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Application of invariant integrals to elastostatic inverse problems
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Abstract

A problem of parameters identification for embedded defects in a linear elastic body using results of static tests is considered.
A method, based on the use of invariant integrals is developed for solving this problem. A problem for the spherical inclusion
parameters identification is considered as an example of the proposed approach application. It is shown that a radius, elastic moduli
and coordinates of a spherical inclusion center are determined from one uniaxial tension (compression) test. The explicit formulae,
expressing the spherical inclusion parameters by means of the values of corresponding invariant integrals are obtained. The values
of the integrals can be calculated from the experimental data if both applied loads and displacements are measured on the surface
of the body in the static test. A numerical analysis of the obtained explicit formulae is fulfilled. It is shown that the formulae give a
good approximation of the spherical inclusion parameters even in the case when the inclusion is located close enough to the surface
of the body. To cite this article: R. Goldstein et al., C. R. Mecanique 336 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Application d’intégrales invariantes à des problèmes élastostatiques inverses. On considère un problème d’identification
de paramètres pour des défauts inclus dans un corps linéaire élastique à partir de résultats d’expériences statiques. Une méthode
fondée sur l’utilisation d’intégrales invariantes est dévelopée pour résoudre ce problème. A titre d’exemple d’application de l’ap-
proche proposée, on considère un problème d’identification de paramètres pour une inclusion sphérique. On montre que le rayon,
les modules d’élasticité et les coordonnées du centre de cette inclusion peuvent être déterminés à partir d’une expérience uniaxiale
de traction ou de compression. Des formules explicites exprimant les paramètres de l’inclusion sphérique grâce aux valeurs des
intégrales invariantes correspondantes sont obtenues. Les valeurs des intégrales peuvent être calculées à partir des données expé-
rimentales si l’on mesure à la fois les tractions et les déplacements sur la surface du corps. Une analyse numérique des formules
explicites obtenues est réalisée. On montre que ces formules fournissent une bonne approximation des paramètres de l’inclusion
sphérique même dans le cas où l’inclusion est située près de la surface du corps. Pour citer cet article : R. Goldstein et al., C. R.
Mecanique 336 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The problems of defects, mainly cracks and cavities, identification were considered in a number of publications.
The most of defect identification methods use the surface measurements for bodies subjected to dynamic forces [1–5].
The data of static tests are used for the defect detection also often [6–9]. A review of different approaches for solving
elastostatic and elastodynamic inverse problems is presented in [10]. The usual way for solving the inverse problems
is the following:

– a defect and its location are described by some parameters;
– a direct problem is solved by one of the numerical methods for the prescribed parameters of the defect and its

location;
– an error function, describing the difference between calculated and experimental data, is constructed;
– one of the optimization methods is used for the determination of the unknown defect parameters, giving an

extremum for the error function.

Since the error function can have several extrema, the realization of optimization methods becomes a difficult
problem. In this connection the methods which enable to determine some defect parameters without using of the error
function optimization are of great interest [7,8]. In particular, a reciprocity gap principle was used in [7] for a plane
crack identification.

The aims of the present publication are as follows:

– to supplement the reciprocity gap principle approach with other types of invariant integrals;
– to develop an approach for obtaining explicit formulae for the defect parameters in the case when the sizes of a

defect are small as compared to the distance between the defect and the body boundary.

2. Statement of the problem

Let V be a simply connected domain in a three-dimensional space R3. G ⊂ V is an embedded subdomain, Ω =
V \ G. Let us suppose that Ω is an isotropic linear elastic body with a shear modulus μM and Poisson ratio νM .
The defect G can be a cavity, a crack or an isotropic linear elastic inclusion. Let us introduce Cartesian coordinates
OX1X2X3. The stress–strain state in the matrix Ω we’ll mark with the superscript (f ): σ

(f )
ij is the stress tensor,

e
(f )
ij is the strain tensor and u(f ) = (u

(f )

1 , u
(f )

2 , u
(f )

3 ) is the displacement vector. According to our suppositions the
following equalities are valid:

e
(f )
ij (X) = (

u
(f )
i,j (X) + u

(f )
j,i (X)

)
/2 (i = 1,2,3; j = 1,2,3)

σ
(f )
ij (X) = 2μM

[
νM

1 − 2νM

θ(f )(X)δij + e
(f )
ij (X)

]
, θ(f )(X) =

3∑
k=1

e
(f )
kk (X)

σ
(f )
ij,j (X) = 0, X = (X1,X2,X3) ∈ Ω (1)

where the convention of summation for repeated indexes is used, δij is the Kronecker delta.

It is supposed that the loads t (f ) = (t
(f )

1 , t
(f )

2 , t
(f )

3 ) are applied to the external boundary of Ω , coinciding with the
boundary of the domain V —∂V

σ
(f )
ij (X)nj (X) = t

(f )
i (X), X ∈ ∂V (2)

where n(X) = (n1(X),n2(X),n3(X)) is a unit outward normal to the boundary ∂V at the point X.
The applied loads are self-balanced∫

∂V

t
(f )
i (X)dS = 0,

∫
∂V

X ∧ t (f )(X)dS = 0 (3)

where ∧ is a vector product.
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If the defect G is a cavity or a crack we suppose that the boundary ∂G is unloaded

σ
(f )
ij (X)Nj (X) = 0, X ∈ ∂G (4)

where N(X) = (N1(X),N2(X),N3(X)) is a unit normal to ∂G at the point X.
If the defect G is an inclusion, we suppose that G is an isotropic and linear elastic body with unknown shear

modulus μI and Poisson ratio νI . It is supposed also complete bonding between the matrix and inclusion. Let us
denote by σ I

ij , eI
ij and uI = (uI

1, u
I
2, u

I
3) the stresses, strains and displacements of the inclusion. The mentioned

suppositions lead to the following equations

eI
ij (X) = (

uI
i,j (X) + uI

j,i(X)
)
/2, X ∈ G (i = 1,2,3; j = 1,2,3)

σ I
ij (X) = 2μI

[
νI

1 − 2νI

θI (X)δij + eI
ij (X)

]
, θI (X) =

3∑
k=1

eI
kk(X)

σ I
ij,j (X) = 0 (5)

The bonding conditions have the following form

uI (X) = u(f )(X), σ I
ij (X)Nj (X) = σ

(f )
ij (X)Nj (X), X ∈ ∂G (6)

We suppose that overdetermined boundary data (the applied loads t (f )(X) and displacements u(f )(X)) are available
on the whole boundary ∂V . The problem consists in searching for the shape, location and elastic moduli (in the case
of inclusion) of the defect G using the available data.

3. Invariant integrals and their use in elastostatic inverse problems

The idea of the reciprocity gap principle, used in [7] for the plane crack identification, is as follows. Let us suppose
that isotropic linear elastic body with shear modulus μM and Poisson ratio νM occupies the domain V . A regular
elastic field in the body we’ll mark by a superscript (r) (σ

(r)
ij , e

(r)
ij , u(r) = (u

(r)
1 , u

(r)
2 , u

(r)
3 )). Consider an integral

RG(f )(r) =
∫
S

(
t
(f )
i (X)u

(r)
i (X) − t

(r)
i (X)u

(f )
i (X)

)
dS (7)

where S ⊂ Ω is a closed surface, t
(r)
i (X) = σ

(r)
ij (X)nj (X), n(X) = (n1(X),n2(X),n3(X)) is a unit outward normal

to S.
If the surface S does not contain the domain G inside then RG(f )(r) = 0, otherwise the values RG(f )(r) can differ

from zero and give some information about the defect G. In the case when the loads t (f ) and displacements u(f ) are
available on the surface of the body ∂V , it is possible to take S = ∂V and for all known regular fields the values
RG(f )(r) can be calculated. It was shown in [7] that it is possible to reconstruct a plane crack using the appropriate
regular fields.

It is well known that for isotropic linear elastic solids the following invariant integrals are valid (see, [11]):

Ji =
∫
S

(Wni − tj uj,i)dS, i = 1,2,3

Li =
∫
S

εijk(WXknj + tj uk − tpup,jXk)dS, i = 1,2,3

M =
∫
S

(
WXini − tj uj,iXi − 1

2
tiui

)
dS (8)

where S as above is a closed surface; σij , eij and u = (u1, u2, u3) are stress and strain tensors and displacement vector
corresponding to some stress–strain state of elastic body; W = σij eij /2; ti = σijnj ; εijk is the alternating tensor.
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All these integrals are equal to zero if there are no defects inside S. If a defect is located inside S then the integrals
can differ from zero and the values of the integrals give some information about the defect. Due to this property all
invariant integrals (8) can be used for the defect detection analogously to the reciprocity gap principle given by Eq. (7).

Let us mark the invariant integrals (8) for the elastic field u(f ) by the superscript (f ): J
(f )
i , L

(f )
i , M(f ). Consider

invariant integrals for the sum of the applied and regular elastic fields and mark these integrals by the superscript
(f ) + (r). Because the invariant integrals for the regular elastic fields are equal to zero the following equalities are
valid

J
(f )+(r)
i = J

(f )
i + J

(f )

i int(r)

L
(f )+(r)
i = L

(f )
i + L

(f )

i int(r)

M(f )+(r) = M(f ) + M
(f )

int (r) (9)

where the integrals describing the interaction between the applied and regular elastic fields have the following form

J
(f )

i int(r) =
∫
S

(
σ

(f )
kl e

(r)
kl ni − t

(f )
j u

(r)
j,i − t

(r)
j u

(f )
j,i

)
dS

L
(f )

i int(r) =
∫
S

εijk

(
σ

(f )
mn e(r)

mnXknj + t
(f )
j u

(r)
k + t

(r)
j u

(f )
k − t

(f )
p u

(r)
p,jXk − t (r)p u

(f )
p,jXk

)
dS

M
(f )

int (r) =
∫
S

(
σ

(f )
kl e

(r)
kl Xini − t

(f )
j u

(r)
j,iXi − t

(r)
j u

(f )
j,i Xi − 1

2
t
(f )
i u

(r)
i − 1

2
t
(r)
i u

(f )
i

)
dS (10)

Integrals (10) are also invariant.
If we suppose that applied loads t (f ) and displacements u(f ) are known on the boundary ∂V then all stresses σ

(f )
ij ,

strains e
(f )
ij and distortion tensor u

(f )
j,i can be calculated on ∂V . So for S = ∂V and known regular fields invariant

integrals (10) can be calculated.
In the case when the sizes of the defect are small as compared to the distance between the defect and the boundary

∂V , the values of the integrals (7) and (10) only slightly differ from the integrals for the defect G, located in an infinite
elastic solid. Integrals (7) and (10) for the infinite elastic body with a defect G can be expressed by means of the defect
parameters and coordinates of its location. Equating the values of integrals in Eqs. (7) and (10) calculated by using
the experimental data and their expressions by means of the defect parameters and coordinates one obtains a system
of equations relative to the defect parameters and coordinates.

4. Identification of a spherical inclusion using one static uniaxial tension test

Let us suppose that applied loads are related to uniform uniaxial tension (compression) in the direction of the axis
X3, t (f )(X) = (0,0, σn3(X)), X ∈ ∂V . To emphasize the form of applied loads we’ll mark below the stress–strain
state of the body outside the defect G by superscript (3) instead the superscript (f ).

Let a defect G be a spherical inclusion of a radius a, whose center is located at the point M0(x0
1 , x0

2 , x0
3). Consider

Cartesian coordinates M0x1x2x3 with the origin at M0

Xi = xi + x0
i , i = 1,2,3 (11)

Introduce the spherical coordinates with the origin at M0

x1 = r sin θ cosϕ, x2 = r sin θ sinϕ, x3 = r cos θ (12)

Solution of the problem for a spherical inclusion in an infinite elastic solid under uniaxial tension (compression) in
the direction of the axis x3 was obtained in [12]. According to [12] solution of the problem outside the inclusion has
the following form

u(3)
r = σa3

2

{
−A − 3a2B

2
+

[
5(5 − 4νM) − 9a2

2

]
B cos 2θ

}
+ σr [

(1 − νM) + (1 + νM) cos 2θ
]

r r r 4μM(1 + νM)
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u
(3)
θ = −2Bσa3 sin 2θ

r2

[
5(1 − 2νM) + 3a2

r2

]
− σr

4μM

sin 2θ

u(3)
ϕ = 0 (13)

σ (3)
rr = 2μMσa3

r3

{
2A +

(
−10νM + 12a2

r2

)
B +

[
10(νM − 5) + 36a2

r2

]
B cos 2θ

}
+ σ

2
(1 + cos 2θ)

σ
(3)
θθ = 2μMσa3

r3

{
−A −

(
10νM + 3a2

r2

)
B +

[
5(1 − 2νM) − 21a2

r2

]
B cos 2θ

}
+ σ sin2 θ

σ (3)
ϕϕ = 2μMσa3

r3

{
−A −

(
10(1 − νM) + 9a2

r2

)
B + 15

[
(1 − 2νM) − a2

r2

]
B cos 2θ

}

σ
(3)
rθ = 2μMσa3B

r3

[
−10(1 + νM) + 24a2

r2

]
sin 2θ

σ (3)
rϕ = 0, σ

(3)
θϕ = 0 (14)

where

B = μM − μI

8μM [(7 − 5νM)μM + (8 − 10νM)μI ] (15)

A = −B
(1 − 2νI )(6 − 5νM)2μM + (3 + 19νI − 20νI νM)μI

2(1 − 2νI )μM + (1 + νI )μI

+ D

D = (1 − νM − 2νI νM)μI − (1 − 2νI )(1 + νM)μM

4μM(1 + νM)[2(1 − 2νI )μM + (1 + νI )μI ] (16)

For the spherical inclusion identification we’ll use the following regular elastic fields with constant, linear and
quadratic stresses. Below the stress tensors and displacements vectors are presented in the initial Cartesian coordinates
OX1X2X3

σ (C1) =
(

σ 0 0
0 0 0
0 0 0

)
, u(C1) = σ

2μM(1 + νM)

(
X1

−νMX2
−νMX3

)

σ (C2) =
(0 0 0

0 σ 0
0 0 0

)
, u(C2) = σ

2μM(1 + νM)

(−νMX1
X2

−νMX3

)

σ (C3) =
(0 0 0

0 0 0
0 0 σ

)
, u(C3) = σ

2μM(1 + νM)

(−νMX1
−νMX2

X3

)
(17)

σ (L1) =
⎛
⎝

σX1
L

−σX2
L

0
−σX2

L
0 0

0 0 0

⎞
⎠ , u(L1) = σ

4LμM(1 + νM)

⎛
⎝X2

1 − (2 + νM)X2
2 + νMX2

3

−2νMX1X2

−2νMX1X3

⎞
⎠

σ (L2) =
⎛
⎝ 0 −σX1

L
0

−σX1
L

σX2
L

0

0 0 0

⎞
⎠ , u(L2) = σ

4LμM(1 + νM)

⎛
⎝ −2νMX1X2

−(2 + νM)X2
1 + X2

2 + νMX2
3

−2νMX2X3

⎞
⎠ (18)

σ (L3) =
⎛
⎝ 0 0 −σX1

L

0 0 0
−σX1

L
0 σX3

L

⎞
⎠ , u(L3) = σ

4LμM(1 + νM)

⎛
⎝ −2νMX1X3

−2νMX2X3

−(2 + νM)X2
1 + νMX2

2 + X2
3

⎞
⎠

σ (Q) =

⎛
⎜⎜⎝

σX2
3

L2 0 0

0
νMσ(X2

3−X2
1)

L2 0

−σX2
1

⎞
⎟⎟⎠ , u(Q) = σ

2μML2

⎛
⎝ (1 − νM)X1X

2
3 + νMX3

1/3
0

−[(1 − νM)X2
1X3 + νMX3

3/3]

⎞
⎠ (19)
0 0
L2



R. Goldstein et al. / C. R. Mecanique 336 (2008) 108–117 113
where L is a typical linear size of the domain V .
All the interaction integrals (7) and (10) for the applied elastic field (3) and regular elastic fields (Ci), (Li) and

(Q) can be calculated analytically. For the calculation of the integrals they are written in the coordinates M0x1x2x3
and the sphere ∂G is taken as a surface S. In the expressions (17)–(19) the coordinates Xi are replaced by xi + x0

i

according to (11) and the applied elastic field (13), (14) is transformed from the spherical to Cartesian coordinates.
The analytical expressions for some of interaction integrals (7), (10) are as follows

M
(3)
int (C1) = −6π(1 − νM)a3σ 2(A + 15B)

1 + νM

, M
(3)
int (C2) = M

(3)
int (C1)

M
(3)
int (C3) = −6π(1 − νM)a3σ 2[A − 5(1 + 4νM)B]

1 + νM

= M(3) (20)

M
(3)
int (L1) = −6π(1 − νM)a3σ 2(A + 15B)

1 + νM

(
x0

1

L

)

M
(3)
int (L2) = −6π(1 − νM)a3σ 2(A + 15B)

1 + νM

(
x0

2

L

)
(21)

M
(3)
int (L3) = −6π(1 − νM)a3σ 2[A − 5(1 + 4νM)B]

1 + νM

(
x0

3

L

)

RG(3)(Ck) = −2

3
M

(3)
int (Ck), RG(3)(Lk) = −2

3
M

(3)
int (Lk), k = 1,2,3 (22)

Let us note that invariant J and RG integrals do not depend on the location of the Cartesian coordinates origin,
but L and M integrals depend on the origin location. The presented in the formulae (20)–(22) and below M integrals
are calculated in the coordinates M0x1x2x3. Their expressions by means of the invariant integrals calculated in the
coordinates OX1X2X3 are considered in a separate publication.

It follows from (20) and (21) that in the case when A + 15B �= 0 and A − 5(1 + 4νM)B �= 0 the coordinates of the
center M0 of the ball G can be expressed by means of invariant integrals

x0
1

L
= M

(3)
int (L1)

M
(3)
int (C1)

,
x0

2

L
= M

(3)
int (L2)

M
(3)
int (C2)

,
x0

3

L
= M

(3)
int (L3)

M
(3)
int (C3)

(23)

From (22) and (23) it follows that the coordinates can be expressed also by the integrals following from the reci-
procity gap principle

x0
1

L
= RG(3)(L1)

RG(3)(C1)
,

x0
2

L
= RG(3)(L2)

RG(3)(C2)
,

x0
3

L
= RG(3)(L3)

RG(3)(C3)
(24)

In the formulae (23) and (24) the coordinates of the defect center are expressed by means of one type of invariant
integrals and different types of regular fields. The calculations show that the coordinates can be expressed also by
different types of invariant integrals and one type of the regular fields. In particular

x0
1 = 2M

(3)
int (L1)

3J
(3)
1 int(L1)

, x0
2 = 2M

(3)
int (L2)

3J
(3)
2 int(L2)

, x0
3 = 2M

(3)
int (L3)

3J
(3)
3 int(L3)

(25)

Now consider some special cases of the considered problem. Let us suppose that G is a spherical cavity (μI = 0).
In this case the formulae (15) and (16) have the following form

B = 1

8μM(7 − 5νM)
, A = 10νM − 13

8μM(7 − 5νM)
(26)

Using (26) in (20) one has

M
(3)
int (C3) = M(3) = 3π(1 − νM)(9 + 5νM)a3σ 2

2μM(1 + νM)(7 − 5νM)
(27)

M
(3)
int (C1) = M

(3)
int (C2) = −3π(1 − νM)(1 + 5νM)a3σ 2

(28)

2μM(1 + νM)(7 − 5νM)
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It follows from (27) and (28) that if a �= 0 then M
(3)
int (Ci) �= 0, i = 1,2,3. In this case the radius of the defect can be

calculated from (27)

a3 = 2μM(1 + νM)(7 − 5νM)M
(3)
int (C3)

3π(1 − νM)(9 + 5νM)σ 2
(29)

The coordinates of the cavity center are calculated by means of the formulae (23) or (24) and the problem of the
spherical cavity identification is completely solved.

In the case of a rigid inclusion (μI → +∞) the values A and B according to (15) and (16) have the form

B = −1

16μM(4 − 5νM)
, A = 19 − 33νM + 20ν2

M

16μM(4 − 5νM)(1 + νM)
(30)

It follows from (20) and (30)

M
(3)
int (C1) = M

(3)
int (C2) = −3π(1 − νM)(5ν2

M − 12νM + 1)a3σ 2

2μM(4 − 5νM)(1 + νM)2
(31)

M
(3)
int (C3) = −3π(1 − νM)(5ν2

M − νM + 3)a3σ 2

μM(4 − 5νM)(1 + νM)2
(32)

The radius of the rigid inclusion is determined from (32)

a3 = −μM(4 − 5νM)(1 + νM)2M
(3)
int (C3)

3π(1 − νM)(5ν2
M − νM + 3)σ 2

(33)

Let us note that according to (31) the values M
(3)
int (C1) and M

(3)
int (C2) can become zero when νM is a root of the

quadratic equation 5ν2
M − 12νM + 1 = 0 in the interval (0,1/2), more precisely νM = ν0

M ≈ 0.0864. So if νM �= ν0
M

then the coordinates of the rigid inclusion center are calculated by formulae (23) or (24). If νM = ν0
M then the value

x0
3/L can be calculated by the formulae (23) or (24) as before. For the calculation of the values x0

1/L and x0
2/L it is

necessary to use some other regular elastic fields with linear stresses. Let us take for an example

σ (L4) =
⎛
⎜⎝

σX1
L

−σX2
L

0
−σX2

L
0 0

0 0 νMσX1
L

⎞
⎟⎠ , u(L4) = σ

4μML

⎛
⎝ (1 − νM)X2

1 + (νM − 2)X2
2

−2νMX1X2

0

⎞
⎠

σ (L5) =
⎛
⎜⎝

0 −σX1
L

0
−σX1

L
σX2
L

0

0 0 νMσX2
L

⎞
⎟⎠ , u(L5) = σ

4μML

⎛
⎝ −2νMX1X2

(νM − 2)X2
1 + (1 − νM)X2

2

0

⎞
⎠ (34)

The calculations lead to the following expressions

M
(3)
int (L4) = −3π(1 − νM)(1 − 2νM)(1 − 5νM)a3σ 2

2μM(1 + νM)(4 − 5νM)

(
x0

1

L

)

M
(3)
int (L5) = −3π(1 − νM)(1 − 2νM)(1 − 5νM)a3σ 2

2μM(1 + νM)(4 − 5νM)

(
x0

2

L

)
(35)

It follows from (32) and (35) that in the case when νM is equal or close to ν0
M the coordinates x0

1 and x0
2 can be

calculated from the following formulae

x0
1

L
= 2(5ν2

M − νM + 3)

(1 − 2νM)(1 − 5νM)(1 + νM)

M
(3)
int (L4)

M
(3)
int (C3)

x0
2

L
= 2(5ν2

M − νM + 3)

(1 − 2νM)(1 − 5νM)(1 + νM)

M
(3)
int (L5)

M
(3)

(C3)
(36)
int
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To solve the inverse problem in a general case of spherical elastic inclusion we’ll use the regular elastic field (19)
with quadratic stresses. Consider some interaction integrals for the applied elastic field (3) and the regular field (Q)

given by Eq. (19)

M
(3)
int (Q) = 2(1 − νM)πa3σ 2

L2

[−28Ba2 + 3(A − 5B)(x0
1)2 − 3(A + 15B)(x0

3)2] (37)

RG(3)(Q) = −4(1 − νM)πa3σ 2

L2

[−4Ba2 + (A − 5B)(x0
1)2 − (A + 15B)(x0

3)2] (38)

It follows from (37) and (38)

2M
(3)
int (Q) + 3RG(3)(Q) = −64(1 − νM)πa5σ 2B

L2
(39)

From (20) one has

M
(3)
int (C3) − M

(3)
int (C1) = 120(1 − νM)πa3σ 2B (40)

It is interesting to note that the sign of the expression M
(3)
int (C3) − M

(3)
int (C1) (40), coinciding with the sign of

B (Eq. (15)), indicates the matrix or the inclusion is more stiff. If M
(3)
int (C3) − M

(3)
int (C1) > 0 then μM > μI , if

M
(3)
int (C3) − M

(3)
int (C1) < 0 then μM < μI .

Let us suppose that M
(3)
int (C3) − M

(3)
int (C1) �= 0. In this case from (39) and (40) one has

a2

L2
= −15[2M

(3)
int (Q) + 3RG(3)(Q)]

8[M(3)
int (C3) − M

(3)
int (C1)]

(41)

From (40) and (41) it is possible to obtain an expression for the constant B

B = M
(3)
int (C3) − M

(3)
int (C1)

120(1 − νM)πa3σ 2
(42)

where a is expressed by means of (41).
After the calculation of the value B one can calculate the shear modulus μI using (15)

μI

μM

= 1 − 8μM(7 − 5νM)B

1 + 16μM(4 − 5νM)B
(43)

It follows from (20)

(1 + 4νM)M
(3)
int (C1) + 3M

(3)
int (C3) = −24π(1 − νM)a3σ 2A (44)

From (42) and (44) one has

A = 5B[(1 + 4νM)M
(3)
int (C1) + 3M

(3)
int (C3)]

M
(3)
int (C1) − M

(3)
int (C3)

(45)

Finally one obtains an expression for the Poisson ratio νI of the inclusion

νI = R/S (46)

where

R = 4μM(1 + νM)
{
(2μM + μI )A + [

2μM(6 − 5νM) + 3μI

]
B

} + (1 + νM)μM − (1 − νM)μI

S = −4μM(1 + νM)
{
(μI − 4μM)A + [−4μM(6 − 5νM) + μI (19 − 20νM)

]
B

} + 2
[
(1 + νM)μM − νMμI

]
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Table 1
Identification of a spherical cavity

Coordinates of the cavity center The values obtained by approximate formulae

(x0
1 , x0

2 , x0
3 ) a x0

1 x0
2 x0

3

(0,0,0) 0.9995 −0.0028 −0.0015 0.0019
(0,3,0) 0.9995 −0.0076 3.0047 0.0006
(0,6,0) 1.0028 −0.0119 6.0705 0.0071
(0,8,0) 1.0162 0.0005 8.5417 −0.0005
(0,0,3) 0.9991 0.0092 −0.0006 2.9968
(0,0,6) 1.0102 −0.0193 0.0035 5.9759
(0,0,8) 1.0077 0.0006 −0.0019 8.6567
(3,3,3) 1.0010 3.0067 3.0004 2.9963
(6,6,6) 1.0010 6.1185 6.1197 6.0664
(8,8,8) 1.1205 8.4437 8.4729 8.0198

Table 2
Identification of a spherical rigid inclusion

Coordinates of the rigid inclusion center The values obtained by approximate formulae

(x0
1 , x0

2 , x0
3 ) a x0

1 x0
2 x0

3

(0,0,0) 0.9999 0.0027 −0.0033 0.0050
(0,3,0) 0.9994 0.0109 3.0112 0.0094
(0,6,0) 1.0013 −0.0037 5.9933 −0.0166
(0,8,0) 1.0054 −0.0095 8.0358 0.0015
(0,0,3) 0.9996 0.0054 −0.0120 3.0067
(0,0,6) 1.0035 −0.0005 −0.0140 5.9949
(0,0,8) 1.0275 −0.0081 0.0015 8.0275
(3,3,3) 1.0004 2.9841 3.0074 2.9977
(6,6,6) 1.0050 5.9610 5.9753 5.9666
(8,8,8) 1.0387 7.9138 7.9201 8.0081

5. Numerical analysis of the obtained formulae

The obtained formulae (23), (24), (29), (33) and others are exact for a spherical defect in an infinite elastic solid,
but in the case of a bounded domain they can be considered only as approximate ones. It is clear that the formulae
give a good approximation in the case when the sizes of the defect are small as compared to the distance between the
defect and the boundary of the body. The aim of the numerical analysis is to determine how close to the boundary of
the body can be a defect so that the formulae will still be applicable.

Let OX1X2X3 is the Cartesian coordinate system. As an example consider the cube domain V : |Xi | � 10, i =
1,2,3. The Poisson ratio of the matrix is νM = 0.25. We consider below two types of the defects G: (1) G is a
spherical cavity of the radius 1; (2) G is a rigid inclusion of the radius 1. The applied loads correspond to the uniform
uniaxial tension in the direction of the axis X3: t (3)(X1,X2,10) = σ , t (3)(X1,X2,−10) = −σ , t (3)(±10,X2,X3) =
t (3)(X1,±10,X3) = 0. For different locations of the defect center the direct problem was solved by the FEM and
the elastic field on the surface ∂V was calculated. After that the invariant integrals were calculated and the defect
parameters were determined by the formulae (29) and (23), (24) for a cavity and by the formulae (33) and (23), (24)
for a rigid inclusion. We took L = 10 for the linear regular elastic fields.

The results of the calculations are presented in Tables 1 and 2, respectively. The numerical results show that
obtained explicit formulae give a good approximation to the inverse problem solution for a spherical cavity and a rigid
inclusion even when the defect is located close enough to the boundary of the body.

6. Conclusion

A method, based on the use of invariant integrals, is proposed for the defect identification. The method extends the
possibilities of the reciprocity gap principle.
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Explicit formulae for determination of the parameters of the spherical cavities and inclusions by means of the
results of one uniaxial tension (compression) static test are obtained. These formulae are exact for the infinite elastic
solids and approximate for the bounded elastic bodies.

Numerical analysis of the formulae is fulfilled. The results of the analysis show that the formulae give a good
approximation of the spherical defect parameters even in a case when a defect is close enough to the body boundary.
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