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Abstract

A solitary wave, resembling a soliton wave, is observed when analyzing the linear problem of polarized shear (SH) surface
acoustic waves propagating in elastic orthotropic two-layered traction-free plates. The analysis is performed by applying a special
complex formalism and the Modified Transfer Matrix (MTM) method. Conditions for the existence of solitary SH waves are
obtained. Analytical expressions for the phase speed of the solitary wave are derived. To cite this article: I. Djeran-Maigre,
S. Kuznetsov, C. R. Mecanique 336 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Ondes SH isolées en plaques bicouches libres de contraintes. Une onde isolée ressemblant à un soliton est décrite mathémati-
quement en analysant les problèmes linéaires pour des ondes de cisaillement de surface se propageant dans les plaques élastiques,
anisotropes et stratifiées. Le modèle mathématique est basé sur un formalisme particulier dans un espace complexe et sur la mé-
thode de la matrice modifiée de transfert (MTM). Les conditions d’existence des ondes isolées sont obtenues. La vitesse de phase
de ces ondes est décrite par des solutions analytiques. Pour citer cet article : I. Djeran-Maigre, S. Kuznetsov, C. R. Mecanique
336 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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Version française abrégée

L’onde découverte par Scott Russell [1], connue par la suite sous le nom de soliton est une onde (i) isolée ; (ii) par-
courant des distances importantes sans perturbation, ni atténuation ; (iii) qui ne se joint pas aux autres ondes, ayant (iv)
une vitesse constante qui peut dépendre de la taille de l’onde, de la largeur du canal et de la profondeur de l’eau [2].
Une telle onde est décrite mathématiquement comme solution de l’équation non-linéaire KdV [3–5]. Nous présentons
un model mathématique basé sur la combinaison du formalisme de Stroh et de la méthode de la matrice modifiée de
transfert, qui permet d’analyser les ondes de cisaillement de surface, de polarisation horizontale (SH) se propageant
dans les plaques élastiques, anisotropes et stratifiées ; sous certaines conditions peuvent constituer des solutions res-
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semblant aux solitons en vérifiant l’ensemble des conditions de (i)–(iv). Contrairement aux véritables solitons pour
l’hydrodynamique satisfaisant l’équation non-linéaire de KdV, la solution présentée satisfait l’équation différentielle
linéaire, connue comme équation de Christoffel pour les ondes acoustiques de surface. La méthode principale utilisée
pour la construction des solutions des solitons pour les ondes SH, est basée sur la combinaison du formalisme dans un
espace complexe avec la méthode de la matrice modifiée de transfert (MTM) [7,9,10]. Les ondes isolées présentent
des similitudes avec les modes inférieurs des ondes de Love et des ondes de Sezawa [11].

1. Introduction

Since its first discovery by Scott Russell [1], the traveling wave (known later as the soliton) is a wave that is (i)
solitary; (ii) traveling along large distances without disturbance or attenuation; (iii) not merging with other waves; and
(iv) having constant speed that can depend upon the size of the wave, its width and the depth of water; see also [2].
Mathematically, such a wave is described as the solution of the nonlinear KdV equation [3–5].

Here, we present a mathematical model based on a combination of the six-dimensional formalism and the modified
transfer matrix method, allowing us to analyze horizontally polarized shear (SH) surface acoustic waves propagating in
anisotropic elastic laminated plates. It will be demonstrated that at certain conditions there can be solutions resembling
solitons in that they satisfy all the conditions (i)–(iv) solitons must satisfy. In contrast to the genuine solitons, for
hydrodynamic solitons that satisfy the nonlinear KdV equation, the solution presented satisfies a linear differential
equation, known as the Christoffel equation for surface acoustic waves.

Below, the surface acoustic waves propagating in an infinite plate with the unit normal ν to the median plane and
coordinate x′ = ν · x belonging to the interval [−h,h], are analyzed. Horizontally polarized shear surface waves (SH
waves) propagating in multilayered plates resemble Love waves [6] in polarization, but differ in the absence of a
contacting half-space (substrate), and, hence exclude the necessity to impose Sommerfield’s emission condition:

u(x, t) = O
(|x′|−1), |x′| → ∞ (1)

where u is the displacement field, x is a three dimensional coordinate vector, x′ = x · ν is a coordinate along depth of
the half-space, ν is the unit normal to the plane boundary of the half-space. The absence of condition (1) for plates
leads to the appearance of solitary wave solutions for layered traction-free plates, but, as will be shown later, these
waves cannot propagate in homogeneous (single-layered) plates.

The main method used for constructing solitary wave solutions for SH waves is based on a combination of the
complex formalism and the modified transfer matrix (MTM) method [7,9,10]. The solitary waves observed have
similarity with the leakage lower mode Love and Sezawa [11] waves.

2. Basic notations

All the regarded layers in a plate are assumed to be homogeneous, anisotropic and linearly hyperelastic. Equations
of motion for a homogeneous anisotropic elastic medium can be written in the form:

A(∂x, ∂t )u ≡ divxC · ·∇xu − ρü = 0 (2)

where ρ is the material density, and C is the elasticity tensor assumed to be positive definite:

A · ·C · ·A > 0 (3)

for any symmetric non-trivial tensor of the second rank A.

Remark 2.1. (a) The other assumption concerns symmetry of the elasticity tensor. It will be assumed that all the
materials considered possess planes of elastic symmetry coinciding with the sagittal plane m · x = 0, where vector m
is the polarization vector of the SH wave. This is achieved by the elasticity tensor belonging to the monoclinic system,
see [12]. The monoclinic system is equivalent to the vanishing of all of the decomposable components of the tensor C
having an odd number of entries of the vector m (in the orthogonal basis in R3 generated by vector m and any two
orthogonal vectors belonging to the sagittal plane).

(b) It will be shown later that assuming monoclinic symmetry provides a sufficient condition for the surface trac-
tions acting on any plane ν · x = const to be collinear with polarization vector m. This ensures existence of an SH
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or Love wave propagating in the corresponding direction. If an elasticity tensor does not belong to the monoclinic
system or if the direction of propagation does not coincide with the axis of elastic symmetry, then no genuine SH or
Love waves can propagate.

Following [7,10], we will seek a horizontally polarized shear wave in a particular layer in the form:

u(x) = mf (irx′)eir(n·x−ct) (4)

where f is the unknown scalar complex-valued function; the exponential multiplier eir(n·x−ct) in (4) corresponds to
propagation of the plane wave front along direction n with the phase speed c; r is the wave number.

Substituting representation (4) into Eq. (2) and taking into account Remark 2.1(a), yields the following differential
equation:(

(m ⊗ ν · ·C · ·ν ⊗ m)f ′′
x′ + 2

(
m · sym(ν · C · n) · m

)
f ′

x′+(
m ⊗ n · ·C · ·n ⊗ m − ρc2

)
f

)
= 0 (5)

It should be noted that function f satisfying Eq. (5), represents a solution in a particular layer. Imposing interface
conditions between layers will be discussed in Section 4. The characteristic equation for the differential equation (5),
known also as the Christoffel equation, has the form:

(m ⊗ ν · ·C · ·ν ⊗ m)γ 2 + 2
(
m · sym(ν · C · n) · m

)
γ + (

m ⊗ n · ·C · ·n ⊗ m − ρc2) = 0 (6)

The left-hand side of Eq. (6) represents a polynomial of degree 2 with respect to the Christoffel parameter γ . Thus,
for monoclinic elastic symmetry only two partial waves form the SH wave considered in a layer.

The following lemma flows from solving the Cauchy problem for Eq. (5):

Lemma 2.2. A necessary and sufficient condition for the real-analytic solution of Eq. (5), to be a non-zero function,
is the simultaneous non-vanishing f and its first derivative at some x′.

Remark 2.3. (a) For an orthotropic medium and the SH wave propagating in a direction of the principle elasticity,
Eq. (6) is simplified:

(m ⊗ ν · ·C · ·ν ⊗ m)γ 2 + (
m ⊗ n · ·C · ·n ⊗ m − ρc2) = 0 (7)

The solution for Eq. (7) is:

γ1,2 = ±
√

ρc2 − m ⊗ n · ·C · ·n ⊗ m
m ⊗ ν · ·C · ·ν ⊗ m

(8)

Thus, the general solution of Eq. (5) can be represented in the form:

f (irx′) = C1 sinh(irγ x′) + C2 cosh(irγ x′) (9)

where γ is the positive root in (8).
(b) Supposing that the roots of the Christoffel equation (6) are multiple, we arrive at the necessity to modify the

solution of Eq. (5) by placing a logarithmic term (this corresponds to the appearance of one Jordan block in Eq. (5),
that is reduced to a system of first order). However, here the case of multiple roots will not be studied; see [7,8] for
the solutions related to multiple roots.

(c) Representation (4) allows us to express surface tractions acting on any plane x′ = const in the form:

tν(x) = irν · (C · νf ′(irx′) + C · nf ′(irx′)
) · meir(n·x−ct) (10)

The assumption of monoclinic symmetry ensures surface tractions (10) to be collinear with vector m. For an or-
thotropic material with the axes of elastic symmetry coinciding with vectors m, n, and ν expression reduces to

tν(x) = irν · C · ·ν ⊗ mf ′(irx′)eir(n·x−ct) (11)

As before, vector tν(x) is necessarily collinear with vector m. Expression (11) shows that on a boundary plane x′
0 of

a traction-free orthotropic plate the following condition must be satisfied: f ′(irx′ ) = 0.
0
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From now, it will be assumed that vectors ν, m, and n coincide with the axes of elastic symmetry of an orthotropic
medium.

Remark 2.4. It can be shown (see [6]) that regardless of boundary conditions and at the imaginary roots of Eq. (7),
no SH wave can propagate in the directions of elastic symmetry of an orthotropic single-layered plate. Thus, the
following inequality

c >

√
m ⊗ n · ·C · ·n ⊗ m

ρ
(12)

naturally arising from (8), delivers a necessary condition for an existing surface SH wave. Thus, for the plate consid-
ered, all surface SH waves are necessarily supersonic, since the radicand in the right-hand side of (12) defines speed
of the corresponding shear bulk wave cT

nm. In this section we assume condition (12) to hold.

3. Homogeneous traction-free plate

Now, we consider a single-layered plate with the traction-free boundary conditions:{
tν(h/2) = 0
tν(−h/2) = 0

(13)

where h is the thickness of the plate (we choose origin of coordinates at the median plane).
For such a plate, finding function f from (7)–(11) and (13), yields:

f (irx′) =
{

cos(ryx′), at r = 2nπ
γh

sin(ryx′), at r = (2n−1)π
γ h

n = 1,2, . . . (14)

where γ is defined by (8).

Proposition 3.1. (a) On planes x′ = const, where

x′ =
⎧⎨
⎩

1
2 +k

2n
h at r = 2nπ

γh
, −n � k � n

k
2n−1h at r = (2n−1)π

γ h
, −n � k � n

n, k ∈ Z (15)

both the displacement field and specific kinetic energy vanish. This is equivalent to the existence of the internal
immovable layers under propagating SH wave on a traction-free plate.

(b) At any finite phase speed satisfying inequality (12), there are no waves propagating at vanishing frequency
(both phase speed and frequency are delimited from zero).

Proof. (a) Follows from considering zeroes of the function, defined by (14). Proof (b) also follows from analyzing
expressions (14). Indeed, in view of (12) and (14) condition r → 0 (or ω → 0) requires c → ∞. Thus, no non-trivial
solution exists at ω = 0 and the finite phase speed c.

Thus, there are no solitary SH waves propagating in the plane of elastic symmetry of homogeneous orthotropic
traction-free plates. �
4. Two-layered traction-free plate

It is assumed that (i) both layers are orthotropic with axes of elastic symmetry coincident with vectors n, ν, and m;
and (ii) the corresponding shear bulk waves differ:(

cT
nm

)
1 
= (

cT
nm

)
2 (16)

Remark 4.1. In this section, and beyond, we assume that each layer has its own reference coordinate system with the
origin lying in the median plane of a layer. Boundary conditions for a traction-free two-layered plate are:{

tν(h1/2) = 0
t (−h /2) = 0

(17)

ν 2
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where lower indices are referred to the corresponding layers.
Applying the MTM method [7,10], functions fk , k = 1,2, that define the displacement field in the corresponding

layers, can be represented in the form:

fk(irx
′) = cos

(
rγk

(
x′ + (−1)k

hk

2

))
, k = 1,2 (18)

at the wave number r satisfying the following equation [7]:

(m ⊗ ν · ·C1 · ·ν ⊗ m)γ1

(m ⊗ ν · ·C1 · ·ν ⊗ m)γ2
sin(rγ1h1) cos(rγ2h2) + cos(rγ1h1) sin(rγ2h2) = 0 (19)

Proposition 4.2. (a) Suppose that

min
((

cT
nm

)
1;

(
cT

nm
)

2

)
< c < max

((
cT

nm
)

1;
(
cT

nm
)

2

)
(20)

where (cT
nm)k is the bulk wave speed in the corresponding layer, then on planes x′ = const,

x′ = π(1 + 2n)

2rγk

− (−1)k
hk

2
(21)

−Ent

((
1 − (−1)k

) rγkhk

2π
+ 1

2

)
� n � Ent

((
1 + (−1)k

) rγkhk

2π
− 1

2

)
(22)

and r satisfies Eq. (19), then both the displacement field and specific kinetic energy vanish in a layer with the minimal
bulk wave speed cT

nm.
(b) Suppose that

c > max
((

cT
nm

)
1;

(
cT

nm
)

2

)
(23)

(the phase speed is transonic in both layers), then on planes x′ = const where x′ satisfies Eq. (21) and n satisfies
Eq. (22), the displacement field and specific kinetic energy vanish in both layers.

(c) At the phase speed c → cs − 0, where

cs =
√

(m ⊗ n · ·C1 · ·n ⊗ m)h1 + (m ⊗ n · ·C2 · ·n ⊗ m)h2

ρ1h1 + ρ2h2
(24)

there is a lower mode solitary SH wave propagating with vanishing wave number r → 0.

Proofs. (a) and (b) flow out from expression (18) for functions fk . Values for x′ defined by (21) and (22), are zeroes
of these functions. To prove (c) we need to consider Eq. (19) at small r :(

(m ⊗ ν · ·C1 · ·ν ⊗ m)γ 2
1 h1 + (m ⊗ ν · ·C2 · ·ν ⊗ m)γ 2

2 h2
)
r + O

(
r3) = 0 (25)

Equating to zero the coefficient at r in the left-hand side of Eq. (25), we arrive at the solution for the phase speed
given by (24). �

Proposition 4.2 ensures:

Corollary 4.3. (a) At sufficiently small r and real γk in both planes there can be no planes with vanishing displacement
field (all SH waves in the vicinity of the anomalous SH wave do not have planes at which the displacement field
vanishes).

(b) Direct analysis reveals that the wave speed cs satisfies the inequalities:

min
((

cT
nm

)
1;

(
cT

nm
)

2

)
� cs � max

((
cT

nm
)

1;
(
cT

nm
)

2

)
(26)

Inequality (26) demands that the solitary wave speed to be subsonic for one of the layers and supersonic for the
other.

Some of the lower branches of the dispersion curves (these curves show dependence of frequency on the phase
speed) are presented in Fig. 1, where the solitary waves correspond to the lowest branch in the vicinity of cs . The
presented results are obtained for a two-layered traction-free plate with layers of the equal depths h1 = h2 = 1, equal
densities ρ1 = ρ2 = 1 and (cT

nm)1 = 1, (cT
nm)2 = 4.
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Fig. 1. Dispersion curve for a two-layered traction-free plate.

5. Conclusion

As we have already observed, the solitary wave solutions of the linear differential equation, known as the Christoffel
equation for SH waves, appear in any two-layered plates with orthotropic (and henceforth, isotropic and transversely
isotropic) layers, provided axes of elastic symmetry in both layers are the same, and direction of propagation of the SH
wave coincides with one of these axes. The analysis carried out revealed that these SH waves are (i) solitary; (ii) travel
along large distances without disturbance or attenuation (as the corresponding phase speed is real); (iii) not merge
with other waves; and (iv) have a constant phase speed that depends upon only physical and geometrical properties of
layers.

Acknowledgements

Authors thank INSA de Lyon (France) for a visiting Professor position, the Russian Foundation for Basic Research
(Grant 04-01-00781), and the Russian Academy of Sciences Program OEMMPU No. 12 for partial financial support.

References

[1] J. Scott Russell, Report on waves, in: Fourteenth Meeting of the British Association for the Advancement of Science, York, 1844 (London
1845), pp. 311–390.

[2] A.D.D. Craik, The origins of water wave theory, Ann. Rev. Fluid Mech. 36 (2004) 1–28.
[3] D.J. Korteweg, F. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves,

Philos. Mag. 39 (1895) 422–443.
[4] P. Lax, Integrals of nonlinear evolution equations and solitary waves, Comm. Pure Appl. Math. 21 (1968) 467–490.
[5] J.W. Miles, The Korteweg–de Vries equation, a historical essay, J. Fluid Mech. 106 (1981) 131–147.
[6] A.E.H. Love, Some Problems of Geodynamics, Cambridge University Press, London, 1911.
[7] S.V. Kuznetsov, Subsonic Lamb waves in anisotropic plates, Quart. Appl. Math. 60 (2002) 577–587.
[8] S.V. Kuznetsov, Love waves in stratified monoclinic media, Quart. Appl. Math. 62 (2004) 749–766.
[9] I. Djeran-Maigre, S.V. Kuznetsov, Surface waves on a half-space with cubic symmetry, Int. J. Comp. Civil & Struct. Eng. 2 (2005) 21–27.

[10] S.V. Kuznetsov, SH-waves in laminated plates, Quart. Appl. Math. 64 (2006) 153–165.
[11] K. Sezawa, Dispersion of elastic waves propagated on the surface of stratified bodies and on curved surfaces, Bull. Earthquake Res. Inst.

Tokyo 3 (1927) 1–18.
[12] M.E. Gurtin, The Linear Theory of Elasticity, Handbuch Der Physik, vol. VIa/2, Springer, 1973.


