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Abstract

The interaction of two superposed inviscid liquids with a flexible side wall of a rectangular container is considered. The governing
equations describing the behaviour of the system are analyzed using the concept of normal modes, and their solutions presented
in the form of infinite series. The expansion coefficients for the velocity potentials are calculated by employing a new inner
product which allows orthogonalizing the fluid shape modes. An eigenfrequency equation is then derived from the requirement
for a nontrivial solution exists. The influence of the governing parameters on the coupled frequencies is illustrated in the case of
water–mercury system. To cite this article: M. Amaouche, B. Meziani, C. R. Mecanique 336 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Vibrations de deux fluides superposés dans un réservoir avec paroi flexible. On établit une équation permettant de calculer
les fréquences de couplage d’une paroi flexible d’un réservoir rectangulaire contenant deux fluides parfaits, non miscibles, avec
surface libre. La procédure utilisée est basée sur une décomposition en modes normaux et l’établissement d’un produit scalaire
approprié orthogonalisant la suite des modes normaux pour les potentiels des vitesses. Une application numérique est donnée dans
le cas du système mercure–eau. Pour citer cet article : M. Amaouche, B. Meziani, C. R. Mecanique 336 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The trend towards thinner and lighter structures leads to the use of high flexibility materials in many engineering
applications. This property furthers the interaction of the structure vibrations with the sloshing of the free liquid sur-
face. So, large amplitude motions may take place, often leading to detrimental effects by endangering the integrity of
the system. Violent motions may also occur when a hydroelastic system is submitted to an external excitation whose
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frequency is closed to one of its natural frequencies. Accordingly, the knowledge of the intrinsic vibratory characteris-
tics of a coupled system is determinant to the understanding of how disturbances come into being and the subsequent
relationship between their development and the excitation that initiates them. In this context where the viscosity is
often neglected, the problem was first considered by Miles [1] who investigated how the eigenfrequencies of a cylin-
drical flexible container are affected by the liquid motion. Rectangular containers were considered by, Bauer [2], Chai
et al. [3] and others by using conventional method of modal analysis. The main results of these investigations can be
found in [3].

The focus of the present Note is on the extension of these results to hydroelastic systems with two superposed fluids.
Once the boundary conditions for the elastic plate are specified, there are, in addition to the parameters involved in
a single fluid system, three other crucial factors, namely the interfacial surface tension and the relative thickness and
mass density of the two fluids. Various specific physical mechanisms are then expected to contribute to the occurrence
of a richer dynamics than that of a one fluid system.

After setting up the governing equations for the coupled fluid–structure motion in Section 2, we begin by construct-
ing the velocity potentials for the fluid system and the deflection of the plate with the use of the normal mode concept
in Section 3. After that, an eigenfrequency equation is established as a condition for the existence of nontrivial mo-
tion. Section 4 is concerned with a validation of the newly extended method and a discussion of the numerical results.
Concluding remarks are drawn in Section 5.

2. Formulation

We consider the free motion of a two layer medium of mutually immiscible, inviscid and incompressible fluids
having constant mass densities ρ∗

1 and ρ∗
2 and thicknesses h∗

1 and h∗
2 respectively, filling partially a rectangular con-

tainer of length l∗ and height H ∗ (asterisks are used to indicate dimensional quantities, dimensionless variables will
be asterisk free). The container which has an elastic side wall is assumed to have an infinite extent in the spanwise
direction so that all subsequent motion is two dimensional in the vertical plane (x, y). The y axis is pointed upward
from the unperturbed state of the interface between the two fluids and the x axis oriented inward from the undeflected
position of the elastic wall (see Fig. 1). Assuming both liquids to be in small amplitude irrotational motions, the
governing equations may be expressed, after linearization, in terms of velocity potentials Φj (j = 1,2) such that:

Φ1xx + Φ1yy = 0, 0 < x < 1, −h1 < y < 0 (1)

Φ2xx + Φ2yy = 0, 0 < x < 1, 0 < y < h2 (2)

The subscripts appended to Φj (j = 1,2) denote partial differentiation. Eqs. (1) and (2) are subject to the following
boundary conditions:

Fig. 1. Schematic representation of the system.

Fig. 1. Schéma représentatif du système.
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Φjx = 0, x = 1 (3)

Φjx = ηt , x = 0 (4)

Φ1y=0, y = −h1 (5)

Φ2t t + Φ2y − σ2Φ2yxx = 0, y = h2 (6)

Φ1t t − ρΦ2t t + (1 − ρ)Φ1y − σ1Φ1yxx = 0, y = 0 (7)

where η denotes the beam deflection; these equations are in dimensionless form where the space variables are in
units of l∗, the time is referred to (l∗/g∗)1/2, g∗ being the gravity acceleration, σj (j = 1,2) are the dimensionless
surface tensions in units of ρ∗

j g∗l∗2 and ρ is the mass density ratio (ρ∗
2/ρ∗

1 ). In order to close the problem, the liquid
motion equations must be complemented with the equation and associated boundary conditions for the flexible wall.
Modelling the latter as a Bernoulli beam for the sake of simplicity, one has:

ηtt + 1

δ
ηyyyy =

{
γΦ1t (0, y, t), −h1 < y < 0
ργΦ2t (0, y, t), 0 < y < h2
0, h2 < y < H − h1

(8)

where δ = ρ∗
s g∗l∗3/A∗ and γ = ρ∗

1 l∗/ρ∗
s are dimensionless parameters with ρ∗

s and A∗ being the real mass density
of the flat plate and its bending stiffness respectively. In what follows, we limit our attention to the clamped–clamped
beam. Other types of conditions may be naturally prescribed at the ends of the beam without specific difficulties.
Eq. (8) is then subject to:

η = ηy = 0 at y = −h1 and y = H − h1 (9)

3. Eigenvalue equation

Assuming time periodic vibrations and using normal mode decomposition, the solution to Eqs. (1)–(7) may be
thought in the form:

Φj(x, y, t) = eiωt

∞∑
n=0

Cnϕj (kn, y) coskn(x − 1) + c.c. (10)

where ϕ1(kn, y) = coshkn(y + h1), ϕ2(kn, y) = sinhknh1. sinhkny + An. cosh knh1. coshkny, An and kn being arbi-
trary complex constants, ω is the circular frequency (eigenfrequency) and c.c. denotes complex conjugate. Using (10)
in the boundary conditions (6) and (7), we obtain two relationships between ω,kn and An. The first one gives the
coefficient An in terms of ω and kn, namely:

ρAn = 1 − kn. tanhknh1

ω2
(1 − ρ − σ1k

2
n) (11)

which naturally gives dispersion relation for a single fluid layer by taking ρ = 0. The second one is the dispersion
relation that expresses the wave number kn as an implicit function of the frequency ω, that is to say:

(1 + ρ.T1n.T2n)ω
4 − kn

{
T1n.

[
1 + k2

n(σ1 + ρσ2)
] + T2n.(1 + σ2k

2
n)

}
ω2

+ k2
nT1n.T2n.(1 + σ2k

2
n).(1 − ρ + σ1k

2
n) = 0 (12)

where T1n = tanh(knh1), T2n = tanh(knh2). Solving (12) for kn, ω being fixed, we obtain a countably infinite set
{kn}∞n=0 of roots such that k2

n ∈ R and |k2
n| → ∞ as n → ∞. Since k2

n, n = 0, . . . ,∞, are real, so are the amplitudes
ϕj (kn, y) of the normal modes for any n. Furthermore, the set of these amplitudes is orthogonal in the sense of the
inner product

〈f,g〉 = ω2

{ 0∫
f.g.dy + ρ

h2∫
f.g dy

}
+ ρσ2.

df

dy

dg

dy

∣∣∣∣
y=h2

+ σ1.
df

dy

dg

dy

∣∣∣∣
y=0

(13)
−h1 0
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Since the coefficients Cn introduced in (10) are to be determined from the coupling of the fluid flow with the beam
motion, one obtains

−ω2η + 1

δ
nyyyy =

⎧⎨
⎩

iγω
∑∞

n=0 Cnϕ1(kn, y), −h1 < y < 0

iγωρ
∑∞

n=0 Cnϕ2(kn, y), 0 < y < h2
0, h2 < y < H − h1

(14)

.
As in (10), the solution to (14) is searched in the form:

η(y, t) = eiωt
∞∑
l=0

Elηl(y) (15)

where ηl(y) is the lth normal mode of the beam oscillations and El a sequence of arbitrary constants. In the present
case, the normal modes are

ηl(y) = cospl(y + h1) − coshpl(y + h1) + αl

{
sinpl(y + h1) − sinhpl(y + h1)

}
(16)

where αl = sinplH+sinhplH
cosplH−coshplH

, pl being the lth root of cosplH. coshplH = 1.

Because of the orthogonality of the normal modes ηl in the sense of L2[−h1,H − h1] and ‖ηl‖2 = H , (14) yields:

Em = i
ωγ δ

(P 4
m − δω2)H

∞∑
l=0

AmlCl. coskl (17)

with Aml = {∫ 0
−h1

ϕ1(kl, y)ηm(y)dy + ρ
∫ H−h2

0 ϕ2(kl, y)ηm(y)dy}. Now, using the kinematics condition (4) together
with the orthogonality of the functions ϕj (kn, y) is the sense of the inner product (13), one is led to:

Cl = i
ω

kl sin kl

∞∑
n=0

BlnEn (18)

with

Bln = ω2{∫ 0
−h1

ϕ1(kl, y)ηn(y)dy + ρ
∫ h2

0 ϕ2(kl, y)ηn(y)dy} + ρσ2
dϕ2l

dy
dηn

dy
|y=h2 + σ1

dϕ1l

dy
dηn

dy
|y=0

ω2{∫ 0
−h1

ϕ2
1(kl, y)dy + ρ

∫ h2
0 ϕ2

2(kl, y)dy} + ρσ2(
dϕ2l

dy
)2
y=h2

+ σ1(
dϕ1l

dy
)2
y=0

Finally, combining Eqs. (17) and (18) yields the eigenfrequency equation which expresses the requirement for the
existence of a nontrivial motion, that is:

det

(
δnm + γ δ

ω2

P 4
m − δω2

∑
l

1

kl tan kl

AmlBln

)
= 0 (19)

Solving this equation iteratively for ω, with Eq. (12) in mind, gives the coupled eigenfrequencies and hence the shape
modes of the system.

4. Numerical results

To simplify matter and in view of comparisons to be made, we neglect surface tension effects and take δ = 3.582,
γ = 309.603, H = 1.250 as in Chai et al. [3]. Thus only three parameters namely h1, h2 and ρ remain free. The
iterative process to solving (19) for ω is implemented by successively decreasing (increasing) ρ from 1 (zero) by a
small quantity δρ. In order to improve the convergence speed for a given value of ρ, the calculation is initialized by the
coupled frequencies associated to the previous value of ρ. The procedure naturally begins by the coupled frequencies
of the hydroelastic system with a single fluid. The iterations are stopped when the relative change in the result is less
than or equal to 0.1%. The correctness of the present theory and the associated computer program is first verified
through comparisons with the limiting case of a single fluid treated in Chai et al. [3] where thirty terms are kept in
the series expansion. For the purpose of these comparisons, the infinite series of both the velocity potential and the
beam deflection are truncated after only 10 terms. Table 1 gives the first ten coupled eigenfrequencies at Hf /H = 0.5
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Table 1
First ten coupled frequencies in the simple fluid case; comparison with the results obtained by the method developed in Chai et al. [3] with
Hf = 0.625, H = 2Hf

Tableau 1
Les dix premières fréquences du couplage dans le cas d’un seul fluide, comparaison avec les résultats obtenus par la méthode développée par Chai
et al. [3] avec Hf = 0,625, H = 2Hf

Mode number Chai et al. [3] Present method

(30 terms) 10 terms 20 terms 30 terms 40 terms

1. 1.27610470993569 1.27610605425984 1.27610562184155 1.27610560122281 1.27610559787676
2. 2.22726139837720 2.22726513921768 2.22726168794297 2.22726152259709 2.22726149575041
3. 2.75729615477482 2.75731854154542 2.75731061495927 2.75731023420991 2.75731017234401
4. 3.13813359853608 3.13817489865795 3.13817208151297 3.13817194550561 3.13817192336992
5. 3.54286351418964 3.54289724663794 3.54289714963292 3.54289714507610 3.54289714434222
6. 3.94432321016722 3.94435420568585 3.94435106546953 3.94435091160462 3.94435088654236
7. 4.31822162840264 4.31825614257678 4.31824687735807 4.31824641535131 4.31824633981435
8. 4.71274057731570 4.66480242353380 4.66478340490532 4.66480000000073 4.66480000000073
9. 5.02736222272224 4.98783617388606 4.98780170857161 4.98779991394578 4.98779961788580

10. 5.31700001363177 5.29086248562485 5.29080267554966 5.29079948019236 5.29079895015731

Fig. 2. Influence of the mass density ratio on the variations of the two sets of the sloshing frequencies with the total relative fluid depth (h1 = h2).
(a) ρ = 0.1, (b) ρ = 0.5, (c) ρ = 0.9. (. . .) ω1n, (—) ω2n, (- - -) ω0n .

Fig. 2. Influence du rapport des masses volumiques sur les variations des fréquences de ballottement en fonction de la hauteur relative totale des
deux fluides (h1 = h2). (a) ρ = 0,1, (b) ρ = 0,5, (c) ρ = 0,9. (. . .) ω1n , (—) ω2n, (- - -) ω0n.
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(Hf being the total relative fluid depth), in comparison with those found by Chai et al. [3]. It can be seen that the
agreement is excellent for lower frequencies and slight discrepancies occur at higher frequencies but they do not
exceed 2.5%. From the table again we see that increasing the number of modes to successively 20, 30 and 40 does
not change the results by more than about 10−5, indicating that convergence had essentially been achieved. Based on
these comparisons, the numerics have been carried out by truncating the infinite series after 10 terms, then ensuring a
small size eigenfrequency equation to be solved.

Figs. 2(a), (b), (c) illustrate a comparison, for h1 = h2 and three selective values of ρ, between the variations with
the relative total fluid depth of the two sloshing frequency sets, say ω1n (dotted lines) and ω2n (solid thin lines) of a
two fluid system and the sloshing frequencies ω0n (dashed lines) of a single fluid having the same relative height. We
observe that these sets are such that: ω1n < ω2n < ω0n for all mode numbers. The sets ω1n and ω2n are thus referred
to as the lower and higher sets and are respectively related to the sloshing of the interface and the free surface. In the
limit ρ → 0, ω1n and ω2n naturally converge to the sloshing frequencies of the lower fluid layer; a relatively important
convergence rate is visible with the increase in the fluid depth, especially for higher mode numbers. Increasing ρ from
zero causes a decrease (an increase) of lower (higher) sets of sloshing frequencies. As ρ tends to unity, the frequencies
of the lower set become vanishingly small while those of the second set converge to the sloshing frequencies of a single
fluid layer of thickness Hf . The plots in Fig. 3 show how the first ten frequencies of the two families, ω1n and ω2n,
are changed by varying Hf in the practical case of water on the top of a relatively thin mercury layer (h2 = 9h1). We
can see that the two sets of frequencies are clearly distinct and their rates of change with Hf are also different. Most
importantly, it is to be noted that the upper set of sloshing frequencies follows quite closely the set ω0n, which is to
say that the relatively important mass density of the lower fluid layer has no significant effects on the sloshing of the
free surface. The variations of the first ten coupled frequencies for the system water–mercury are displayed in Fig. 4
where the dotted lines represent, for the sake of comparison, the first family of sloshing frequencies. We observe that
the first two coupled frequencies of the system follow quite closely the corresponding (same mode number) sloshing
frequencies of the first kind for all Hf /H values. This remains true for higher modes provided Hf /H is smaller than
a certain critical value (Hf /H)1 which marks the onset of a qualitative change in their behaviours. Indeed, when the
value (Hf /H)1 is crossed, a given coupled frequency first undergoes a rapid decrease and then follows the lower order
sloshing frequency until a second critical value (Hf /H)2 is reached around which a similar qualitative behaviour is
reproduced. It should, however, be mentioned that the drops in the frequencies are less important at the second critical
point than the first one. From a global point of view, the coupled frequencies exhibit similar behaviours with the single

Fig. 3. Variations of the two sets of the sloshing frequencies with the total relative fluid depth for the water–mercury system (h2 = 9h1, ρ = 0.0738).
(. . .) ω1n , (—) ω2n.

Fig. 3. Variations des fréquences de ballottement en fonction de la hauteur relative totale des deux fluides dans le cas du système eau–mercure
(h2 = 9h1, ρ = 0,0738). (. . .) ω1n , (—) ω2n .
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Fig. 4. Variation of the ten first coupled frequencies in the case of water–mercury system with the total relative fluid depth (h2 = 9h1). (. . .) ω1n ,
(222) 1st, (""") 2nd, (QQQ) 3rd, (FFF) 4th, . . . , (∗ ∗ ∗) 10th coupled frequencies.

Fig. 4. Variation des dix premières fréquences du couplage dans le cas d’un système mercure–eau en fonction de la hauteur relative totale des deux
fluides (h2 = 9h1). (. . .) ω1n , (222) 1ère, (""") 2ème, (QQQ) 3ème, (FFF) 4ème, . . . , (∗ ∗ ∗) 10ème fréquences du couplage.

fluid case. Important quantitative differences are, however, to be noticed, as for example the reduction of the growth
rate of the coupled frequencies, especially for lower order ones. Another important thing to note is that, as in the
single fluid case, the rapid decrease of coupled frequencies is an indicator of the nearness of a coupled structure type
frequency.

5. Conclusion

The vibratory characteristics of a hydroelastic system with two superposed, inviscid and immiscible fluids are
studied by means of normal mode decomposition. The normal mode shapes are found to be orthogonal with respect to
a new inner product. The convergence tests demonstrate the high accuracy and the rapid convergence of this approach.
The numerical results indicate that the two sets of coupled frequencies qualitatively have the same global behaviours
that those obtained in the single fluid case. The coupled type frequencies are closed to the sloshing frequencies of the
first kind for liquid to beam depth ratio less than some critical value that decreases with frequency order. The case of a
hydroelastic system with a continuous density stratification is a natural extension of this work; this is being examined
at the present time.
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