints (MPEC); see, among others, [26,13,14] and the references
given therein. For practical applications carefully tuned path-following iterative techniques are used for the numerical
solution. Furthermore, the limit analysis problem is related to the solvability of the underlying mechanical problem
using analogous theoretical results concerning the solvability of variational inequalities and complementarity prob-
lems [22,23,27].

According to the second approach a non-linear incremental adaptive method is proposed in order to assess the load
carrying capacity. The method is based on a simplified two-dimensional finite element discretization of the masonry
bridge arch barrel. Masonry in assumed to be a no-tension material. Therefore some unilateral contact elements are
added iteratively in order to respect this assumption. The lateral response of the fill is modelled by one-dimensional
horizontal elements having a non linear equation with different responses at active and passive fill states.

Results of the comparison between the two models will prove to be quite interesting, as they will demonstrate
how a more complex finite element model interacts with a simplified model, both useful for the assessment of stone
arches.
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2. The FEM model with unilateral contact–friction interfaces

The behaviour in the normal direction of an interface is described by the unilateral contact model. In particular, let
us consider the boundary of an elastic body which comes in contact with a rigid wall. Let u be the single degree of
freedom of the system, g be the initial opening and tn be the corresponding contact pressure in case contact occurs. The
basic unilateral contact law is described by the set of inequalities (1a), (1b) and by the complementarity relation (1c)
[22–24].

h = u − g � 0 ⇒ h � 0, −tn � 0, tn(u − g) = 0 (1)

Inequality (1a) represents the non penetration relation, relation (1c) implements the requirement that only compres-
sive stresses (contact pressures) are allowed and Eq. (1c) is the complementarity relation according to which either
separation with zero contact stress occurs or contact is realized with possibly non-zero contact stress.

The behaviour in the tangential direction is defined by a static version of the Coulomb friction model. Two con-
tacting surfaces start sliding when the shear stress at the interface reaches a maximum critical value equal to

t t = τcr = ±μ
∣∣tn

∣∣ (2)

where t t , tn are the shear stress and the contact pressure at a given point of the contacting surfaces respectively
and μ is the friction coefficient. There are two possible directions of sliding along an interface, therefore t t can be
positive or negative depending on that direction. Furthermore, there is no sliding if |t t | < μ | tn| (stick conditions).
The stick–slip relations of the frictional mechanism can be mathematically described with two sets of inequalities and
complementarity relations, similar to (1), (2), by using appropriate slack variables [24].

Due to the nonpenetration assumption and the stick–slip inequalities of friction the variational formulation of the
problem takes the form of a variational inequality [22,23].

Lagrange multipliers are used in the Principle of the Virtual Work to enforce the no-penetration and sticking con-
ditions. The arising set of the non-linear equations is solved by the Newton–Raphson incremental iterative procedure,
or by specialized algorithms (for linear or non-linear complementarity or nonsmooth optimization problems).

For example, the frictionless unilateral contact problem takes the following matrix form:

Ku + NTr = P0 + λP (3)

Nu − g � 0, r � 0, (Nu − g)T · r = 0 (4)

Eq. (3) expresses the equilibrium equations of the unilateral contact problem, where for simplicity frictional terms
are omitted. K is the stiffness matrix and u is the displacement vector. P0 denotes the self-weight of the structure and
P represents the concentrated live load. N is an appropriate geometric transformation matrix and vector g contains
the initial gaps for the description of the unilateral contact joints. Relations (4a), (4b), (4c) represent the constraints
of the unilateral contact problem for the whole discretized structure and are based on the local description given by
relations (1).

The enforcement of the constraints is achieved by using Lagrange multipliers. Thus, r is the vector of Lagrange
multipliers corresponding to the inequality constraints and is equal to the corresponding contact pressure (−tn).

The problem described above is a nonsmooth parametric linear complementarity problem (LCP) [24,27,28] para-
metrized by the one-dimensional load parameter λ. All required quantities can be calculated by using finite element
techniques. Using path-following the solution of the problem can be calculated in the interval 0 � λ � λfailure, where
λfailure is the value of the loading factor for which the unilateral contact problem does not have a solution. This is
the limit analysis load. The analysis reported here has been completed within the ABAQUS code (see [29] for further
details).

3. A FEM model with adaptive crack elements

A relatively recent development in the analysis of masonry arch bridges has been the use of simplified finite ele-
ment techniques. Towler and Sawko [30] showed the potential of this general approach by computing load deflection
curves and collapse loads for an arch modelled with one-dimensional beam elements to represent the arch barrel. The
presence of fill was considered only as a dead load and no further soil-structure interaction effects were modelled.



46 M. Betti et al. / C. R. Mecanique 336 (2008) 42–53
Crisfield [17] later introduced non-linear spring elements in an attempt to model, in a simplified way, the lateral re-
sistance from the soil. He was the first to introduce non-linear spring elements for the modelling of the fill material
and for the modelling of the lateral resistance of the soil. The spring stiffness has been termed the sub-grade modulus,
and was initially pre-compressed to the equivalent pressure at rest. The maximum horizontal pressure was limited by
the active or passive fill state, depending upon the type of movement of the arch. Other researchers, [31,32], presented
more accurate iterative schemes and more detailed two- or three-dimensional models [33] where the tools of the mod-
ern incremental analysis are applied. If one-dimensional models are efficient in assessment and design procedures for
single bridges, two- and three-dimensional models may give detailed information on local phenomena (e.g. the fill
stress and strain state) at the expense of high computational costs.

Here a simplified numerical procedure for the limit analysis of masonry arch bridge is developed in order to take
into account, and to evaluate, the arch–fill interaction. A non-linear incremental approach, assuming masonry as no
tensile material, is developed. The procedure is based on a simplified two-dimensional finite element discretization of
the masonry bridge. The arch is modelled by means of four-node plane stress elastic elements and the fill material is
modelled by means of non-linear links (see Fig. 4) whose properties are evaluated according to the active and passive
fill states.

The passive and active pressures of the fill are estimated by the following force, taking into account the geotechnical
fill properties:

Hf (ds) = 0.5 · ρ · Ka,p · (d2
R − d2

S

)
(5)

where dR and dS represent, respectively, the depth of the fill with respect to the upper surface of the bridge and the
depth of the fill at the point of interest; ρ is the fill density; Ka(Kp) is the passive (active) resistance factor of the fill
material that could be obtained from the angle of internal friction ϕ by

Ka = 1 − sinϕ

1 + sinϕ
; Kp = 1 + sinϕ

1 − sinϕ
(6)

The proposed simplified, and approximate procedure, starts from the elastic analysis of the structure (stress state on
the arch elements) taking into account only the self-weight. Next, with the increasing external collapse load, unilateral
contact elements are applied in order to take into account the non-linear behaviour of the arch barrel. At each load
step the stress state on the arch ring elements is checked at every joint, and if the stress state is not admissible for the
modelled masonry material (that is, tensile stresses arise) the corresponding joints that connect the adjacent elements
are substituted by unilateral contact interfaces (see Fig. 4). The procedure proposed here is based on an original idea
of Castigliano.

Here, this stepwise process is implemented inside the commercial code ANSYS. By means of this adaptive pro-
cedure the development of the cracked area follow the load application, i.e. the area where the crack appears is not
imposed a priori. At the beginning, in the first step of the procedure, when only dead loads are present, each plane
element is connected to the others directly by joints; by applying the external collapse load these connections are
modified by following the internal stress state in order to respect the no-tensile behaviour of the masonry material.
The actual behaviour of the arch, when the load is increasing from zero to the final load, is followed. More technical
details can be found in [35].

It is interesting to point out that the calibration of this model does not require expensive experimental in situ
investigation, since only the knowledge of a reduced number of parameters is required: the Young modulus, the
Poisson coefficient, the self weight and the geotechnical fill properties.

4. Application to a real arch

As a case study the two proposed approaches are applied for the assessment of the load carrying capacity of Prest-
wood bridge, a single-span bridge tested to collapse within the experimental research on masonry bridges supported
by the Transport Research Laboratory [7].

This bridge has a span length equal to 6.55 m, with upper rise 1.42 m. The vault thickness is 0.22 m and comprises
a single ring of bricks laid as headers; the fill depth at the crown is 0.165 m and the total bridge width is 3.80 m (see
Fig. 1). Therefore the slenderness (thickness/span) is equal to 1/30 and the flatness (rise/span) is equal to 1/6–1/7.
The load is applied on a strip of the road surface along the full width of the bridge between the parapets at a point
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Fig. 1. Geometry of the Prestwood bridge.

Fig. 2. Collapse mechanism of the Prestwood bridge after the destructive test (DT).

where the lower load value leading to failure was expected. The latter has been evaluated by assuming that the arch
would fail as a four hinged mechanism and was, then, applied at the quarter-span of the bridge. The strip was 0.30
m wide in order to distribute the load and to avoid a premature failure of the fill. The load has been applied by
means of hydraulic jacks, while the required reaction for the load was provided by the weight of concrete blocks on
a steel frame above the bridge (see Fig. 2). The fill density cfill is 20 kN/m3 and the masonry density is 20 kN/m3.
Furthermore, the fill cohesion is equal to 10 kPa, the fill angle of internal friction ϕ is 37◦ and the masonry compressive
strength σm is equal to 7.7 N/mm2. The experimental collapse mechanism of the bridge is shown in Fig. 2 [6,7]. The
vault collapse mechanism exhibits four hinges that are clearly visible in the picture; the mechanism developed with
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Fig. 3. Non-linear fill pressure model.

negligible material crushing. The arch mechanism constrains the fill region under the applied load to move downward
and the fill at the other side of the bridge to move upward. The first visible sign of damage occurred at Pf = 173 kN
and the experimental collapse load was Pexp = 228 kN.

4.1. Analysis without fill

In a preliminary step an analysis where the fill is assumed to be heavy but not resistant is made. Loading conditions
in both models include the self-weight (which is applied first) and a concentrated load at the quarter span of the bridge
(see Fig. 1). In the contact–friction model the Young’s modulus of the arch is 15 GPa, the Poisson’s ratio is 0.3 and the
density is equal to 2000 kg/m3. The contact model consists of quadrilateral, four-node, bilinear, plane strain elements
with two-translational degrees of freedom per node. The exact number of contact–friction interfaces along the length
of the bridge tends to be meaningless in the case where many interfaces are used (more details can be found in [28]).
In this study, forty interfaces are used for both the arch without and with the fill. The arch is considered to be fixed to
the ground. The out of plane width of the bridge is taken equal to 3.8 m. The friction coefficient of the interfaces is
equal to 0.6.

In the adaptive model only arch barrel elements are modelled by four node linear plain stress elements. According to
the stepwise procedure, unilateral contact elements are added iteratively along the ring thickness at the position where
tensile stresses arise. In order to evaluate the influence of the material properties of the arch barrel some parametric
analyses have been performed by varying the elastic modulus of the elastic elements. The analyses have shown that
(neglecting second order effects connected with geometric non-linearities) the material properties are not significant
for the evaluation of the ultimate load [34].

In accordance with the adaptive model in the numerical collapse mechanism, four groups of hinges are developed
(see Figs. 5 and 6). The loaded side of the arch moves downward, and the arch mechanism pushes the left side. This
behaviour agrees with the experimental result only with respect to the collapse mechanism; the numerical critical load
is 79.8 kN, which is approximately equal to the 35% of the experimental collapse load Pexp = 228 kN. It is interesting
to observe that the value reached by the tensional state on the arch at the collapse is admissible for the masonry mate-
rial, confirming that collapse is due to a development of a mechanism (see Fig. 6). Fig. 5 shows, immediately before
the collapse, the principal stress in vector form and this could be a representation of the thrust line. Accumulation of
principal stresses near the ring of the arch denotes that a hinge is opened in that point. The relation between displace-
ments and loads is almost linear until a load level approximately equal to 58% of the numerical ultimate load when
the first crack appears on the arch barrel. With increasing load it is possible to observe a crack propagation on the arch
ring, up to the development of a hinge.

4.2. Analysis with fill

The presence of the fill above the arch significantly affects its behaviour. The self-weight of the fill increases
the stability, either directly by inducing additional compression in the arch, or indirectly by allowing a smoother
distribution of the concentrated forces over the bridge. Comparison of the magnitude of the failure load obtained by
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Fig. 4. Flow chart of the adaptive procedure.

Fig. 5. Principal stress (vector representation, trust line) before collapse.

each model, with the experimentally obtained one, confirms this experimental result. A concentrated load is applied
on a rigid basis (0.3 m wide) upon the fill, in the quarter span of the bridge.

4.2.1. Results from the unilateral contact–friction model
In the framework of the contact model, the fill is simulated with two-dimensional plane strain finite elements. The

arch–fill interaction is taken into account, as well by a unilateral contact–friction interface. Failure of the fill material
is representing by the Mohr–Coulomb failure criterion. Concerning the boundary conditions of the contact model,
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Fig. 6. Deformation before collapse.

Fig. 7. Four hinges collapse mechanism from the unilateral contact–friction.

Fig. 8. Principal stress (vector representation, trust line) before collapse.

both the arch and the fill are initially considered to be fixed to the ground. In particular, the horizontal as well as the
vertical boundaries of the fill are fixed.

For the mechanical properties mentioned here the collapse load which is obtained by the contact model is Pu,c =
225.4 kN which is comparable with the experimental value (228 kN). A four hinges mechanism arises in the arch,
which is the same with the experimental one. In Fig. 7 the collapse mechanism obtained by the contact model is
shown, suitably scaled to make deformation visible. The brown colour in the fill indicates the region where yield
occurs. Both the arch and the fill move downwards in the left-hand side of the structure (e.g. the loaded side). As a
consequence, the side of the bridge opposite to the loading moves upwards (the four hinges collapse mechanism of
the arch pushes the fill upwards in this side). The hinge number (4) of Fig. 7 does not appear very close to the right
springing but is moved toward the left side. The presence of the fill is responsible for the offset of the hinge’s position.

4.2.2. Results from the adaptive unilateral element model
The arch barrel structural elements are modelled again with four node linear plain stress elements. Unilateral con-

tact elements are added along the arch barrel in order to set zero tensile stresses with the adaptive stepwise procedure:
at each load step the internal unilateral contact conditions are upgraded. In this second analysis the interaction between
the fill material and the arch barrel has been taken into account by means of non-linear springs. Properties of this non-
linear spring are evaluated assuming an angle of internal friction equal to 37◦ corresponding to the geotechnical fill
material properties (reddish-brown sand).

Fig. 9 shows that the loaded side of the arch moves downwards, and the arch mechanism pushes the left side; as a
consequence, the fill over the left side is moved upwards. The first hinge on the left side of the arch does not develop
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Fig. 9. Deformation before collapse.

at the springing, as it happens in the arch where the fill is heavy but not resistant; the presence of the fill constrains
the hinge to move upward. This behaviour agrees with the experimental result shown in Fig. 2. The numerical load
carrying capacity is Pu,ad = 225.7 kN, a value that agree with the collapse load found with the contact model (Pu,c =
225.4 kN). Fig. 8 shows principal stresses; close to the area where hinges arise there is a local crushing of masonry
material but, again, the value reached by the tensional state on the arch at the collapse denotes that collapse is due to
a development of a mechanism rather than a global crushing. Fig. 8 shows the trust line, which is adjacent to the ring
of the arch on four sections denoting that hinges appear in that points. The section of the arch that first reaches the
compressive elastic limit is located under the area where the load is applied. This result agrees with the experimental
behaviour of the bridge.

4.2.3. Comparison between the two methods
Both models with the fill provide results that are very close to the experimental collapse load Pexp = 228 kN.
The strengthening effects of the fill correspond to a higher exploitation of the strength resources of the arch; in

particular, the development of the collapse mechanism predicted by the limit analysis requires the development of
plastic compressive strains higher than those predicted by simplified models without fill resistance that could be no
longer consistent with the masonry behaviour.

A significant difference between the two models is introduced by the fact that in the model with the unilateral
contact elements the development of the cracked area is not imposed a priori, but follows the actual mechanical
behaviour of the arch when the loading increases from zero to the final load level. Of course the position of these
elements is determined by the mesh size adopted for the plane elements used on the model of the arch ring. In contrast,
the contact model uses fixed positions for the interfaces of the arch indicating that the positions of the potential cracks
are imposed a priori. In practice the two models converge, provided that a large number of interfaces is used in the
contact model.

Furthermore, the fill is simulated in two different ways. In the model with the unilateral contact elements, non-
linear springs are used. This simplified procedure is particular useful for a first quick assessment of the behaviour of
the stone arch. This is attributed to the fact that springs contribute to a relatively simple and fast numerical solution.
On the other hand, the contact–friction model uses two dimensional finite elements with the Mohr–Coulomb failure
criterion. This is a more complex way of simulating the fill over the arch. It gives information about the failure of the
fill and a more realistic representation of it, but it demands more computational time and effort.

Moreover, an interesting comment can be made by observing the collapse mechanism obtained by the two models.
In particular, it seems that the position of the hinge number (4) in the right side of the contact model (see Fig. 7),
does not coincide with the corresponding hinge in the model with the unilateral elements (first hinge in the right
side of the model, see Fig. 9). The latter is developed very near to the springing, while the hinge of the contact
model arises at some distance from it. This is attributed to the fact that in the contact model both the vertical and the
horizontal boundaries of the fill are fixed. In contrast, in the model with unilateral elements the fill is simulated with
horizontal springs which permit a movement in the horizontal direction. This corresponds to free vertical boundaries,
for the contact model. Indeed, if vertical boundaries of the contact model become free, the collapse mechanism will be
slightly modified and the particular hinge will be in the same position for both models, e.g. very close to the springing.
The limit load in this case is equal to 223.4 kN. As the boundary conditions have been changed, fill parameters have
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to be changed too, in order to obtain the above mentioned limit load. Consequently, the angle of internal friction has
been considered to be equal to 37◦, the cohesion equal to 10 kPa and the dilation angle equal to 33◦.

5. Conclusions

Two procedures for the analysis of the load carrying capacity of masonry arch bridges have been discussed. Both
the value of the collapse load and the corresponding collapse mechanisms, taking into account arch–fill interaction,
can be predicted with high accuracy. Comparison with experimental results shows that both methods are able to access
with good confidence the ultimate load for masonry arch structures. With the contact model, where the fill is modelled
with plane elements, it is possible, in addition, to obtain information about the arising stresses and strains of the fill
material. The unilateral model cannot supply detailed information about the fill because of the simplified assumption
of the springs. Anyway, the method has proved to be user-friendly since it can be developed by making use of the
programming facilities of commercial FE codes and, in spite of some approximations, it has proved to give good
precision and it could be an interesting alternative to the standard non-linear facilities of commercial FEM codes,
which are generally related to concrete-like materials. Finally, it should be emphasized that unilateral phenomena
arise in a larger number of heritage and monumental structures, like domes and vaults. The techniques proposed here
can, in principle, be extended to cover more general structures as well.
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