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Abstract

Solid body contact is restricted to a discrete number of randomly distributed microscopic areas resulting from the deformation
of interacting surface protrusions (asperities). The deformation mode of these asperity contacts can be elastic, elastic–plastic,
or fully plastic, depending on the local surface interference, asperity radius of curvature, coefficient of friction, and mechanical
properties of the solid surfaces. Traditionally, the surface topography has been described by statistical models which rely on
unrealistic simplifications of the shape, height, and size of the asperities. Such assumptions were avoided in contemporary contact
mechanics analyses, which use fractal geometry to accomplish a surface topography description over a wide range of length scales.
The main objective of this article is to provide an assessment of the role of multi-scale topography (roughness) and frictional
heating in contact deformation of elastic–plastic solid bodies. Contact relationships, derived at the asperity level, which include the
mechanical properties of surface layer and substrate medium, layer thickness, local surface interference, and equivalent asperity
radius of curvature, are presented for different modes of deformation. These asperity-level relationships and a fractal model of
the surface topography are incorporated into a numerical integration scheme to analyze multi-scale thermomechanical contact
deformation over the entire real contact area of homogeneous and layered media possessing realistic surface topographies. To cite
this article: K. Komvopoulos, C. R. Mecanique 336 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Effets de rugosité et de l’échauffement par frottement dans la déformation de contact de corps solides. Le contact entre
corps solides n’a lieu que sur un nombre fini de zones microscopiques réparties aléatoirement, qui résultent de la déformation
d’aspérités en interaction. Le mode de déformation de ces aspérités en contact peut être élastique, partiellement élastique et par-
tiellement plastique, ou complètement plastique, suivant l’interférence locale des surfaces, le rayon de courbure des aspérités, le
coefficient de frottement et les propriétés mécaniques des surfaces. Traditionnellement, la topographie des surfaces a été décrite à
l’aide de modèles statistiques qui reposent sur des simplifications irréalistes de la forme, la hauteur et la taille des aspérités. Les
analyses mécaniques actuelles du contact évitent de telles hypothèses en utilisant la géométrie fractale pour décrire la topographie
des surfaces sur une large gamme d’échelles. Le but essentiel de cet article est d’examiner le rôle de la topographie multi-échelles
(rugosité) et de l’échauffement par frottement dans la déformation de contact de corps solides élasto-plastiques. Des relations
de contact obtenues à l’échelle des aspérités, qui font intervenir les propriétés mécaniques de la zone de surface et du substrat
sous-jacent, l’épaisseur de la couche, l’interférence des surfaces et le rayon de courbure équivalent des aspérités, sont présentées
pour différents modes de déformation. Ces relations d’origine microscopique, jointes à un modèle fractal de la topographie des
surfaces, sont incorporées dans un schéma d’intégration numérique, afin d’analyser la déformation thermomécanique de contact de
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la totalité de la zone de contact de milieux homogènes et laminés possédant des topographies de surface réalistes. Pour citer cet
article : K. Komvopoulos, C. R. Mecanique 336 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Since the seminal contact analysis of elastic solids of revolution by Hertz [1], solid body contact has attracted sig-
nificant research attention. Early studies were mainly focused on theoretical treatments of simplified contact problems,
such as homogeneous elastic half-spaces [2] and layered media [3,4] in contact with smooth indenters, compression
of an elastic layer on a rigid substrate by a frictionless stamp [5], normal contact of a cylinder with an elastic layered
medium for the special cases of frictionless and rigid (perfect bonding) layer/substrate interface [6], and elastic contact
of a cylinder with a layered medium [7]. A common contribution of these studies was the development of analytical
solutions for the contact pressure distribution.

Advances in numerical methods and computational capabilities led to the incorporation of more realistic consti-
tutive models in later contact mechanics studies. Contact analyses performed with the finite element method (FEM)
showed that the accumulation of plastic deformation in indented elastic–plastic homogeneous media may result in
contact pressure distributions that deviate significantly from that predicted by Hertz theory [8,9]. FEM analysis of
repetitive indentation of an elastic–plastic half-space by a rigid sphere demonstrated a dependence of both contact
pressure and subsurface plastic deformation on the number of indentation cycles and provided insight into elastic
shakedown [10]. A significant decrease of the tensile stress arising in the substrate of a layered medium with a hard
layer and intensification of both interfacial shear stress and surface tensile stress at the contact edge were observed in
plane-strain indentation analyses performed with the FEM [11,12]. Effective hardness relationships for layered media
possessing surface layers harder or softer than the substrate were extracted from FEM simulation results for an elastic–
plastic layered medium indented by a rigid cone [13]. FEM analysis of a rigid sphere sliding over an elastic–plastic
layered medium elucidated the effects of layer thickness and material properties, friction coefficient, and normal load
on the contact pressure distribution and the evolution of subsurface stresses [14].

Despite important information regarding the role of the layer thickness and the material properties on the defor-
mation behavior of layered media derived from previous contact mechanics analyses, the reported results are limited
to smooth surface profiles and, therefore, are only applicable to macroscopic deformation behavior. Because even
macroscopically smooth surfaces exhibit multi-scale roughness, high stress gradients in the vicinities of the asperity
contacts are not captured in contact analyses of ideally smooth surfaces. In early studies dealing with the effect of
surface roughness on contact deformation, the surface topography was approximated by a simple periodic waviness
to enable analytical treatment. Elastic contact of a homogeneous half-space exhibiting sinusoidal surface waviness
showed that both contact pressure and load versus contact length relationships deviated from corresponding Hertz
solutions for small wavelengths (i.e., small asperity distances) [15–17]. In other elastic studies, the interaction of
neighboring asperity contacts was found to greatly affect contact deformation [18,19]. An analysis of a rigid and
smooth cylinder compressing an elastic cylinder with a wavy surface revealed local stress maxima below asperity
contacts [20]. A significant roughness effect on the subsurface stress distributions up to depths that scaled with the
asperity contact size was observed in an elastic analysis of lubricated contact interfaces [21].

The important effect of surface waviness on contact deformation demonstrated in previous studies provided im-
petus for the development of more realistic surface topography models. Randomly oriented elliptical contacts were
found at contact interfaces with asperities modeled by elliptical paraboloids [22–24]. However, the statistical models
of these studies do not account for multi-scale roughness and asperity interaction effects. The self-affinity property
demonstrated by most surfaces led to the description of the interfacial topography by fractal geometry [25–27]. Con-
trary to traditional statistical models that are based on scale-dependent parameters for surface characterization, fractal
geometry relies on scale-independent (fractal) surface topography parameters over a wide range of length scales where
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the surface exhibits a particular fractal behavior. (Some surfaces may exhibit multi-fractal behavior, characterized by
different fractal parameters over different wavelength ranges.) Consequently, fractal geometry was used in contem-
porary contact mechanics studies to examine deformation at the asperity level [28], normal and sliding contact of
adhesive rough surfaces [29], elastic–plastic deformation of rough surfaces [30], adhesion of micromachine surfaces
subjected to van der Waals, electrostatic, capillary, and asperity deformation forces [31], elastic–plastic contact of
layered media possessing fractal topographies [32], temperature rise at sliding interfaces due to frictional heating [33,
34], development of stresses and strains below asperity contacts of elastic–plastic layered media [35], and sliding of a
fractal surface against a homogeneous elastic half-space resulting in thermomechanical deformation [36].

The previous studies illustrate the important effects of surface topography on contact deformation of macroscopi-
cally smooth solid bodies. However, to analyze contact deformation of semi-infinite media, it is necessary to accurately
describe the surface topography and account for asperity interaction effects over a wide range of length scales. The
objectives of this article is to introduce basic aspects of multi-wavelength surface topography description, present
contact deformation models derived at the asperity level, and elucidate the significance of multi-scale roughness and
interfacial friction on deformation behavior of homogeneous and layered elastic–plastic media subjected to thermal
and mechanical surface tractions.

2. Multi-scale surface topography description

Since surface topographies resemble a random process [37], surface power spectra obey a power-law relationship
over a wide range of frequencies [38]. This is an inherent behavior of fractal geometry [27], characterized by intrinsic
properties of continuity, nondifferentiability, and self-affinity, which can be satisfied by a complex function W of the
form [39]

W(x) =
∞∑

n=−∞
γ (D−2)n(1 − eiγ nx)eiφn (1)

where x is a real parameter. A two-dimensional (2D) fractal profile z(x) can be obtained as the real part of W(x), i.e.,

z(x) = Re
[
W(x)

] =
∞∑

n=−∞
γ (D−2)n

[
cosφn − cos(γ nx + φn)

]
(2)

where D is the fractal dimension (1 < D < 2 for 2D surface profiles), which is invariant in the frequency range
throughout which the surface exhibits fractal behavior, n is a frequency index, φn is a random phase used to prevent
the coincidence of different frequencies at any point of z(x), and γ (γ > 1) is a parameter that controls the density
of frequencies in z(x). Surface flatness and frequency distribution density considerations [40] suggest that γ = 1.5
is a physically reasonable value. Eq. (2) shows that z(x) is a superposition of cosine functions with geometrically
increasing frequencies. The mean square increment of z(x), referred to as the structure function of z(x), is defined as

S(τ) = 〈[
z(x + τ, y) − z(x, y)

]2〉
(3)

where τ is termed the correlation length. The self-affine property is independent of x and can be expressed as

S(γ τ) = γ 2(2−D)S(τ) (4)

Function W(x) can be generalized to describe higher-dimensionality stochastic processes, while homogeneity and
scaling (Eq. (4)) are preserved. Hence, a two-variable function can be used to represent a fractal surface that exhibits
randomness in all directions (three-dimensional (3D) surface topography). Such a function is given by [41]

z(ρ, θ) =
(

lnγ

M

)1/2 M∑
m=1

Am

∞∑
n=−∞

(kγ n)(D−3)
{
cosφm,n − cos

[
kγ nρ cos(θ − αm) + φm,n

]}
(5)

where ρ and θ are the planar polar coordinates of a surface point of height z, which can be related to the planar
coordinates x and y through ρ = (x2 +y2)1/2 and θ = tan−1(y/x), D denotes again the fractal dimension (2 < D < 3
for 3D surfaces), and M is the number of superimposed ridges (M = 1 for 2D surfaces with cylindrical corrugations).
Surface anisotropy depends on Am, i.e., for isotropic surfaces Am = A for all m values, while for anisotropic surfaces
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Fig. 1. Two-dimensional surface topography of a 3D fractal surface constructed from Eq. (7) for G = 3.78 × 10−3 nm and D = 2.25. The rms
roughness of this surface is σ = 13.6 nm.

Am is a function of m. An arbitrary angle αm is used to offset the ridges in the azimuthal direction (for equally offset
ridges, αm = πm/M) and a random number generator to uniformly distribute the values of random phase φm,n in
the interval [0,2π]. Wavenumber k and sample size L are related by k = 2π/L. In practice, the frequency index n is
finite. Since the lowest frequency is ωl = 1/L, the lower limit of n can be set equal to zero. Because fractal geometry
is not applicable at the atomic scale (breakdown of continuum description), the highest frequency is ωh = 1/Lc ,
where Lc is a cut-off wavelength, typically on the order of the interatomic distance. The upper limit of n is given
by nmax = int[log(L/Lc)/ logγ ]. The function of a 3D isotropic surface can be obtained by substituting the previous
relationships of Am, αm, ρ, θ , k, and the lower and upper limits of n into Eq. (5), i.e.,

z(x, y) = A

(
L

2π

)(3−D)( lnγ

M

)1/2 M∑
m=1

nmax∑
n=0

γ (D−3)n

×
{

cosφm,n − cos

[
2πγ n(x2 + y2)1/2

L
cos

(
tan−1

(
y

x

)
− πm

M

)
+ φm,n

]}
(6)

Substituting A = 2π(2π/G)(2−D) in Eq. (6) for consistency [40],

z(x, y) = L

(
G

L

)(D−2)( lnγ

M

)1/2 M∑
m=1

nmax∑
n=0

γ (D−3)n

{
cosφm,n

− cos

[
2πγ n(x2 + y2)1/2

L
cos

(
tan−1

(
y

x

)
− πm

M

)
+ φm,n

]}
(7)

Because G is a frequency independent scaling parameter, it is referred to as the fractal roughness. The only un-
known parameters in Eq. (7) are the scale-independent fractal parameters G and D, which can be determined from
a logarithmic plot of S(τ) [42]. Fig. 1 shows a plane view of a 3D fractal surface constructed from Eq. (7) using
G = 3.78 × 10−3 nm and D = 2.25. The root-mean-square (rms) roughness of this surface is σ = 13.6 nm.

3. Distribution of asperity contacts

Fig. 2(a) shows a cross-sectional view of the contact interface of two layered media subjected to a normal load
P . Because of the roughness effect, contact is confined at surface summits termed asperities. Fig. 2(b) shows an
equivalent contact model, consisting of a rigid plane and a deformable rough surface with effective material properties



K. Komvopoulos / C. R. Mecanique 336 (2008) 149–162 153
Fig. 2. (a) Cross-sectional view of the contact interface of two solid bodies with rough surfaces coated with a thin layer under a normal load and
(b) equivalent contact model consisting of a rigid plane and a deformable solid body with effective (equivalent) material properties and surface
topography showing the formation of individual asperity contacts.

and topography that are functions of those of each solid surface. The normal load Pi transmitted through the ith
asperity contact depends on the projected contact area ai(local curvature effect). The real contact area Ar is the
summation of all the asperity contact areas obtained at a given global surface interference, with aL denoting the
largest asperity contact area. Hence, Ar is a small fraction of the apparent contact area Aa . For lightly loaded contact
interfaces, such as those of hard disk drives and microelectromechanical systems, Ar/Aa typically varies in the range
of 10−8–10−6, depending on contact load, topographies of contacting surfaces, and surface mechanical properties.

The development of normal and shear (friction) surface tractions and the resulting deformation depend strongly
on the size and spatial distribution of the asperity contacts obtained at a given global surface interference. One of the
most fundamental concepts in contact mechanics is the size distribution of the asperity contacts. A close similarity
has been observed between surface asperity distributions and the Earth’s island distribution. Fig. 3 shows the surface
topography of a carbon-coated hard disk of rms roughness σ ≈ 0.2 nm. Despite the extremely small roughness, the
surface comprises asperity features that exhibit an island-like distribution. In light of this similarity, the power-law
relationship of the island distribution used in geophysics [26,27] can be used to describe the number of truncated
asperity contacts N of areas larger than a′, i.e.,

N(a′) =
(

a′
L

a′

)(D−1)/2

(8)

where a′
L is the largest truncated contact area. Hence, the 3D size distribution of the truncated asperity contacts can

be written as

n(a′) = −dN(a′)
da′ = (D − 1)

2a′
L

(
a′
L

a′

)(D+1)/2

(9)

The largest truncated contact area is related to the total truncated area of the 3D equivalent rough surface A′
(determined numerically at a given global surface interference) and the fractal dimension D through the relationship

A′ =
a′
L∫

a′
s

a′n(a′)da′ = D − 1

3 − D

[
1 −

(
a′
s

a′
L

)(3−D)/2]
a′
L (10)

where a′
s is the smallest truncated contact area, which, for a continuum description, may be set equal to five or six

times the lattice dimension. Eqs. (9) and (10) indicate that an approximate assessment of the size range [a′
s , a

′ ] and
L
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Fig. 3. Surface topography of a smooth (σ ≈ 0.2 nm) carbon-coated magnetic rigid disk showing an island-like distribution of the surface asperities.

the spatial distribution of asperity contacts for a given global surface interference can be obtained from the truncated
equivalent surface topography. The next step is to express the size of a truncated (undeformed) asperity contact in
terms of the size of the corresponding deformed asperity contact and determine the associated mean contact pressure
using asperity-based contact models.

4. Asperity contact deformation and effective material properties

As demonstrated by the 2D equivalent contact model shown schematically in Fig. 4(a), the truncation of the rough
surface by a rigid plane produces several profile segments that contain asperity contacts of various sizes. This is a
consequence of the multi-scale roughness effect on the conformation behavior of the contacting rough surfaces. The
resulting asperity contacts may exhibit elastic, elastic–plastic, or fully plastic deformation, depending on the local
surface interference, equivalent asperity radius, and effective material properties. For 3D surface description, the local
surface interference at the ith asperity δi , shown in the cross-sectional view of the surface profile depicted in Fig. 4(b),
and the equivalent asperity radius Ri are given by [30]

δi = 2G(D−2)(lnγ )1/2(2r ′
i )

(3−D) (11)

Ri = (a′
i )

(D−1)/2

2(5−D)π(D−1)/2G(D−2)(lnγ )1/2
(12)

The mechanical properties of the deformable medium and the topography of the rigid rough surface are equivalent
to those of the contacting solid bodies. In view of the dependence of the indentation hardness on yield strength [43], the
equivalent (effective) yield strength of a layered medium σ ∗

Y can be expressed in terms of the local surface interference
as [13]

σ ∗
Y = σY,s + (σY,l − σY,s) exp

[
−

(
δi

)(
Es

)1/2]
(13)
h El
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Fig. 4. (a) Truncation of equivalent 2D fractal surface (or 3D isotropic fractal surface) by a rigid plane resulting in several contact segments and (b)
close-up view of a contact segment showing the local interference at an individual asperity contact.

where h is the layer thickness, E is the elastic modulus, and subscripts l and s denote layer and substrate material
properties, respectively. The equivalent (effective) elastic modulus E∗ can be related to the local surface interference
through the relationship [44]

E∗ =
[(

1 − exp
[−αh/ri

√
π

])(1 − ν2
l

El

)
+ exp

[−αh/ri
√

π
](1 − ν2

s

Es

)]−1

(14)

where α is a numerically determined geometrical factor that depends on the indenter shape [44], ri is the radius of the
asperity contact area ai at the particular local surface interference and ν is the Poisson’s ratio.

Using Eqs. (11), (13), and (14), the representative strain εR at an asperity contact of truncated radius r ′
i and local

surface interference δi can be defined as

εR = E∗δi

σ ∗
Y r ′

i

(15)

Eq. (15) shows that the deformation behavior at the asperity level is controlled by the local surface interference. It
is noted that εR is also a function of the equivalent asperity radius (Eq. (12)). The asperity deformation can be elastic,
elastic–plastic, or fully plastic, depending on the representative strain (Eq. (15)). Relationships for the mean contact
pressure pm,i and the real contact area ai of the deformed ith asperity are given below for different deformation
modes [32].

• Elastic deformation (εR < 1.78),

pm,i = 4
√

2

3π
εRσ ∗

Y , ai = a′
i

2
= π(r ′

i )
2

2
(16)

• Elastic–plastic deformation (1.78 � εR < 21),

pm,i = [0.70 ln εR + 0.66]σ ∗
Y , ai = π(r ′

i )
2

0.05(ln εR)2 − 0.57 ln εR + 2.41
(17)

• Fully plastic deformation (21 � εR � 400),

pm,i = 2.9σ ∗
Y , ai = π(r ′

i )
2

0.05(ln εR)2 − 0.57 ln εR + 2.41
(18)

• Fully plastic deformation (400 < εR),

pm,i = 2.9σ ∗
Y , ai = π(r ′

i )
2

0.71
(19)
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Fig. 5. (a) Mean contact pressure and (b) truncated-to-real contact area ratio versus representative strain [32].

The physical meaning of the previous contact relationships is demonstrated in Fig. 5. It can be seen that the
asperity mean contact pressure and contact area are strong functions of the representative strain, which depends on
the equivalent elastic and plastic material properties (Eqs. (13) and (14)), local surface interference (Eq. (11)), and
truncated contact radius (or equivalent asperity radius of curvature (Eq. (12)). Fig. 5 also shows the transition from
purely elastic to elastic–plastic, and then, to fully-plastic deformation with the increase of εR . An iteration procedure
is needed to determine the equivalent elastic modulus because of its dependence on the unknown real contact radius
(Eq. (14)). A plausible approach is to initially assume that ri = r ′

i and calculate the new real contact radius using the
appropriate contact area relationship (Eqs. (16)–(19)), depending on the value of εR calculated for the assumed r ′

i

value (Eq. (15)). This iteration procedure can be repeated until the change in the real contact radius of the particular
asperity reaches a specified small tolerance.

5. Contact stress analysis

The contact relationships presented in the previous section can be implemented in contact stress analyses of half-
space media possessing fractal surface topographies. Without loss of generality, the mathematical treatments of the
mechanical and thermomechanical deformation of elastic half-space media [36,45] presented in this section are for
2D fractal surfaces. A similar approach can be adopted for 3D elastic fractal surfaces. For elastic–plastic deforma-
tion, analytical approaches involving multi-scale roughness effects are extremely cumbersome. Therefore, numerical
techniques such as the FEM must be used to determine the stresses and strains in contacting elastic–plastic bodies
(e.g., [35,36]).

5.1. Mechanical stresses

The stress field in a layered elastic medium in contact with a rough surface can be obtained by the superposition of
the stress fields generated by normal and shear tractions with triangular distributions of width 2c (used to approximate
the contact pressure and shear stress distributions at each asperity contact) and another superposition of the stress
fields of all the asperity contacts established at a given global surface interface [45]. The mechanical stresses can be
obtained from an Airy stress function Φ that satisfies the biharmonic equation ∇4Φ = 0. Hence,

σzz = ∂2Φ

∂x2
, σxx = ∂2Φ

∂z2
, σzx = − ∂2Φ

∂z∂x
(20)

For triangular normal and shear stress distributions of width 2c at the contact interface, the boundary conditions at
the layer surface (z = 0) and the stress and displacement continuity conditions at the layer/substrate interface (z = h)
can be expressed as [45]

σ (l)
zz (x,0) =

{−p0(1 − |x|/c), |x| � c

0, |x| > c

σ (l)
zx (x,0) =

{−q0(1 − |x|/c), |x| � c

0, |x| > c

σ (l)
zx (x,h) = σ (s)

zx (x,0)
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σ (l)
zz (x,h) = σ (s)

zz (x,0)

u(l)(x,h) = u(s)(x,0)

w(l)(x,h) = w(s)(x,0) (21)

where superscripts l and s refer to the layer and the substrate media, p0 and q0 denote the maximum normal and
shear stresses (q0 = fp0, where f is the coefficient of friction) in associated triangular stress distributions of width
2c, and u and w are the displacements in the x and z directions, respectively. The Fourier transform of function Φ

with respect to x is given by

Φ̄ =
+∞∫

−∞
Φ(x, z)eiωx dx (22)

For Φ to satisfy ∇4Φ = 0 and to produce finite stresses at infinity [45]:

Φ̄(l) = (A + Bzl)e
−|ω|zl + (C + Dzl)e

|ω|zl

Φ̄(s) = (E + Fzs)e
−|ω|zs (23)

where Φ̄(l) and Φ̄(s) are solutions of Φ̄ in the layer and substrate media, respectively, and zl and zs are corresponding
z coordinates (zl = 0 at the layer surface and zs = 0 at the layer/substrate interface). Eqs. (21) represent a set of six
coupled equations, including the coefficients in Eq. (23) and the Fourier transforms of surface traction distributions
p(x, z) and q(x, z). After the determination of Φ̄ , the stresses can be calculated from Eqs. (20) using the inverse
transform of Φ̄ . Hence, the stress at a point (x, z) in the layered medium can be written as [45]

σ(x, z) =
N∑

i=1

Mi−1∑
j=1

σ |ji (x, z) (24)

where Mi is the total number of grid nodes along the width of the ith asperity contact (grit size = 2c), N is the number
of asperity contacts at a given global surface interference (Eq. (8)), and σ |ji is the stress at the ith asperity contact due
to the j th triangular distributions of normal and shear tractions.

Figs. 6(a) and 6(b) show distributions of the first principal stress σ1 and the von Mises equivalent stress σM =
( 3

2SijSij )
1/2 (where Sij is the deviatoric stress tensor given by Sij = σij − σmδij , in which σij is the stress tensor, σm

is the mean (hydrostatic) stress (σm = σii/3), and δij is Kronecker’s delta) in an elastic layered medium with a layer
stiffer than the substrate (El/Es = 4). Corresponding contact segments of the rigid (equivalent) fractal profile are also
shown at the top of the figure. The σ1 stress contours (Fig. 6(a)) reveal that tensile stresses occur only in the layer. It
is noted that maximum tensile stresses arise only at the layer surface and the layer/substrate interface, implying that
crack initiation in layered media with very stiff (hard) surface layers is most likely to occur either at the layer surface
or at the layer/substrate interface. Fig. 6(b) shows that the maximum σM stresses are also confined within the stiff
layer. In addition, the σM stress exhibits significant discontinuities at the layer/substrate interface, and the effect of
asperity interaction on the stresses is especially pronounced below contact segment 2. Thus, the stiff layer relaxes the
substrate from high stresses at the expense of steep stress/strain gradients in the vicinities of asperity contacts. This is
a consequence of the increase of the surface penetration resistance of the layered medium due to the stiff layer.

5.2. Thermomechanical stresses

The average shear stress at the ith asperity contact τm,i can be expressed in terms of corresponding mean contact
pressure pm,i and local coefficient of friction f as

τm,i = fpm,i (25)

Eq. (25) can be used in conjunction with the mean contact pressure relationships (Eqs. (16)–(19)) to obtain shear
stress relationships at the asperity level. In this approach, it is presumed that the friction effect on the contact area
relationships is secondary. This assumption implies insignificant junction growth and relatively low-friction sliding
conditions (e.g., f � 0.5).
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Fig. 6. Variation of (a) first principal stress σ1 and (b) von Mises equivalent stress σM in an elastic layered medium (El/Es = 4, h/σ = 0.23,
D = 1.34, G = 9.46 × 10−4 nm, δmax/σ = 0.25, and f = 0.5) [45].

Friction induced surface heating produces thermal spikes (flash temperatures) and thermal stresses. Knowledge of
the evolution of thermoelastic stresses in contacting solid bodies is critical to failure analysis because of the synergistic
thermal and mechanical effects. Early studies provided closed-form solutions for the flash temperature and the tem-
perature rise at the surface of a homogeneous half-space due to a moving source of uniform heat flux [46,47]. These
primitive analyses provided impetus for further analytical studies, which revealed the occurrence of predominantly
compressive surface stresses in the case of a fast moving heat source [48] and the development of a maximum tensile
thermal stress slightly below the trailing edge of the contact region, extending to a depth controlled by the Peclet
number [49].

To analyze the effect of frictional heating on contact deformation, it is necessary to consider the interdependence
of mechanical and thermal stresses. This is because frictional heating affects the real contact area and, in turn, the
contact pressure distribution due to the thermal expansion. Such changes in the asperity contact area influence local
heat generation and conduction, resulting in fully coupled thermal and mechanical stresses. The interdependence of
thermal and mechanical stresses has been considered in recent numerical and analytical studies of thermomechanical
contact deformation of elastic–plastic layered media with smooth, patterned, and fractal surfaces [36,50,51]. The heat
flux density due to frictional heating at the ith asperity contact can be expressed as

Qi = ψτm,iV = ψfpm,iV (26)

where ψ is the fraction of mechanical work dissipated as heat. It has been argued [52] that all the energy dissipated in
a frictional contact is converted to heat (i.e., ψ = 1.0). Hence, the rigid (equivalent) rough surface can be assumed to
be adiabatic, resulting in heat conduction only into the elastic half-space.

For a homogeneous elastic half-space with a 2D fractal surface profile, the normal displacement at an asperity
contact w can be obtained as the sum of the normal surface displacements due to normal stress (contact pressure) wN ,
shear stress wS , and thermoelastic distortion wT [36],

w = wN + wS + wT (27)

where wN , wS , and wT are given by [53,54]

wN = − (1 − ν2) p0
{
(x + b)2 ln

(
x + b

)2

+ (x − b)2 ln

(
x − b

)2

− 2x2 ln

(
x

)2}
+ C (28a)
2πE b b b b
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wS =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(1 − 2ν)(1 + ν)

E

q0

b
x

(
b − |x|

2

)
, |x| � b

(1 − 2ν)(1 + ν)

E

q0b

2
, x > b

− (1 − 2ν)(1 + ν)

E

q0b

2
, x < −b

(28b)

wT =

⎧⎪⎨
⎪⎩

λ, ξ � −1

λ
∫ 1
−1

(
1 − |η|)e−Pe(ξ−η)I0

[
Pe(ξ − η)

]
dη, ξ � 1

λ
{∫ ξ

−1

(
1 − |η|)e−Pe(ξ−η)I0

[
Pe(ξ − η)

]
dη + 1

2 − ξ + 1
2ξ2 sgn(ξ)

}
, −1 � ξ � 1

(28c)

where b is the width of triangular segments used to approximate the contact pressure distribution at the asperity
contacts, C is a constant determined from a reference point on the z axis at a finite distance from the surface, Pe is the
Peclet number (Pe = V b/2κ), I0 is the modified zero-order Bessel function of the first kind, and ξ , ζ , η, and λ are
dimensionless parameters defined as

ξ = x

b
, ζ = z

b
, η = x + V t

b
, and λ = −αQ0(1 + ν)b2

ρcκ Pe

where Q0 (= ψfp0V ) is the peak heat flux, (x, z) is the coordinate system attached to the moving fractal surface,
V is the sliding velocity, t is the time, and α,ρ, c, and κ are the thermal expansion, mass density, specific heat, and
thermal diffusivity, respectively.

The total surface displacement w can be obtained by summing up the displacements at each triangular element of
width b (Eqs. (28a)–(28c)) and then integrating over the entire real contact area [36], i.e.,

w(x) =
N∑

i=1

Mi−1∑
j=1

[
wN |ji (x) + wS |ji (x) + wT |ji (x)

]
(29)

where N is the total number of asperity contacts (Eq. (8)), Mi is the total number of segments of width b in the ith
asperity contact (i.e., grit size = b), and wN |ji , wS |ji , and wT |ji are the normal surface displacements at the ith asperity
contact due to the j th triangular distributions of contact pressure, shear stress, and thermal distortion, respectively.
Eq. (29) can be expressed in matrix form as W = CP , where W is the matrix of normal surface displacements, P is
the contact pressure matrix, and C is a square and symmetric matrix referred to as the influence coefficient matrix.
This matrix relationship can be solved by a procedure which uses the matrix inversion method [36].

The temperature rise �T due to a surface heat source with a triangular distribution of width b is given by [36]

�T = Q0b

πk

1∫
−1

(
1 − |η|)e−Pe(ξ+η)K0

{
Pe

[
(ξ + η)2 + ζ 2]1/2}dη (30)

where k is the thermal conductivity and K0 is the modified zero-order Bessel function of the second kind. Therefore,
the temperature rise at a point (x, z) is given by [36]

�T (x, z) =
N∑

i=1

Mi−1∑
j=1

�T |ji (x, z) (31)

where �T |ji (x, z) is the temperature rise at the ith asperity contact due to the j th triangular distribution of heat flux.
The thermal stresses in an elastic half-space due to a moving heat source of triangular distribution of width b are

given by [36]

σ̂ T
xx = EαT̂0

(1 − ν)β

{[
2(b2 + b1i) sgn(ω) − ωi − ωz

(
b2 + b1i − |ω|i)]e−|ω|z − (β + ωi)e(b2i−b1)z

}
(32a)

σ̂ T
zz = EαT̂0 {[−ωi + ωz

(
b2 + b1i − |ω|i)]e−|ω|z + ωie(b2i−b1)z

}
(32b)
(1 − ν)β
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Fig. 7. Effect of Peclet number on the variation of the temperature rise �T in an elastic homogeneous medium (D = 1.44, G = 9.46 × 10−4 nm,
δmax/σ = 0.25, and f = 0.5): (a) Pe = 0.06 and (b) Pe = 5.58 [36].

σ̂ T
zx = EαT̂0

(1 − ν)β

{[
b2i − b1 − |ω|z(b2i − b1 + |ω|)]e−|ω|z + (b1 − ai)e(b2i−b1)z

}
(32c)

where i = √−1, β = V/κ, b1 = (
ω2+ω

√
ω2+β2

2 )1/2, b2 = βω
2b1

, and T̂0 = 2[1−cos(b2ω)]
b2ω

2k(b1−b2i)
.

The stresses due to frictional heating can be obtained from the inverse Fourier transform of the numerical solution,

σT (x, z) =
+∞∫

−∞
σ̂ T (ω, z)eiωxdω (33)

where σT and σ̂ T are thermal stress components in spatial and frequency domains, respectively. Hence, the stress at
a point (x, z) in the half-space medium can be expressed as [36]

σ(x, z) =
N∑

i=1

Mi−1∑
j=1

[
σN |ji (x, z) + σS |ji (x, z) + σT |ji (x, z)

]
(34)

where σN |ji , σS |ji , and σT |ji are the stresses at the ith asperity contact due to the j th triangular distributions of contact
pressure, shear traction, and surface heat flux, respectively.

Fig. 7 shows temperature rise contours in a semi-infinite elastic medium sliding against a 2D fractal profile (D =
1.44 and G = 9.46 × 10−4 nm) for relatively low and high Peclet numbers and f = 0.5. The temperature rise �T

was normalized by 2Qaκ/πkV , where Qa is the average heat flux rate across the entire contact region (i.e., total
heat flux divided by the real contact area). Contact segments of the sliding rough surface are shown at the top of the
figure. As expected, the highest temperature rises always occur at the surface regardless of Peclet number. In addition,
significantly higher temperatures and marked changes in the temperature distributions below each contact segment can
be seen for Pe = 6 (Fig. 7(b)) compared to the fairly symmetric temperature fields obtained for Pe = 0.06 (Fig. 7(a)).

The increase of the surface temperature with the Peclet number led to intensification of the thermomechanical
stresses. Figs. 8(a) and 8(b) show a comparison between elastic (Pe = 0) and thermoelastic (Pe = 54) σM stress dis-
tributions in the same subsurface regions as those shown in Fig. 7. It can be observed that frictional heating increased
the stresses, especially below asperity contacts in segments 1 and 2 where thermoelastic deformation promoted inter-
action of the stress fields of neighboring asperity contacts. The increase of the maximum σM stress at the surface as a
result of frictional heating is equal to ∼23%. These analytical results are supported by FEM simulations that show a
strong effect of frictional heating on the location of the maximum σM stress [50].
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Fig. 8. Effect of Peclet number on the variation of the von Mises equivalent stress σM in an elastic homogeneous medium (D = 1.44,
G = 9.46 × 10−4 nm, δmax/σ = 0.25, and f = 0.5): (a) Pe = 0 (elastic) and (b) Pe = 54 (thermoelastic) [36].

6. Summary

An analysis of the effects of multi-scale roughness and frictional heating on solid body contact deformation was
presented for homogeneous and layered half-space media with surface topographies exhibiting fractal behavior. The-
oretical and numerical analyses leading to asperity contact relationships, equivalent contact models of the interfacial
topography and mechanical properties of the contacting solids, and mechanical/thermomechanical stress analyses
were introduced to establish a generalized mechanics treatment of multi-scale contact deformation of real solid sur-
faces. Numerical results demonstrated the effectiveness of the present analysis to account for asperity interactions
over a wide range of length scales and to provide solutions for complex stress and deformation fields in solid bodies
with realistic surface topographies subjected to thermomechanical surface tractions.
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