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Duality, inverse problems and nonlinear problems in solid mechanics
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Abstract

In this work, we investigate the theory of linear isotropic incompressible elasticity as a conformal field theory. We calculate the
conformal currents, the conservation laws and the balance laws of incompressible elasticity. We investigate the Euler–Lagrange
symmetries, variational and divergence symmetries. If the pressure p = 0, the conformal group is the symmetry group for ho-
mogeneous isotropic linear incompressible elasticity without external forces. The additional symmetry is the special conformal
transformation. We also discuss the symmetry breaking terms of special conformal transformations in elasticity. To cite this arti-
cle: M. Lazar, C. Anastassiadis, C. R. Mecanique 336 (2008).
© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

L’élasticité incompressible est-elle une théorie de champ conforme ? Dans ce travail, nous examinons la théorie de l’élasticité
linéaire incompressible isotrope en tant que théorie conforme. Nous calculons les courants conformes, les lois de conservation et
les lois de bilan de l’élasticité incompressible. Nous examinons les symétries d’Euler–Lagrange, ainsi que les symétries varia-
tionnelles et les symétries de divergence. Si la pression est nulle, le groupe conforme est le groupe de symétrie pour l’élasticité
homogène linéaire isotrope incompressible en l’absence de forces extérieures. La symétrie additionnelle est la transformation spé-
ciale conforme. Nous discutons aussi les termes des transformations spéciales conformes de l’élasticité qui brisent la symétrie.
Pour citer cet article : M. Lazar, C. Anastassiadis, C. R. Mecanique 336 (2008).
© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.
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1. Introduction

Conformal symmetries are very important for field theories (see, e.g, [1]). Lagrangian field theories which are
formally invariant under dilatation are often invariant also under special conformal transformations. Conformal
transformations are non-linear. The special conformal transformations can be thought as product of inversion ×
translation × inversion. Special conformal transformations may be interpreted as space (or space–time) dependent
dilatations. A conformal field theory has more symmetries then a usual field theory. For example the Lagrangian of
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the free Maxwell field, the massless Dirac-field and their gauge-covariant coupling are invariant under the conformal
group. Also pure Yang–Mills theory is conformally invariant.

Elasticity can also be considered as a field theory [2]. Elasticity is invariant under the symmetry of translations,
rotations and dilatations [3,4]. But elasticity is not a conformal field theory, because it is not invariant under special
conformal transformations. From the field theoretical point of view the theory of elasticity is a massless field theory.

In this article we ask the question: what about conformal symmetry in elasticity? For some special cases such a
symmetry exists in elasticity. In two dimensional elasticity Li [5] found for the case ν = 1/2 (the incompressible
limit) that special conformal symmetry exists if one uses a stress function of second order instead of a displacement
vector. He found a dual conservation law of special conformal symmetry. Does a special conformal symmetry exist
in three-dimensional elasticity? Kienzler and Herrmann [6] ask the question: do conservation laws, quadratic in xk ,
exist in three-dimensional elasticity? Olver [4] found such a symmetry for the condition 7μ + 3λ = 0, i.e. ν = 7/8.
He used a displacement vector and found a conservation law for special conformal transformation. Unfortunately this
condition violates the requirement of positive strain energy. Thus, this case is unphysical. Does the special conformal
symmetry exist in three-dimensions for a physical situation? What are the symmetries of incompressible elasticity?

2. Equations of linear isotropic incompressible elasticity

Incompressible elasticity is a special case of classical theory of elasticity. Materials that deform without a volume
change are called incompressible. In isotropic linear elasticity the incompressibility condition is usually expressed in
terms of Poisson’s ratio ν. The limiting value ν = 1/2 defines incompressibility. In this limit the Hooke’s law is no
longer valid since the Lamé constant λ = 2μν/(1 − 2ν) tends to infinity, the pressure cannot be determined from the
gradient of the displacement vector and there is a need for another constitutive equation (see, e.g., [7]). In absence of
body forces the elastic energy of linear homogeneous isotropic incompressible elasticity is given by

W = 1

2
μ(uα,j + uj,α)uα,j − puα,α, μ > 0 (1)

where u is the displacement vector, p is the pressure and μ is the shear modulus. In this formulation the stress tensor
reads

tαj = ∂W

∂uα,j

= μ(uα,j + uj,α) − δαjp (2)

The corresponding Euler–Lagrange equations are

Eα(W) := Dj

∂W

∂uα,j

− ∂W

∂uα

= tαj,j = μ�uα − p,α = 0 (3)

E(W) := Dj

∂W

∂p,j

− ∂W

∂p
= uα,α = 0 (4)

where � is the Laplacian. Here Dj denotes the so-called total derivative (see [8]). Eq. (3) is an inhomogeneous
Laplace equation for the vector filed u. The gradient of the pressure gives the inhomogeneous part. The additional
equation (4) is the kinematic condition of incompressibility. It has the form like the Coulomb gauge of the magnetic
vector potential in Maxwell’s theory. The pressure p can also be understood as the Lagrange multiplier associated
with the constraint (4). Applying Dα to Eq. (3) and taking into account the relation (4), one finds that the pressure p

satisfies the Laplace equation

�p = 0 (5)

On the other hand, the trace of the stress tensor (2) is

tαα = 2μuα,α − np = −np (6)

where n = δαα .
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3. Conformal Lie algebra (n ��� 3)

If p = 0, the Euler–Lagrange equation (3) is invariant under the Lie groups generated by the operators (see for a
scalar field, e.g., Ibragimov [9]):

Tj = ∂

∂xj

(translations) (7)

Lij = xi

∂

∂xj

− xj

∂

∂xi

+ ui

∂

∂uj

− uj

∂

∂ui

(rotations) (8)

D1 = xi

∂

∂xi

(dilatations of x) (9)

D2 = ui

∂

∂ui

(dilatations of u) (10)

Cj = 2xjxl

∂

∂xl

− x2 ∂

∂xj

+ 2duxjul

∂

∂ul

+ 2xl

(
uj

∂

∂ul

− ul

∂

∂uj

)

(special conformal transformations) (11)

We note that the ‘spinorial part’ of Lij is

Sij = ui

∂

∂uj

− uj

∂

∂ui

(12)

The special conformal transformations act nontrivially on both x and u. We combine the dilatations as follows:

D = D1 + duD2 (13)

with the (scale) dimension of the vector field uα :

du = −n − 2

2
(14)

Here n denotes the space dimension (for n = 3 we have du = −1/2). These generators span the Lie algebra of the
conformal group in n dimensions, so(n + 1,1). The nontrivial commutation relations are [10]:

[Lij ,Lkl] = −(δikLjl − δilLjk − δjkLil + δjlLik), [Lij , Tk] = −(δikTj − δjkTi)

[D,Cj ] = Cj , [D,Tj ] = −Tj

[Cj ,Tk] = −2(δjkD + Ljk), [Lij ,Cl] = −(δilCj − δjlCi) (15)

If p �= 0, the Euler–Lagrange equations (3) and (4) are invariant under the Lie groups generated by (7)–(10) and

D3 = p
∂

∂p
(dilatation of p) (16)

Thus, in this case the special conformal transformation (11) is not a symmetry of the Euler–Lagrange equations.

4. Conformal currents

In order to calculate the conformal currents, we have used the mathematical technique of prolongation [9,8,4,6]. It
is well known that every variational and divergence symmetry of the elastic energy is also a symmetry of the associated
Euler–Lagrange equations. On the other hand, not every symmetry of the Euler–Lagrange equations is a variational
or divergence symmetry. Thus, we will use the symmetries of the Euler–Lagrange equations found in the previous
section in order to construct the associated currents or fluxes. If they are divergence-less, we deal with a variational or
divergence symmetry.

The static energy momentum tensor, called Eshelby stress tensor [11], is the translational flux. It corresponds to
the generator of translations (7). The Eshelby stress tensor has the form

Plj = Wδlj − uα,l tαj (17)
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To calculate the total angular momentum tensor we used the generator of rotations (8). The total angular momentum
tensor is given as

M[mi]j = xmPij − xiPmj + umtij − uitmj

= xmPij − xiPmj + uαΣ
αβ
mi tβj (18)

with the representation matrices of infinitesimal generator of the rotational group (SO(n)) for a vector field:

Σ
αβ
mi = δα

mδ
β
i − δα

i δβ
m (19)

It can be decomposed into

M[mi]j = M
(o)
[mi]j + M

(i)
[mi]j (20)

with the orbital angular momentum tensor

M
(o)
[mi]j = xmPij − xiPmj (21)

and the spin (intrinsic) angular momentum tensor

M
(i)
[mi]j = uαΣ

αβ
mi tβj (22)

The spin part is connected with the polarization properties of a field.
The scaling flux corresponds to the generator of scaling symmetry (13). It reads

Yj = xlPlj + duuαtαj (23)

In order to calculate the flux of special conformal transformations we have used the generator (11). The flux of
special conformal transformations is given by

Ilj = 2xlxiPij − x2Plj + 2tαj xi

(
du δiluα + Σ

αβ
il uβ

) − Blj (24)

where Blj is a tensor which we have to determine from the conservation law of special conformal transformations.
If Ilj is divergence-free in the second index and Blj is non-zero, the special conformal symmetry is a divergence
symmetry.

5. Divergence of the currents—conservation laws

We now turn to the discussion of the properties of the conformal currents. The information of a symmetry defined
by the transformation law of the fields lies in the properties of the divergence of the corresponding currents. If the
divergence is zero, we speak of a conservation law. If it is not zero, we have a balance law.

We start with the divergence of the translational current. The divergence of the Eshelby stress tensor is zero:

DjPlj = 0 (25)

Thus, it is a conservation law.
The angular momentum conservation reads

DjM[mi]j = xmDjPij − xiDjPmj + Pim − Pmi + Dj

(
uαΣ

αβ
mi tβj

)
(26)

With Eqs. (25) and DjM[mi]j = 0, we get

DjM
(i)
[mi]j − (Pmi − Pim) = 0 (27)

and with (3) and (22), we obtain

Pmi − Pim = uα,jΣ
αβ
mi tβj (28)

Using (17), Eq. (26) can be rewritten:

DjM[mi]j = ul,mtli − ul,i tlm + um,ltil − ui,l tml (29)
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which is nothing but the so-called isotropy condition. Thus, for isotropic incompressible elasticity it is zero:
DjM[mi]j = 0 and it is a conservation law. It is, of course, the total angular momentum which is conserved.

From Eq. (23) it is seen that the dilatation current Yj depends on x explicitly. We find its divergence

DjYj = xlDjPlj + Pjj + Dj (duuαtαj ) (30)

It can be rewritten in the form

DjYj = nW + duuα

∂W

∂uα

+ (du − 1)uα,j tαj + xlDjPlj (31)

which is nothing but the condition for scale invariance. Because the strain energy density (1) is bilinear in uα,j , it
does not depend on uα and if the momentum conservation (25) is valid, such a strain energy is scale invariant. Thus,
it holds: Dj Yj = 0 and it is a conservation law.

Next we turn to the divergence for the entire conformal current (24). So we find from Eq. (24)

Dj Ilj = (2xlxi − x2δil)DjPij + 2xl

(
Pjj + Dj [duuαtαj ]

) + 2xi

(
Pil − Pli + Dj [tαjΣ

αβ
il uβ ])

+ 2dutαluα + 2tαjΣ
αβ
jl uβ − DjBlj (32)

The first part of the first line is equal to the momentum conservation, the second part in the first line is related to the
scale invariance (30) and the third part in the first line is related to the angular momentum conservation (26). Hence,
we can rewrite it in the following form

Dj Ilj = −(
2xlxi − x2δil

)
DjPij + 2xlDjYj + 2xiDjM[li]j + Rl (33)

where Rl is a local vector field defined by

Rl = 2dutαluα + 2tαjΣ
αβ
jl uβ − DjBlj (34)

If translational invariance, scale invariance and angular momentum conservation are fulfilled, we have the following
condition of entire conformal invariance:

Rl = 0, 2dutαluα + 2tαjΣ
αβ
jl uβ − DjBlj = 0 (35)

Thus, if Rl = 0, the theory is invariant under special conformal transformations.
Let us now calculate Rl for linear isotropic incompressible elasticity to prove if it is invariant under special confor-

mal transformations. We start with

Rl = −ntαluα + 2tααul − DjBlj (36)

Using Eqs. (2) and (6), we obtain

Rl = −Dj

[
nμ

(
1

2
δjluiui + uluj

)]
− npul − DjBlj (37)

Therefore, it is not possible to rewrite it as a divergence only. Anyway, we can determine the field Blj as follows:

Blj = −nμ

(
1

2
δlj uiui + uluj

)
(38)

and Rl ,

Rl = −npul (39)

Thus, in general, the condition of entire conformal invariance is not valid for linear incompressible elasticity due to
Dj Ilj = −npul . Iff p = 0, isotropic linear incompressible elasticity is a conformal field theory.

Using the conservation laws (25), (26), (30) and (33), we can define path-independent integrals:

Jl =
∫
S

Plj nj dS = 0 (40)

L[mi] =
∫

M[mi]j nj dS = 0 (41)
S
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M =
∫
S

Yjnj dS = 0 (42)

Kl =
∫
S

Ilj nj dS = −
∫
V

npul dV (43)

Eqs. (40), (41) and (42) are the so-called J , L and M integrals for incompressible elasticity as in elasticity (see,
e.g., [2,6]). The additional integral (43), which appears in incompressible elasticity, we call the K integral. It corre-
sponds to the symmetry of special conformal transformation. It is only zero if p = 0.

Let us now investigate the condition of special conformal invariance for isotropic linear elasticity. Because the
special conformal transformation is not a symmetry in elasticity apart from the (unphysical) case 7μ + 3λ = 0 found
by Olver [4], we want the determine the symmetry breaking terms. For isotropic linear elasticity the stress tensor has
the form

tαj = μ(uα,j + uj,α) + λδαjul,l , 2μ + nλ > 0 (44)

If we substitute it into Eq. (34), we can rewrite it as a divergence and a term violating Rl = 0:

Rl = −Dj

[
nμ

(
1

2
δjluiui + uluj

)]
+ [

(4 + n)μ + nλ
]
uj,j ul − DjBlj (45)

So, we see that Blj has the same form as given in Eq. (38). It is not possible to rewrite it as a total divergence. The
symmetry breaking term is calculated as

Rl = [
(4 + n)μ + nλ

]
uj,j ul (46)

We obtain the result that the current of special conformal transformations is not divergence-less

Dj Ilj = [
(4 + n)μ + nλ

]
uj,j ul (47)

Finally Rl = 0 iff (4 + n)μ + nλ = 0 or uj,j = 0. The first possibility is for n = 3, the case 7μ + 3λ = 0 found by
Olver [4]. The second possibility corresponds to the case p = 0 in incompressible elasticity. In both cases the special
conformal current (24) is expressed with (38) and (44) and the special conformal transformation is a divergence
symmetry of the elastic energy. In addition, for both cases the K integral is zero.

6. Balance laws

Up to now, we have examined conservation laws for homogeneous incompressible elasticity without external
sources. Now we want to investigate balance laws for nonhomogeneous incompressible elasticity with external forces.
We postulate that the strain energy density to be of the form

W = 1

2
tαjuα,j + V, V = uα

∂V

∂uα

(48)

where V is the potential of external forces. Let us assume that it depends explicitly on xi :

W = W(xi, uα,uα,i ,p) (49)

In this case, the material force (or inhomogeneity force) is defined by

f inh
i := −∂W

∂xi

(50)

which is caused by material inhomogeneities. External body forces are defined by

Fα := − ∂V

∂uα

(51)

The Euler–Lagrange equation (3) with external forces (51) has now the form:

Dj tαj = −Fα (52)

Finally, we obtain the following balance law:
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DjPlj = −f inh
l (53)

DjM[mi]j = ul,mtli − ul,i tlm + um,ltil − ui,l tml + xif
inh
m − xmf inh

i + uiFm − umFi (54)

DjYj = −xjf
inh
j − n + 2

2
uαFα (55)

Dj Ilj = 2xi(uj,l tj i − uj,i tj l + ul,j tij − ui,j tlj ) + 2xi(uiFl − ulFi) − (n + 2)xluαFα

− (2xlxi − x2δil)f
inh
i − npul (56)

It can be seen how the external force and the inhomogeneity force break the conservation laws.
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