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Abstract

Nowadays, the determination of temperature needs often to be treated in the framework of thermoplasticity or thermoviscoplas-
ticity, for example, during metal forming, crashes, . . .

There are still many great difficulties. Some concern the numerical integration of the equations involved; we can say that they
are solved reasonably well. Others are more fundamental, and concern the basic constitutive equations and the writing of the
thermodynamical equations; they still belong to unsolved problems.

Recently, many papers have been published in this area (for ex. [P. Germain, E.H. Lee, in: A. Sawczuk (Ed.), Problems of
Plasticity, Noorthoff Int. Publ., 1974. [14]] and [D. Rittel, Z.G. Wang, M. Merzer, Adiabatic shear failure and dynamic stored
energy of cold work, Phys. Rev. Lett. 96 (7) (2006) 075502. [18]]); we have thought that it would be useful to discuss our old paper
that appeared, in French, in the Journal Archives of Mechanics 26 (4) (1974) 701–715, and to underline what our contributions
were at that time:

(i) on a possible definition of the homogenized temperature of an aggregate (polycrystals or composites);
(ii) on a possible interpretation of the occurrence of ‘adiabatic bands’ by considering only the influence of temperature, for ex.

[A. Baltov, T. Vinh, C. R. Acad. Sci. Paris Sér. A 291 (1972) 275. [13]] and [D. Rittel, Z.G. Wang, M. Merzer, Adiabatic shear
failure and dynamic stored energy of cold work, Phys. Rev. Lett. 96 (7) (2006) 075502. [18]].

For this, with the help of a physical microscopical model, we have explained where some energy could be stored in the aggregate,
and we have shown that only in the case of elastic and thermal isotropy, were we able to defined its temperature T , as the mean of
the local temperature θ , of its constituents.

Then we wrote the thermodynamical equations (assuming small perturbations) for various hypotheses: isothermic, adiabatic or
general heat condition.

Finally, we analyzed a simple rod that is subjected to a quasi-static loading at a constant strain rate and then, when the rod is
dynamically loaded as during the Taylor test i.e. during the impact of the rod on a rigid wall. We have shown that there is a non-
constant ratio between the plastic power and the stored power and that there was no concentration (adiabatic band), while taking
into account the influence of the temperature in the equations. To cite this article: W.K. Nowacki, J. Zarka, C. R. Mecanique 336
(2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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Résumé

Sur la température en thermoélastoplasticité. Actuellement, il est souvent nécéssaire de déterminer le champ de la température
dans une structure comme c’est le cas dans la mise en forme des métaux, le crash, etc.

On est alors confronté à de grandes difficultés : si les problèmes concernant la résolution numérique des équations peuvent être
traités d’une manière raisonnable, d’autres, plus fondamentaux concernent les relations de comportement des matériaux dans le
cadre de la thermoplasticité ou la thermoviscoplasticité ainsi que les équations de la thermodynamique, ne sont pas encore résolus.

Comme, il y a eu récemment de nombreuses publications dans ce domaine (par ex. [P. Germain, E.H. Lee, in: A. Sawczuk (Ed.),
Problems of Plasticity, Noorthoff Int. Publ., 1974. [14]] et [D. Rittel, Z.G. Wang, M. Merzer, Adiabatic shear failure and dynamic
stored energy of cold work, Phys. Rev. Lett. 96 (7) (2006) 075502. [18]]), nous souhaitons revenir sur notre ancien travail qui avait
été publié en français dans le Journal Archives of Mechanics 26 (4) (1974) 701–715 et de souligner quelle avait été alors notre
contribution :

(i) sur la définition possible de la température globale homogène d’un agrégat (un polycristal ou un matériau composite) ;
(ii) sur l’explication qui avait été donnée sur la formation des « bandes adiabatiques » en considérant seulement l’influence de

la température, par ex. [A. Baltov, T. Vinh, C. R. Acad. Sci. Paris Sér. A 291 (1972) 275. [13]] et [D. Rittel, Z.G. Wang,
M. Merzer, Adiabatic shear failure and dynamic stored energy of cold work, Phys. Rev. Lett. 96 (7) (2006) 075502. [18]].

Pour cela, à l’aide d’un modèle physique construit par une analyse microscopique, nous avons explicité comment l’énergie pouvait
être emmagasinée dans un agrégat et nous avons montré que, seulement dans le cas de l’isotropie élastique et l’isotropie thermique,
nous étions capables de définir sa température T comme la moyenne de la température locale θ , de ses composants.

En utilisant cette définition de la température, nous avions pu écrire les équations thermodynamiques (supposant les petites
perturbations) en prenant successivement l’hypothèse isotherme ou adiabatique ou de conductivité générale.

Enfin, nous avions analysé le cas d’une barre simple soumise à un chargement quasistatique à vitesse de déformation constante,
puis le cas d’une barre était chargée dynamiquement comme dans le test de Taylor, c’est-à-dire lors de l’impact d’une barre sur un
mur rigide. Nous avions démontré qu’il n’y avait pas un rapport constant entre l’énergie plastique et l’énergie emmagasinée et qu’il
n’y avait pas de concentration sous la forme de bande adiabatique malgré la prise en compte de la température dans les équations.
Pour citer cet article : W.K. Nowacki, J. Zarka, C. R. Mecanique 336 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

It is a classical procedure to perform numerical simulations in thermoplasticity or thermoviscoplasticity. The tem-
perature is just taken as it is and some assumptions are usually made:

1. When there is a great input of the external heat: it is considered that there is a decoupling between the temperature
field and the deformation of the structure; indeed the transient or stationary heat equations are solved and then the
(known) temperature maps at different times are dumped to the plastic/viscoplastic equations. In any point of the
structure, the material properties are just taken as function of the actual temperature;

2. When there is no great input of external heat, the contribution of the external heat is ‘weak’:
a. It is considered that the internal dissipation is insignificant and the transformation is isothermic (this implies

that the equations of the thermodynamics are deleted).
b. Or, if this dissipation has to be taken into account, in any point of the structure, the transformation is adiabatic

(conduction/radiation is neglected) while considering that it occurs during a dynamic or a very fast loading
and that a ‘part’ of this dissipation is kept in a stored energy, with a constant ratio between these two ener-
gies. Many authors have explained the outbreak of ‘adiabatic’ bands by this coupling between temperature
increase and material properties.

The objectives of this article are double:
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1. We shall write the thermodynamic equations and the constitutive relations for an aggregate and we shall underline
some difficulties, especially in the definition of temperature and where some energy could be stored;

2. We shall show their applications to the particular example of a rod that is subjected to quasi-static and dynamical
loadings when making the successive assumptions on the temperature exchanges.

2. Energies in an aggregate/polycrystal

2.1. Stored energy in the single crystal

General accounts of the thermomechanics of elastic/plastic materials can be found in the books by J. Mandel [1],
J. Lubliner [2] and the review article by P. Germain et al. [3].

For a particular well-defined Representative Volume Element (RVE) of the single crystal, we have shown (cf.
J. Zarka, [4]) that for an adiabatic transformation, the thermodynamic equation could be written as:

σij ε̇
p
ij = ρ

∂U2

∂y
ẏ + αij θσ̇ij + ρcθ̇ (1)

where
σ , σij – stress tensor,
ε̇p, ε̇

p
ij – plastic strain tensor rate,

ρ – specific mass,
U2(θ, {y}) – specific internal energy stored in the internal defects represented by {y},
θ – absolute temperature of the single crystal,
αij – thermal dilatation tensor,
c – specific heat.

This equation was deduced through some assumptions on the thermoelastic strain rate ε̇e+θ and plastic strain
rate ε̇p , and on the thermodynamic functions’ internal energy, U and entropy S :

(i) ε̇e+θ ≡ Λijkl(σ , θ)σ̇kl + αij (σ , θ)θ̇ (2)
with Λ and α independent of {y} and satisfying the integrability conditions:

∂

∂θ
Λijkl = ∂αij

∂σkl

(3)

(ii)

{
ε̇
p
ij ≡ ε̇

p
ij (σ , θ, {y})

ẏ ≡ ẏ(σ , θ, {y}) (4)

The rates of the stress and the temperature do not take part in these equations (viscoplasticity)

(iii)

{
U ≡ U(σ , θ, {y})
S ≡ S(σ , θ, {y})

The application of the second principle of the thermodynamic (an always non-negative production of entropy)
leads to:

(i) the separation

U ≡ U1(σ , θ) + U2
(
θ, {y}), S ≡ S1(σ , θ) + S2

(
θ, {y}) (5)

with

σijΛijkl = ρ

(
∂U1

∂σkl

− θ
∂S1

∂σkl

)
, σijαij = ρ

(
∂U1

∂θ
− θ

∂S1

∂θ

)
(6)

and

∂U2

∂θ
= θ

∂S2

∂θ
(7)
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(ii) when assuming local adiabaticity, it remains only to satisfy

σij ε̇ij

ρ
�

(
∂U2

∂y
− θ

∂S2

∂y

)
ẏ (8)

Eq. (6), while taking into account (3), imply

∂S1

∂σkl

= αkl (9)

The first principle gives locally:

ρU̇ = σij ε̇ij = σij (ε̇
e+θ
ij + ε̇

p
ij ) (10)

where, by definition, σij ε̇ij = σij (ε̇
e+θ
ij + ε̇

p
ij ) is the power of deformation and

c = θ
∂S
∂θ

(11)

Eq. (1) is thus deduced.
Indeed in our paper, J. Zarka [4], we characterized the exact physical meaning of the internal parameters {y} and

we gave the explicit form of all the functions: ε̇
p
ij ≡ ε̇

p
ij (σ , θ, {y}), ẏ ≡ ẏ(σ , θ, {y}), U2(θ, {y}).

The {y} define the distribution of the crystalline defects essentially the dislocations and U2(θ, {y}) is energy stored
in the free energies of the dislocations; the interaction energies are negligible within the representative volume ele-
ment.

2.2. Stored energies in the aggregate/polycrystal

In metals, as well as rocks, at the global (macroscopic) scale the Representative Volume Element (RVE) is an
aggregate of single crystals, or grains, separated by joint boundaries at the local (microscopic) scale.

Composite materials may be also be considered as an aggregate of fibres and matrices.
In principle, it may be possible (using powerful computers and fast algorithms) to integrate the local equations at

the level of the single crystal, defects, . . . . But this is not very realistic.
Homogenisation is preferred, with some simplifying hypotheses: the Representative Volume Element contains

many crystals and macroscopic quantities which are defined based on the corresponding microscopic ones (cf. the
recent general book by S. Nemat-Nasser [5]).

2.2.1. Isotherm transformation
For such a transformation, and when some conditions of macro-homogeneity are satisfied, many authors, for ex-

ample, J. Mandel [6], R. Hill [7], H.D. Bui [8], J. Rice [9], have shown for any statically admissible stress field and
any cinematically admissible strain field, that it is possible to define:

(i) the macroscopic stress tensor by

Σ ∼= 1

V

∫
V

σ dV (12)

(ii) the macroscopic strain tensor by

E ∼= 1

V

∫
V

ε dV (13)

(iii) the macroscopic work of transformation by

ΣE = ΣijEij
∼= 1

V

∫
V

(σε)dV = 1

V

∫
σij εij dV (14)

These macroscopic fundamental quantities are the direct mean on the RVE.
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2.2.1.1. Elastic behaviour. Firstly, let as consider that the RVE is purely elastic. By applying the global stress Σ∗,
and by solving the exact elastic boundary value problem, we get, in any point, the local microscopic stress:

σ ∗ = AΣ∗, σ ∗
ij = AijklΣ

∗
kl (15)

where A, the elastic stress localization factor is linked to the geometries, positions and the elastic coefficient matrices
of the crystals/grains.

Moreover, the local microscopic strain tensor is given by:

ε∗ = Λσ ∗ = ΛAΣ∗

thus with (13)

E∗ = 1

V

∫
V

ε∗ dV = 1

V

∫
V

ΛAΣ∗ dV =
(

1

V

∫
V

ΛAdV

)
Σ∗

and thus, a global macroscopic elastic coefficient matrix Λ◦ is defined by:

Λ◦ = 1

V

∫
V

ΛAdV (16)

2.2.1.2. Elastoplastic behaviour. At the local scale we may separate the elastic and plastic parts of the strains:

ε̇ = ε̇e + ε̇p with ε̇e = Λσ̇

Ė = Ė
e + Ė

p
with Ė

e ≡ Λ◦Σ̇ (17)

But generally, Ė
e

and Ė
p

are not the direct means of ε̇e and ε̇p

(i) the authors quoted have shown:

Ė
e = 1

V

∫
V

AT ε̇e dV, Ėe
ij = 1

V

∫
V

Aklij ε̇
e
kl dV

Ėp = 1

V

∫
V

AT ε̇p dV

(18)

where AT is the transpose of A,
(ii) they have also shown for ΣĖ

p

ΣĖ
p = 1

V

∫
V

σ rΛσ̇ r dV + 1

V

∫
V

σ ε̇p dV (19)

where

σ r = σ − AΣ is the residual stress
σ̇ r = σ̇ − AΣ̇ (there is no term in ȦΣ)

(20)

Thus they underlined in Eq. (19) that there is a part of the energy, similar to the stored energy in the dislocations,
that is stored with the elastic interactions between the grains.

However, as the transformation is assumed isothermic, this separation between energies brings nothing, the ther-
modynamic equation has no use.

2.2.2. Adiabatic transformation
Now, we consider that the transformation is locally adiabatic; we just apply stresses or strains on the aggregate

RVE.
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2.2.2.1. Thermoelastic behaviour. Eq. (1) is reduced to

αklθ σ̇ ∗
kl + ρcθ̇∗ = 0 (21)

from which we deduce

θ̇∗ = −αklθ

ρc
σ̇kl (22)

and thus

ε̇∗e+θ
ij =

(
Λijkl − αijαklθ

ρc

)
σ̇ ∗

kl ≡ Λ′
ijkl(σ , θ)σ̇ ∗

kl (23)

By assuming that the temperature change due to the loading is not too high, we find the same problem as in Sec-
tion 2.2.1.1, the matrix Λ just being replaced with another constant matrix Λ′.

This implies:

σ ∗ ≡ A′Σ∗ (24)

where A′ is the new elastic stress localization factor and

Λ′◦ ≡ 1

V

∫
V

Λ′A′ dV

2.2.2.2. Thermoelastoviscoplastic behaviour. At the microscopical scale we write:

ε̇ = ε̇e+θ + ε̇p

ε̇ij = ε̇e+θ
ij + ε̇

p
ij = Λijkl σ̇kl + αij θ̇ + ε̇

p
ij

and we split the temperature change, θ̇ :

θ̇ = θ̇1 + θ̇2 (25)

where θ̇1 is given by (22).
We thus get:

ε̇ = ε̇′e + ε̇′p, ε̇ij = Λ′
ijkl σ̇kl + αij θ̇2 + ε̇

p
ij ≡ ε̇′e

ij + ε̇
′p
ij

ε̇′e = Λ′σ̇ , ε̇′p = αθ̇2 + ε̇p (26)

as we have assumed an adiabatic transformation, ε̇′p is the true irreversible plastic strain.
The thermodynamic equation (1) is reduced to:

σij ε̇
p
ij = ρ

∂U2

∂y
ẏ + ρcθ̇2 (27)

At the global macroscopic scale, by following the same reasoning that leads to Eqs. (18) and (19), we get:

Ė = Ė′e + Ė′p and Ė′e = Λ′Σ̇ (28)

(i)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ė′e = 1

V

∫
V

A′�ε̇′e dV

Ė′p = 1

V

∫
V

A′�ε̇′pA′p dV

(29)

(ii)

⎧⎪⎨
⎪⎩

ΣĖ′p = 1

V

∫
V

σ ε̇′p dV + 1

V

∫
V

σ ′rΛ′σ̇ ′r dV

σ ′r = σ − A′Σ, σ̇ ′r = σ̇ − A′Σ̇
(30)

ΣĖ′p = 1

V

∫
σ ε̇p dV + 1

V

∫
σ ′rΛ′σ̇ ′r dV + 1

V

∫
σαθ̇2 dV (31)
V V V
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We can see easily how the macroscopic plastic dissipation is split during an adiabatic transformation. The stored
energies are in three parts:

1. The first one corresponds to the stored energy in the crystalline defects (dislocations) in the grains.
2. The second one is linked to the elastic interactions between the grains.
3. The last one is due to the irreversible temperature θ2.

We can also see that it is difficult to define the temperature and the thermodynamic functions of the macroscopic RVE.
It is impossible to assume that the macroscopic internal energy is the sum of the internal energies of its constituents

(grains/crystals), as we need to consider their interaction energies. E. Kröner [10] expressed that for such a medium,
the principle of local action is not satisfied; indeed we are in a non-local description of the modelling.

However, some new simplifying hypotheses may be proposed:

1. The macroscopic temperature, T , of the aggregate is the direct mean of the microscopic temperature, θ , of the
grains/crystals.

2. Globally, we define for the macroscopic RVE, the functions U and S as dependent a priori on Σ , T and {Y },
where {Y } represent the entire local {y}, the local residual stresses, and the local temperatures.
In this framework, if, moreover, we assume:

3. The grains/crystals are thermally and elastically isotropic.
4. The thermal and elastic coefficients and the specific heat are constant for all the grains/crystals (the temperature

change always being small).

We get the elementary splitting:

Ė = Ė
e + Ė

T + Ė
p

(32)

Ė
e = 1

V

∫
V

ε̇e dV = 1

V

∫
V

Λ◦σ̇ dV = Λ◦Σ̇

Ė
T = 1

V

∫
V

ε̇θ dV = 1

V

∫
V

αδθ̇ dV = αδṪ

Ė
p = 1

V

∫
V

ε̇p dV

(33)

(α = αδ, δij —Kronecker symbol).
Eq. (31) is thus reduced to:

ΣĖ
p = 1

V

∫
V

σ ε̇p dV (34)

that implies that the interaction energies between the crystals are null (do not confuse Ė′p with Ė
p

) and that the global
thermodynamic equation may be written:

ΣĖ
p ≈ ρ

∂U2

∂Y
Ẏ + αT δΣ̇ + ρcṪ (35)

This last equation is obtained by taking the direct mean of Eq. (1).
We present these views on the stored energy to underline its characteristics and to show that it is difficult to assume

that it might be equal to a constant ratio of the plastic dissipation (ΣĖ
p
/R with R ≈ 10), as assumed by some famous

researchers (Taylor [19]).
Indeed, in the following section, we shall see an explicit model and a quantitative discussion of this ratio.

3. Temperature field obtained in an elastoplastic rod

Here, (Σ,E,T ,Y ) refer to a macroscopic (aggregate) Representative Volume Element.
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3.1. Quasi-static loading

3.1.1. Modelling
In J. Zarka ([11] or [12]), we have proposed an one-dimensional model for the viscoplastic behaviour of the

polycrystal.
We assumed that:

1. There is one parameter, X, to represent the internal state and that is linked to the mean distribution of the crys-
talline defects (X being selected as without any dimension).

2. The limit elastic thresholds are proportional to X.
3. The viscoplastic strain rate is a function of Σ , T , X.
4. The stored energy is proportional to X2.

From these conditions, we could write:

Ėp = f (Σ,T ,X)

Ẋ = g(Σ,T ,X)

U2 = AX2 with A = const
(36)

Since in this article, we are rather concerned by the high velocities/strain rates (where creep can be neglected), we
consider here only a special form of (36), where creep and softening are neglected, by taking

Ėp = |S|
S

C1(T )
〈|S| − X

〉
X

Ẋ = C2(T )
〈|S| − X

〉
X−ν+1

u2 = U2

Eo

= aX2

(37)

with C1(T ) and C2(T ) two constants function of the temperature1:

C1(T ) ≈ A1

kT
exp

{
− V

kT

}

C2(T ) ≈ A2

kT
exp

{
− V

kT

} (38)

• |S| is the absolute value of S = Σ/Eo, where Eo is the Young modulus,

• 〈S − X〉 is the positive part of S − X =
{

0 if S − X � 0
S − X if S − X � 0

• ν, a, A1, A2, V , k are physical constants, characteristic of the material.

3.1.2. Loading
We assume that the rod is loaded at a high constant strain rate C for which the hypothesis of adiabaticity may be

taken.
We have thus to solve

Ṡ + αṪ + |S|
S

C1(T )
〈|S| − X

〉
X = C, Ė = Ėe + ĖT + Ėp

Ẋ = C2(T )
〈|S| − X

〉
X−ν+1

|S|C1(T )
〈|S| − X

〉
X = 2aXẊ + αT Ṡ + ρc

Ṫ

Eo

(39)

with, for t = 0,

S(0) = 0, X(0) = X0, T (0) = T0 (40)

1 The viscoplastic strain rates are linked to the motions of the defects which are thermally activated.
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The ratio R between the plastic power dissipation and the stored power energy is given by:

R ≡ |S|C1(T )Xα−1

2aC2(T )
(41)

Now, let us consider an aluminium rod at room temperature, T ≈ T0 ≈ 300 ◦C for which, we may take the special
values:

Eo = 72 000 MPa, X0 = 5 × 10−4, ν ≈ 4
C1(T0) ≈ 4.13 × 109 s−1, C2(T0) ≈ 3.444 × 10−6 s−1

ρ = 2700 kg m−3, c ≈ 9 × 1010 m2 s−2 C−1

V ≈ 8kT0 (≈ 0.2 e.v.), a ≈ 36, α = 25 × 10−6

(42)

have made several computations to analyze the influence of the various hypotheses:

1. All the plastic power dissipation is in the temperature change (a is thus taken equal to 0) in the last equation
in (39).

2. There is a stored energy with a = 36.
3. There is a constant ratio R = 10 and thus the last equation of (39) is changed into

0.9|S|C1(T )
〈|S| − X

〉
X = αT Ṡ + ρc

Ṫ

Eo

(43)

We have also considered that the constants C1(T ) and C2(T ) are not functions of the temperature to see if the re-
sponses were changed.

3.1.3. Responses
3.1.3.1. ‘Static’ response. As long that the strain rate is lower than s−1 but higher than 10−4 s−1 (no creep), we get:

(i) the ‘static’ curve (as defined by J. Lubliner [2]) for which we consider that Ė ≈ 0

E ≈ S + C1(T0)

C2(T0)(1 + ν)

〈|S|1+ν − X1+ν
0

〉
(44)

(ii) and the ratio R for Ė ≈ 0 is

R ≈ C1(T0)

2aC2(T0)
|S|α as |S| ≈ X (45)

3.1.3.2. Responses for C ≈ 50 s−1 and C ≈ 500 s−1. The equations were integrated with the Treanor algorithm
with a variable step.

We can see only very slight differences between the various curves on Figs. 2 and 3.

Fig. 1. Static curve and evolution of R with the deformation.
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Fig. 2. Tensile curve and temperature change for C = 50 s−1. Several hypothesis on C1 and C2 were successively taken: (a) independent of the
temperature change, (b) linked to the temperature change, and: (1) no stored energy (R = 0) U̇2 = 0; (2) stored energy (R = 10) U̇2 = 0.1ΣĖp ;
(3) stored energy according to Eq. (39) U̇2 = aXẊ.

3.2. Dynamic loading

The behaviour of the material is still described by Eqs. (37), (38) and the values (42). But now, we are assuming
that the loading is dynamic as during the impact on a rigid wall (Taylor’s test). The rod has a length L and an initial
velocity v0, see for ex. [15], [16] or [17].

3.2.1. Equations
We have to solve the following system of differential equations:

(i) the dynamic equation

∂Σ

∂x
= ρ

∂v

∂t
(46)

(ii) the continuity equation

∂E

∂t
= ∂v

∂x
(47)

(iii) the constitutive equations

∂E

∂t
= 1

Eo

∂Σ

∂t
+ α

∂T

∂t
+ f (Σ,T ,X)

∂X

∂t
= g(Σ,T ,X)

(48)

(iv) the thermodynamic equation

Σf (Σ,T ,X) = 2AX
∂X

∂t
+ αT

∂Σ

∂t
+ ρc

∂T

∂t
(49)

where the unknown terms are Σ , v, E, X and T .
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Fig. 3. Tensile curve and temperature change for C = 500 s−1: (1) no stored energy (R = 0) U̇2 = 0; (2) stored energy (R = 10) U̇2 = 0.1ΣĖp ;
(3) stored energy according to Eq. (39) U̇2 = aXẊ.

The initial conditions for t = 0− are

Σ(x,0) = 0, E(x,0) = 0
X(x,0) = X0, T (x,0) = T0
v(x,0) = v0

(50)

and the boundary conditions are:

v(0, t) = 0 if Σ(0, t) < 0 or Σ(0, t) = 0 for x = 0 and Σ(L, t) = 0 for x = L (51)

To integrate numerically these equations, we used the nondimensional variables:

x̃ = x

L
, t̃ = a0t

L
, S̃ = S

X0

X̃ = X

X0
, T̃ = αT , Ṽ = ρa0v

EoX0

(52)

where a0 = √
Eo/ρ is the speed of the elastic waves.
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We introduced the nondimensional parameters:

η1(T ) = C1(T )X2
0

L

a0
, η2(T ) = C2(T )X1−ν

0
L

a0

η3 = 2aX2
0, B = αX0Eo

ρc

(53)

The system of Eqs. (46) is hyperbolic; the characteristic lines are defined by:

x̃ = ±t̃ + const and x̃ = const (54)

(i) We have along the characteristic lines x̃ = ±t̃ + const the relation

dS̃ ∓ dṼ + η1(T )
|S̃|
S̃

〈|S̃| − X̃
〉
X̃ dt̃ = 0 (55)

(ii) On the characteristic line x̃ = const, we have:

dX̃ = η2(T )
〈|S̃| − X̃

〉
X̃1−ν dt̃

T̃ dS̃ + dT̃

B
+ η3X̃ dX̃ = |S̃|η1(T )

〈|S̃| − X̃
〉
X̃ dt̃

dE = dS̃ X0 + dT̃ + η1(T ) + |S̃|
S̃

〈|S̃| − X̃
〉
X̃ dt̃

(56)

The numerical resolution becomes easy. The integration with the Treanor’s method is performed along the shock
waves x̃ = ±t̃ + nL.

3.2.2. Results
We considered the particular case of the rod with the length L = 0.1 m which reaches the wall at a velocity

of 52 m s−1.

Fig. 4. Stress and strain on the first extremity: (1a) strain (1b) stress, no stored energy, the coefficients C1 and C2 are independent of the temperature
change; (2a) strain (2b) stress: no stored energy, the coefficients C1 and C2 are function of the temperature change. t̃a is the contact time of the rod
with the rigid wall.
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Fig. 5. Permanent strain along the rod; (a) the coefficients C1 and C2 are independent of the temperature change, (b) the coefficients C1 and C2
are function of the temperature change.

Fig. 6. Variation of the temperature along the rod the coefficients C1 and C2 are function of the temperature change; (1) no stored energy,
(2) U̇2 = 0.1ΣĖp , (3) U̇2 = 2aXẊ.

In Figs. 4 to 6, we present the main results when

η1(T0) = 0.02, η2(T0) = 0.5335
η3 = 0.03, B = 3.704 × 10−4 (57)

It is clear that we note only very slight differences according to the various hypotheses.
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4. Conclusions

The results that are described in this article show clearly that:

– The definition of the temperature of an aggregate is not obvious.
– Considering several hypotheses on the constitutive modelling and the thermodynamic equation, only slight

changes may be noticed. This implies that the influence of the temperature change is very weak.
– It is thus impossible to explain the instabilities (outbreak of the adiabatic bands and concentration of the strain in

these bands) with only the coupling to the temperature.
– It is only useful to take into account the temperature change when there is an important external heat production

(in the case of small transformations of course).
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