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Abstract

A variational argument is used to obtain a necessary and sufficient condition for interpreting the work done by configurational
forces as the net dissipation. This condition is the Euler–Lagrange equation associated with the variational integral. We use this
simple proposition to re-interpret classical results and also gain insight into recently obtained configurational forces in the stress
space. To cite this article: A. Gupta, X. Markenscoff, C. R. Mecanique 336 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Les forces configurationnelles vues comme des mécanismes dissipatifs : un ré-examen. Un argument variationnel est utilisé
pour obtenir une condition nécessaire et suffisante permettant d’interpréter le travail effectué par les forces configurationnelles
comme une dissipation nette. Cette condition est l’équation d’Euler–Lagrange associée à l’intégrale variationnelle. Nous utilisons
cette proposition simple pour ré-interpréter des résultats classiques et aussi approfondir l’interprétation de forces configuration-
nelles récemment définies dans l’espace des contraintes. Pour citer cet article : A. Gupta, X. Markenscoff, C. R. Mecanique 336
(2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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Configurational forces are the driving forces associated with the dissipative mechanisms which result as a conse-
quence of material rearrangements. In the mechanics of solids they are related to the concept of the force acting on
a defect [1]. These forces are manifested as energy release rates in the study of crack growth [2,3], delamination [4]
and epitaxial growth of thin films [5]. In classical dislocation theory they appear in the form of Peach–Koehler force
[6], and as a driving traction for a moving phase boundary [7]. For an elastic body, one can obtain expressions for
configurational forces using a variational method which follows the procedure of Noether’s theorem [8]. Dissipation
is quantified by a variation in energy under an infinitesimal rearrangement in the material body and is equal to the
work done by the configurational force. We show below (in Section 1) as a simple proposition that this is true if and
only if the Euler–Lagrange equations associated with the energy are satisfied.
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In classical elasticity, the energy is given by the quadratic (in strain) strain energy, and the corresponding Euler–
Lagrange equations are the equilibrium equations. The compatibility of strain is assumed. Therefore, in this case, the
dissipation as a result of material rearrangement is given by the work done due to configurational forces if and only
if equilibrium is maintained in the body. We thus have a physical interpretation of our proposition: the consequence
that configurational forces act as dissipative mechanisms, is necessary and sufficient for the equilibrium equations to
remain valid during the infinitesimal rearrangement in the material body. We discuss this in more detail in Section 2.

We are then led to the question of obtaining a dissipative mechanism when the Euler–Lagrange equations are the
Beltrami–Michell (B–M) compatibility conditions. We therefore consider a generalized energy in the stress space
whose Euler–Lagrange equations are the B–M compatibility conditions [9–11]. Here equilibrium is satisfied trivially.
Classical complementary energy principles like Hellinger–Reissner [12] assume the existence of a displacement field
a-priori and therefore are not suitable for this purpose. Our proposition is then used (in Section 3) to impart a physical
meaning to a recently obtained invariant integral in stress space [11].

1. A variational argument

Consider the following functional (for Ω ⊂ R3):

Π(ui, ui,j ) =
∫
Ω

W(xi, ui, ui,j )dV (1)

where xi and ui(xi) are the independent and the dependent variables, respectively and the function W is assumed
to be defined almost everywhere on Ω . All variables are expressed in terms of their Cartesian coordinates, where
the subscript indices vary from one to three. In the above relation ui,j denotes the gradient (total derivative) of ui

with respect to xj . We will also represent the total derivative (with respect to xi for example) by d
dxi

and denote the

partial derivative by ∂
∂xi

. We consider smooth transformations in xi and ui such that the new independent variables
are yi = ŷi (xi, εi) and the new dependent variables are vi(yi) = v̂i (xi, εi) where εi represent the transformation
parameters satisfying the condition, xi = ŷi (xi,0) and ui = ûi (xi,0). One can expand yi and ui for small εi as
yi = xi + φi + O(ε2) and vi = ui + ψi + O(ε2), respectively, where φi and ψi are the terms in the expansion which
are linear in εi . For small εi (i.e. if |εi | � 1), the change in the functional under such a transformation can then be
obtained as ([13], page 173)

δΠ =
∫
Ω

d

dxi

(
∂W

∂uk,i

ψ̄k + Wφi

)
dV +

∫
Ω

Ψiψ̄i dV (2)

where ψ̄k = ψk − uk,jφj and

Ψi = ∂W

∂ui

− d

dxj

∂W

∂ui,j

(3)

In rest of the article we will not consider any independent variations in ui , i.e. take ψi = 0. Therefore ψ̄k = −uk,jφj

and Eq. (2) reduces to

δxΠ =
∫
Ω

Bi,i dV −
∫
Ω

Ψiui,jφj dV (4)

where

Bi =
(

Wδij − uk,j

∂W

∂uk,i

)
φj (5)

and the notation δx denotes the variation with respect to xi .
Observe that Ψi ≡ 0 represent the Euler–Lagrange equations corresponding to the functional given in (1). The

relation (4) also provides us with a special case of Noether’s theorem which can be stated as: “if the integral Π

is invariant with respect to the group of transformations induced by εi , then linearly independent combinations of
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the Lagrange expressions become divergences. The converse is also true”. By Lagrange expressions we refer to Ψi .
Therefore if the integral Π is invariant under considered transformations then δxΠ = 0, which implies

Bi,i = Ψiui,jφj (6)

as stated in the Noether’s theorem above. If the Euler–Lagrange equations hold true then Ψi = 0 and we obtain
conservation laws. For a complete proof, the interested reader is referred to the original paper [14] and the book by
Gelfand and Fomin [13].

For the ease of discussion we denote the flux term in (4) by F , i.e.

F =
∫
Ω

Bi,i dV (7)

We state a simple proposition:

(P) “δxΠ = F if and only if Ψi = 0”

whose validity can be easily verified: assume Ψi = 0, then (4) implies δxΠ = F . Assume δxΠ = F , then owing to
the arbitrariness of φi , we have ui,jΨi = 0 and assuming ui,j to be invertible it follows that Ψi = 0 (we also use
the arbitrariness of Ω and the fact that the fields are smooth almost everywhere on Ω). We demonstrate the physical
significance of this proposition by considering examples from elasticity.

2. An interpretation of energy release rates in the classical formulation of elasticity

Let W denote the elastic strain energy density, such that W = W(xi, ui,j ) and pij = ∂W
∂ui,j

, where pij is the first
Piola stress tensor (equivalent to the Cauchy stress tensor for small strains). The vectors xi and ui(xi) have the usual
meaning of the (reference) position and the displacement, respectively. We restrict our attention to the transformation
corresponding to a translation, i.e. φi = εi . Assume that there are no body forces and only displacement boundary
conditions are prescribed. Under these conditions, Eq. (4) is reduced to

δxΠ =
∫

∂Ω

(Wδij − uk,jpki)εjni dA +
∫
Ω

pik,kui,j εj dV (8)

where we have used the divergence theorem to replace the volume integral by a surface integral (assuming that the
fields are smooth), with ni being the surface normal. The flux term here is given in terms of the Eshelby Energy
Momentum tensor Eij as

F =
∫

∂Ω

Eij εjni dA (9)

where Eij = (Wδij − uk,jpki). The term conjugate to εj is defined to be as the configurational force, which in this
case is given by

∫
∂Ω

Eijni dA. The Euler–Lagrange equations are the equilibrium conditions: pik,k = 0. Eq. (8) can
be rewritten using the notation introduced in Eq. (9) as

δxΠ = F +
∫
Ω

pik,kui,j εj dV (10)

The proposition (P) as stated in Section 1 then implies the following: the energy release (or the change in energy) δxΠ

is given by the flux F (as defined in (9)) if and only if the equilibrium condition is satisfied. The notion of energy
release as obtained from the flux F is a popular concept in defect mechanics and was initial introduced in the context
of elasticity by Eshelby [15]. Our proposition says that for such a relation (that of the calculation of energy release
through flux F ) to hold, it is necessary and sufficient to satisfy the equilibrium condition. We elaborate our point
further in the following.

Imagine that the body Ω is homogeneous and smooth. This implies that the explicit derivative of W with respect
to xi , ∂W

∂xi
= 0 everywhere in Ω and we can use the divergence theorem to reduce F to a volume integral. We thus

obtain from (10),
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δxΠ =
∫
Ω

(Wδij − uk,jpki),iεj dV +
∫
Ω

pik,kui,j εj dV

=
∫
Ω

(pkiuk,ij − uk,jipki − uk,jpki,i )εj dV +
∫
Ω

pik,kui,j εj dV

= 0

and therefore the energy release δxΠ is rendered zero.
In a case of an inhomogeneity inside Ω , ∂W

∂xi
�= 0 and the flux F does not cancel exactly with the last term in (10).

The choice of φi = εi with small εi provides with an infinitesimal translation to all the material points (denoted by xi )
in the body. We reinterpret the proposition in this case as follows: the energy release (or the change in energy) is given
by the flux F so as to maintain equilibrium (given by pij,j = 0) in the state obtained by an infinitesimal translation of
material points. Since the material points in the region without inhomogeneities do not contribute to energy release,
we associate this (non-trivial) change in energy to the motion of the inhomogeneity. Therefore the flux ensures that
the body remains infinitesimally close to equilibrium even after a small perturbation of the inhomogeneity position.
We can use similar arguments in the presence of dislocations and cracks.

Note that the issue of compatibility never arises in this case, since we assume existence of a smooth (almost
everywhere) displacement field a priori, and therefore a compatible strain/stress field is assumed to persist before and
after the infinitesimal translation of the defect. A natural question arises of finding a suitable energy release or flux
which associates itself in imposing compatibility as a necessary and sufficient condition.

3. An energy release rate associated with the compatibility of stress field

We now consider a formulation of linear and isotropic elasticity in stress space. A positive definite functional has
been introduced by Pobedrya [9–11,16,17], whose Euler–Lagrange equations are the B–M compatibility conditions.
The functional is given as

Π(σij , σij,k) =
∫
Ω

{
1

2
σij,kσij,k + 1

1 + ν
σkk,iσij,j + 1 − ν

2ν(1 + ν)

(
σik,kσij,j + σjk,kσji,i

)}
dV

−
∫

∂Ω

χij σij dS +
∫

∂Ω

[
1

2

(
σij,j σik,k + σijnjσiknk

)]
dS (11)

where χij = ∂LΩ

∂σij,k
nk (LΩ is the integrand in the volume integral above) and ν is the Poisson’s ratio. Here σij (xi)

denotes the Cauchy stress tensor. The traction forces are assumed to vanish all over the boundary. We also assume
body force and incompatibility field distribution to vanish throughout the body Ω . The Euler–Lagrange equations
corresponding to the functional above are:

σij,kk + 1

1 + ν
σkk,ij = 0, ∀xk ∈ Ω (12)

σijnj = 0, ∀xk ∈ ∂Ω (13)

σij,j = 0, ∀xk ∈ ∂Ω (14)

The equilibrium relation σij,j = 0 needs to be satisfied only on the boundary, as a result of which it is satisfied auto-
matically in the domain [9]. Therefore, equilibrium inside the domain is always maintained as long as the equilibrium
conditions hold on the boundary. We would now like to express the integral equation (4) for the functional (11) for
the case of translation transformation (φi = εi ). We assume that the boundary ∂Ω is smooth and the boundary terms
in (11) remain invariant under the translation transformation [11]. We obtain,

δxΠ =
∫

∂Ω

Xij εjni dA −
∫
Ω

Ψijσij,kεk dV (15)

where

Xij = 1
σlm,nσlm,nδij − σmn,j σmn,i − 1

σmi,j σqq,m (16)

2 1 + ν
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and

−Ψij = σij,kk + 1

1 + ν
σkk,ij (17)

The proposition (P) in Section 1 then implies the following: under a coordinate translation, the change in functional
Π (as given in (11)) is equal to the flux (second term in (15)) if and only if the compatibility equations in the form
of (12) are satisfied almost everywhere in the domain. Note that the functional Π in (11) does not have dimensions
of energy. In fact if σij,k(xi) ∈ L2(Ω) then under the assumption of equilibrium, the volume part of this functional
provides the norm associated with the space L2(Ω) [18].

A change of dimensions in Eq. (15) might be useful for its physical interpretation. We define a generalized energy
Π̂ such that

Π̂ = l2

μ
Π (18)

where μ denotes the shear modulus (material constant) and l represents an internal length scale in the problem.
The internal length scale is assumed to be a fixed constant and can be associated to the characteristic length scales
involved in gradient elasticity theories. Here, however, we do not formulate a gradient theory, in the sense that there
are no higher order stresses in our problem. An interpretation of this internal length scale can also be made as a
length parameter at which gradients of stress remain finite. Below such a scale, the gradients might not remain smooth
and our formulation would lose its validity. Consequently the scale defined by l defines a lower limit for the length
dimension at which the notion of compatibility as expressed by (12) makes sense. Relation (15) can then be rewritten
as

δxΠ̂ =
∫

∂Ω

X̂ij εjni dA − l2

μ

∫
Ω

Ψijσij,kεk dV (19)

where X̂ij = l2

μ
Xij . The proposition (P) mentioned in the Section 1 can now be re-interpreted: the flux term F̂ is given

by

F̂ =
∫

∂Ω

X̂ij εjni dA (20)

and the corresponding configurational force is given by
∫
∂Ω

X̂ij ni dA. According to the proposition, the change in
the energy equals the flux if and only if Ψij = 0. In the absence of inhomogeneities and defects, we can use the
divergence theorem to convert the flux term to a volume integral, which cancels identically with the last term in
Eq. (19). Therefore in such a case δxΠ̂ = 0.

In the case where there is an inhomogeneity or a defect inside Ω , the flux F̂ no longer cancels identically with
the last term in (19).The flux F̂ then represents a necessary and sufficient change in energy such that compatibility
(in terms of stress) is maintained even after an infinitesimal translation of the inhomogeneity/defect inside Ω . The
equilibrium of stress is satisfied trivially (as a consequence of satisfying the equilibrium on the boundary) during
such an infinitesimal translation. It is evident that for large characteristic length scales, such a dissipation is large in
comparison to the problems where the internal length scales are small. If Ψij �= 0 (see for example [19]), then the
dissipation should be evaluated using the complete right-hand side of Eq. (19) (a similar remark can be made for the
case in Section 2).

Finally, we relate our interpretation to Kröner’s ([20], page 287) ‘internal observer’ who ‘cannot distinguish be-
tween compatible deformations’, but would be sensitive to an incompatibility. In our settings, it is this observer who
is operating the dissipative mechanism which ensures that compatibility is not violated anywhere in the domain.
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