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Abstract

In this Note eigenspectra and orders of singularity of the stress field near a mode I crack tip in a power-law material are discussed.
The perturbation theory technique is employed to pose the required asymptotic solution. The whole set of eigenvalues is obtained. It
is shown that the eigenvalues of the nonlinear problem are fully determined by the corresponding eigenvalues of the linear problem
and by the hardening exponent. To cite this article: L. Stepanova, C. R. Mecanique 336 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Spectre et ordre de la singularité de contrainte a la pointe d’une fissure chargée en mode I dans un milieu dont le
comportement suit une loi exponentielle. Dans cette Note, on détermine le spectre de valeurs propres du champ de contrainte
asymptotique au voisinage de 1’extrémité d’une fissure, dans le cas d’un matériau a comportement non linéaire. Toutes les valeurs
propres sont obtenues par une méthode de perturbation. L’analyse indique que la valeur propre du probléme non linéaire est
complétement déterminée par la valeur propre du probleme linéaire et le coefficient de consolidation plastique. Pour citer cet
article : L. Stepanova, C. R. Mecanique 336 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Solutions for crack-tip fields are very important in understanding the mechanisms of crack initiation and propaga-
tion in elastic—plastic and creeping materials. The stress field in the vicinity of the crack tip in power-law materials
(power-law hardening materials, power-law creeping materials) is widely discussed in literature. The stress singularity
for a crack in a homogeneous power-hardening material with hardening exponent n was first studied by Hutchin-
son [1], Rice and Rosengren [2]. They obtained variable separable solutions for the leading ‘HRR’-term of the
asymptotic series for the crack tip stress field in power-law materials. In [1] the problem of plastic stress singularity
is reduced to a nonlinear eigenvalue problem and the shooting method is used to solve the homogeneous differential
equation obtained in the analysis.
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It should be noted that for some time multi-term asymptotic solutions with the well-known HRR-field as the leading
order term of the asymptotic expansion aroused considerable interest of many researchers [3—5]. Thus, in [3] analytical
solutions of higher order fields at a crack under antiplane shear in a fully plastic power-law hardening material are
presented. By the use of hodograph transformation and asymptotic analysis the stress and strain exponents, angular
distributions of shear stresses and strains are analytically determined. An algorithm and a computer program for the
three-term asymptotic expansion of elastic—plastic crack tip stress and displacement fields are proposed in [4]. Here
the leading order term is the classical HRR stress distribution. Noting growing appreciation of the role of higher-order
terms in asymptotic stress and deformation fields near cracks in nonlinear materials, Nguyen et al. [5] focused on the
higher-order near-tip fields in a steadily creeping power-law material.

Nowadays the whole eigenspectrum and orders of stress singularity at the crack tip for a power-law medium are of
prevailing interest.

Thus, in [6] it is noted that most of works have not paid any attention to the higher order nonsingular and singular
terms like 73/2, r, r1/2, r=3/2, y=3/2_ .. in the complete Williams expansion for elastic—plastic problems. If there
exists a plastic zone around the crack tip, the complete solution in elastically deformed material outside the plastic
zone should include the higher order singular terms as pointed out by Hui and Ruina [7]. They questioned the validity
of some customary arguments related to the elastic—plastic crack problem under small scale yielding. They concluded
that the higher order singularities should not be disregarded. The central subject of [7] is not whether or not singular
terms and non-singular terms always exist in the elastic field outside the nonlinear zone. The authors conclude that
the higher order terms cannot be neglected. These studies thus lead to the following questions [8]:

(1) How many singular terms, for a specific nonlinearly inelastic medium, exist mathematically at the crack tip and
how they, if any, can be determined completely?

(2) Under what conditions a singular term can be regarded as the physically preferred one and plays a dominant role
in practice?

(3) Does any other form of higher or lower order asymptotic solution exist and, if yes, how can one find them?

Namely, if the dominant term is not the classical HRR-field with the theoretically known eigenvalue s = —1/(n+1)
[1,2] how one can determine the function s = s(n)?

In [8] some additional eigenvalues for the stress field at a static mode I crack under plane stress condition are
numerically obtained for some values of the exponent n via the Runge—Kutta method in conjunction with the shooting
method. However, in this case the shooting method is multi-parametric since it is necessary to select two parameters
and, consequently, the results obtained still require further investigations.

The present article offers a technique developed in the perturbation theory for study of nonlinear eigenvalue prob-
lems arising from fracture mechanics analysis.

2. Mode I crack—basic equations

A static mode I crack problem under the plane strain condition is considered. The equilibrium and compatibility
equations in the polar coordinate system can, respectively, be written as
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The power-law constitutive relations for the plane strain condition are described by
err = —e06 =3B0) " (0rr —0v9) /4, €9 =3Bo} '0,9/2 3)

where the Mises equivalent stress is expressed by aez =3(0,r — 0p0)% /4 + 3039.
The problem is completely defined by Eqgs. (1), (2) and (3) and by the traction free boundary conditions on the
crack faces:

ogg(r,0 =xm) =0, org(r,0 =xm)=0
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The Airy stress potential F(r, ) can be used to obtain
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In analyzing the asymptotic behaviour of the stress field near the crack tip the Airy stress potential can be presented
in the following form

F(r,0) =r*"1 £(6) (5)

Substitution (5) into (4) immediately yields

o () =" A+ DO + /O], 000(r,0) =r* AR+ DfO),  0r9(r,0) =—r*'Af'(6)

Using the constitutive equations (3) and the compatibility equation (2) one finds

2= D[ =2 f+ T+ £+ =D —3)
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where
F=[0-2)r+ f”]2 + 422 17, Ci=4r[(x — Dn+1], Cr=(— Dn[(— Dn +2]
The fourth order nonlinear ordinary differential equation (6) with the boundary conditions
fO==xm)=0, flfO@=+m)=0 @)

defines a nonlinear eigenvalue problem in which the constant A is the eigenvalue and f(0) is the corresponding
eigenfunction. The direct integration of the differential equation (6) is generally realized by the Runge—Kutta method
in conjunction with the shooting method. Obviously, the eigenvalue A and the initial value f”(6 = —) are coupled
with each other in general, and they have to be searched simultaneously. Only in some special cases one can assign
a certain A a prior through additional physical presumptions. Now the whole eigenspectrum and orders of stress
singularity at the crack tip are of interest. The whole eigenspectrum stipulates the possible stress distributions in the
neighbourhood of the crack tip. Therefore, the shooting procedure becomes multi-parametric here and the numerical
results obtained need to be proved additionally. To overcome this difficulty in the problem the perturbation theory
approach can be applied. A further reason to consider this problem is in the need for a formula expressing eigenvalues
for the nonlinear problem through eigenvalues of the linear problem and the hardening exponent. In [9] a closed form
solution for the eigenvalues, determining the asymptotic behaviour of the field at a crack tip under longitudinal shear is
analytically derived by applying the perturbation method. It is shown [9] that the eigenvalues of the nonlinear problem
solely depend on the eigenvalues of the corresponding linear problem and on the hardening exponent.

The purpose of this study is to obtain the whole eigenspectrum for the stress field near a mode I crack in a power-
law material.

3. The perturbation theory approach

The underlying idea of the method is to consider the expansion representing the eigenvalue A of the nonlinear eigen-
value problem (6), (7) for an arbitrary exponent n to be a sum of the eigenvalue A( corresponding to the ‘undisturbed’
linear problem (n = 1) and a small parameter ¢ which quantitatively describes the nearness of the eigenvalues:

A=Ao+e (8)
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The exponent n and the stress function f(6) can be presented as formal series with respect to ¢:

n=1+eni+eny+--, £0) = fo0) +ef1(0) + & f2(0) + - )

where fo(0) denotes the solution of the linear problem (n = 1).

Introducing (8), (9) into (6) and collecting terms of equal power in ¢, the set of linear differential equations is
obtained.

The first equation describing the linear problem

V203 + 1) +(03-1)fo=0 (10)
has the following solution

fo(6) = By cos[ (Lo — D8] + By sin[ (ko — 1)0] + B3 cos[ (Ao + 1)6] + By sin[(ho + 1)6] (11)
The boundary conditions

fo(0 =+m) =0, fo@=%m)=0 (12)

lead to the characteristic equation sin 2w Ao = 0. As is expected, the eigenspectrum of (10), (12) distributes discretely
and has infinite number of eigenvalues

rM=m/2, m=0,=%1,£2,£3,...

Using the eigenvalues A obtained one can find the relations among B;:

-2
Bim=———"Biw, Bam=—Bay, m==%l 4345, ..
+2
m—2
B3y = —Bim, Bam=— By, m=0,2,£4,+6,...
m—+2

Considering odd integers m here one can represent (11) in the form
fo(0) = Bcos(af) —acos(Bl), wherea=rg—1, B=Xrp+1
The dimensionless angular function f(6) must satisfy the fourth order linear ordinary differential equation

x0(fy" X0 + o)
(%Mo 00

203+ ) 7+ (312 fr = —n 20

+2h0fy = CLf§ + Cax0 + 2h0a0 fo (13)
where, for brevity’s sake, the following notations are adopted:

ao=1-25,  xo=aofo+fy.  go=uxj+45(f)
w0 = (x)* +aoxo fo +415(f)) + 445 fo fy'
Cl=4n2+ni(o—1],  Ch=2x0[l +n1G— 1]

Boundary conditions follow from the traction free conditions on the crack faces:
fi@==xm)=0, flO@=%m)=0 (14)

Thus, the boundary value problem (13), (14) for the nonhomogeneous fourth order linear differential equation
is formulated. It is known [10] that if the boundary value problem for the homogeneous differential equation has a
nontrivial solution then there can exist no solution of the corresponding nonhomogeneous differential equation unless
the solvability condition is realized.

The solvability condition can be formulated by using a solution of the self-adjoint problem [10]:

e

/ ug(@)dd =0, u= fo(@)= Bcos(afd) —acos(B6) (15)

where u is the solution of the self-adjoint problem corresponding to (13), (14); g(#) is the right hand side of (13).
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The solvability condition (15) enables to obtain the first perturbation of n:
2

M=y (16)
and, consequently, the two-term asymptotic expansion for the exponent n has the following form
2¢
n=1—k0_1+o(e2) (17)
The nonhomogeneous linear differential equation for the function f>(6) can be presented as
A +205+ 0+ 65 -1 5]
+ 83 (=x0 + CT f§ — C3xo + 210C; fo) + ni{—xo(fy " x0 + wo)[—44o foxo + 8ro(f3)?]
+ goxo[—4Ax( fg — 2h0a0 fo fy — 2hox0 fo + 8ro(f3)* + 820 fof0"]
+ 2hoxy[ =420 foxo + 8ro(f§)*] — 2hoxol—2roxo fO’ — 2o foxg + 8xo fo fol
+ 423ho f3[—4o foxo + 8ro(f§)*] — 2h0g0 fo( fa¥ x0 + wo) — 2h0g0 fo £y X0 + nihixo
+ 4hohf fo — 4rogoho £ — xo(fa ¥ xo + wo)[2x0x1 + 823 f3 £1] + goxg £V
+ goxo[2x4x} + ao f§x1 + aoxo i + 823 £ f + 4G £ 1+ WG £ £ + 2hox([2x0x1 + 825 £ f1]
- Zhoxo[xoxl + xgx1 + 4A fofl” + 41 fo”fl] + 4A2h0f0[2x0x1 + 8A fofl]
+ go(fyVxo0 + wo)x1 + 2hogox| — 2hx1 + 4rZhogo f1 + fo goXom} =0 (18)
where
ho=xoxy + 830 fy,  xi=aofi+ ff
Cr=4{ro[m +m2Go— D]+ 14+nmGo—D}, €3 =2x[n1 +n200— D]+ [1 +n1000 — D]’
f1(6) = —ni(Bcosab —acos BO)Incos(6/2)
B (21021)/2W7 150 .
B k=1 -
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The boundary conditions for the function f>(6) are given by
(0 ==xm) =0, f0=%xm)=0 19)

Analysis of the solvability condition for the boundary value problem (18), (19) results in the three-term asymptotic
expansions of the exponent n:

4 79
M=-5/2, n=1+—-¢— g2 +O(83)

7 2401
4 669 ,
Ao =—3/2, n—1+§ +@8 +O( )

4 92,
ro=-1/2, n=1 2210
0 /2, n +38+818+ (%)
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r=1/2, n=1+4e+8:>+0(e?)

53
A=3/2, n=1-4de+ ?82—‘1-0(83)

4 683
r=5/2, n=1--e+_—e*+0(e 20
0 / n 3 + 567 + ( ) (20)
For the eigenvalue Ao = 1/2 corresponding to the classical HRR-problem the following closed form solution
Dk 1 & k »
me=—— T S (-—) ==, =t @1
(Ao — DkH! Xo—lk_l lo—1 A—1 n+1
is found.

Hence, the well-known formula (21) connecting the hardening exponent n and the eigenvalue A for the HRR-
problem is derived.
Generalizing (20), one can find the second perturbation of n for A9 < —3/2 and for Ao > 3/2
Ay — 2h¢ —TA3 + 1122 + 440 — 5 — (A3 — 1) sgn(ho)

__ 2
" v+ Do — DA 2

4. Summary

Using the perturbation method the whole set of eigenvalues for a mode I crack tip in a power-law material is
determined. The three-term asymptotic expansions for the exponent n (20) allowing to find the eigenvalue via (8) for
the nonlinear problem (6), (7) are obtained.

The relative error of the three-term asymptotic expansion (20) for a crack in the power-law material with n =2 to
the exact HRR-solution is 2%.

The results obtained for Ay = —1/2 were compared with those found for the same problem by the Runge—Kutta
method in conjunction with the shooting method [11]. The comparison of the eigenvalues for n = 2 calculated by the
three-term asymptotic expansion (20) and by the numerical scheme A = —0.9801 and A = —1.000 shows the good
agreement. The eigenvalues for n = 3 given by the four-term asymptotic expansion for Ao = —1/2 and by the Runge—
Kutta method are A = —0.7716 and A = —0.7755. Consequently, a quite satisfactory solution is obtained by taking
the asymptotic expansion achieved.

Thus, estimates (8), (9), (16) and (22) effectively constitute an asymptotic approximation of the solution to the
nonlinear eigenvalue problem (6), (7).
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