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Abstract

Some conservation laws in Solids and Fracture Mechanics present a lack of symmetry between kinematic and dynamic variables.
It is shown that Duality is the right tool to re-establish the symmetry between equations and variables and to provide conservation
laws of the pure divergence type which provide true path independent integrals. The loss of symmetry of some energetic expressions
is exploited to derive a new method for solving some inverse problems. In particular, the earthquake inverse problem is solved
analytically. To cite this article: H.D. Bui, C. R. Mecanique 336 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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The notion of duality and symmetry is closely linked to the concept of ‘Virtual Power’. This was introduced
in the Mechanics of continuous media by my teacher Paul Germain for an adequate representation of the action
(forces, stress, . . . ) on a body, [1]. In one of his papers, he wrote “This concept is very seldom considered in the
English scientific community, which directly made use of equations, for example the classical Newton law (f = ma)

or Cauchy law (divσ = ρa) ”. It originates from the mathematical concept of spaces and dual spaces of functions.
As an example, to introduce the generalized functions, including the Dirac Delta function, my other teacher Laurent
Schwartz invented distribution theory (for which he was awarded the Fields medal, 1951), [2]. A distribution is a
continuous linear form in some space of function F , equipped with some topology. It belongs to the dual space F ′.
In the mechanics of continuous media, solids or fluids, duality is always present in the formulation of mechanical
problems. As Paul Germain liked to tell us “force is the dual of the mobility”, we kept in our mind that ‘force’ is
indeed a dual vector, i.e. an element of V ′, the dual space of the space V of velocity fields, [3]. Stress is an element
of the dual space D′, which is dual to the strain rate space D etc., so that the stress space S is identical to D′ ≡ S.
By an extension, stress and strain are often considered as dual variables. The interpretation of stress as the dual of an
element in the strain rate space D leads to the abstract definition of stress as a linear form on D, called a virtual power.
The duality becomes the bilinear form denoted by 〈d ′, d〉, i.e. the map D′ × D → R : (d ′, d) → 〈d ′, d〉.

Let us consider an elementary example. We wish to find a force F equal to the prescribed one Fd . It is thus equiva-
lent to require the equality between scalars 〈F,v∗〉 = 〈Fd, v∗〉 for any v∗ ∈ V . From the linearity of the form 〈. , .〉 we
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Table 1
Duality in solid mechanics

Variables & functions Action or results Dual variables & conjugate
functions

Remarks

Displacement u Work Force f, traction vector T
Virtual velocity v∗ Virtual power Force f, traction vector T
Deformation ε, strain rate ε̇ Stress σ

Potential energy P Complementary potential Q

Thermoelastic fields u, θ Conserv. law Adjoint fields u∗,w∗ Symmetry between (u, θ) and
(u∗,w∗)

Internal variables α Dissipation A.α̇ Generalized forces A
Φ(α̇) (pseudo-dissipation) Ψ (A) (conjugate function) Φ(α̇) = sup{A.α̇ − Ψ (A)}
J -integral Derivative of the energy

−dW/da

Dual I -integral

J (u,u∗) Virtual power J -integral = 1
2 J (u,u)

(v, ε)τ = Cu Tonti’s diagram C∗(p, σ )τ = (m, e)
Eq. of motion m = 0
Equilibrium Eq. e = 0

S[v, ε]τ = [η, ζ ]τ Constitutive law S∗[Z,B] = [p, σ ]
η = 0 Compatibility v ↔ ε̇

ζ = 0 Compatibility of ε

Projection P Tomography Back projection P ∗ The inverse Radon transform
makes use of P and P ∗

Propagation Scattering of waves Back propagation
Forward equations Reciprocity gap Time reversal mirror

Functional (RG) Adjoint equations
Forward diffusion RG functional Backward diffusion
State equation Control theory Adjoint state equation
Primal problem Convex analysis Dual problem
posi-functional spaces: D,S Mathematical analysis Dual spaces: D′, S′

(Schwartz’s spaces)
D (space of C∞ compactly
supported function)
D′ (space of distributions)
S (rapidly decreasing functions
f at infinity, f/|x|n → 0, ∀n,
n positive integer)
S′ (tempered distributions)
(1/p) + (1/p′) = 1

Hm,p H−m,p′
(Sobolev’s spaces)

get 〈F −Fd, v∗〉 = 0, ∀v∗ ∈ V . This concept was known in analytical mechanics since Lagrange, many centuries ago.
In modern computational mechanics, virtual motion and virtual displacement are known as test functions. Therefore
there are no new topics unfamiliar to everybody, but only new interpretations and new applications allowed by the
concepts of duality, virtual power and symmetry lost, as illustrated by many papers devoted to inverse problems.

I mentioned my two teachers Paul Germain and Laurent Schwartz, to whom I owed the basic notions of duality
in Mechanics and Mathematics. It appears that, as remarked by my colleague Xanthippi Markenscoff of UCSD, most
of my works have been motivated by duality as a common theme, which may be simply explained by the teaching I
received from them. Indeed, most of my works were published in the French Comptes rendus. Since she reads French
very well, and perhaps the French Comptes rendus too, she remarkably noticed that Duality, symmetry and symmetry
lost are the backbone of my works. I shall try to explain her remarks through some applications.

Applications of duality can be found in various fields of Mechanics: computational mechanics, mechanics of ma-
terials, fracture mechanics and inverse problems (Table 1). For example, in classical boundary integral equation
methods, dual vectors u and T = σ.n are both considered in the boundary of the solid. Moreover duality has been
used to derive the equations, via conservation laws and symmetry of the elastic tensor.

In the monograph of Tonti [4] one can find duality in various domains of Physics (electromagnetism, gravitation,
thermodynamics, electrostatics, quasi-static elasticity, rod, strings, etc.). In his diagram for elastostatics, Fig. 1, there
are two main charts, kinematics and statics, which are linked by the elastic constitutive law.
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Fig. 1. Tonti’s diagram in elastostatics.

In Fig. 1, D := −div and its adjoint D∗ = 1
2 (∇ + ∇ i ), R is the curl (of second order symmetric tensor) and R∗ its

adjoint defined respectively by RB := −(∂kBij )ei ⊗ (ej ∧ ek) and R∗B := (∂kBij )(ek ∧ ei ) ⊗ ej . The operator RR∗
is self-adjoint and B is the Beltrami tensor. In two dimensions, one has B = ψ(x1, x2)e3 ⊗ e3 with the Airy function
ψ(x1, x2).

Traditionally, finite element methods do not consider the symmetry between stress and strain since one considers
the chart beginning with the displacement field:

u → ε → σ → −divσ = 0

A stress method based on the chart:

B → σ → ε → RR∗ε = 0

does not consider the symmetry either. An hybrid method which takes account of the symmetry between the kinematic
and static charts:

u → ε · · ·σ ← B

consists in satisfying the constitutive law, in the sense of minimum norm ‖ε − σ‖. This is essentially the ‘error in
constitutive law’ method proposed by Ladeveze [5].

When I generalized Tonti’s diagram of elastostatics to dynamic elasticity (Comptes Rendus Acad. Sciences, Paris,
311, II, p. 7, 1990, [6]), I realized the beautiful structure of the equations using dual variables, Fig. 2. I discovered
that the links between dual variables are always governed by operators and their adjoint ones (see the generalisation
of Tonti’s diagram to dynamics). The two charts are linked by two constitutive laws: the momentum/velocity relation
p = ρv and the elastic law σ = Lε.

In elasticity or plasticity theory, most works presented the field equations of equilibrium and constitutive laws in
stress space, ignoring another dual presentation of equations in strain space. It is not simply an academic point of view,
but sometimes it is a necessity. An example is given by the softening of elastic–plastic materials which convinces us
that, to describe the decrease of the load and to avoid the ambiguity between elastic unloading (a) and plastic loading
with softening (b), Fig. 3, it is necessary to consider the strain space [Nguyen and Bui, Journal de Mécanique, vol. 13,
No. 2, pp. 321–343, 1974, [7]].

Let me show now how duality is useful for solving some ill-posed problems with applications to the Non-
Destructive Testing method. When I was still a research student, I wondered how the Dirichlet boundary value problem
in elasticity, with the prescribed datum ud

i (x), x ∈ ∂Ω , on the boundary can be replaced by the corresponding Neu-
mann boundary value problem with the prescribed datum T d

i (x), x ∈ ∂Ω . I found the solution to my problem for a
half plane but ignored at this time that the map ud

i (x) → T d
i (x), called the Dirichlet-to-Neumann map (DN) or its

inverse, the Neumann-to-Dirichlet map (ND), will have very important applications in the solution of some inverse
problems in elasticity investigated in the nineties by mathematicians. This paper published in the sixties (“Transfor-
mation of boundary values on an elastic half-space (in French)”, H.D. Bui, Comptes Rendus Acad. Sciences, t. 265,
pp. 862–865, 1967, [9]) indicates that the concept of duality has been unconsciously the driving concept of my works
for many decades. The Dirichlet-to-Neumann maps are today the key tools to solve the “Crack detection problem by
a geometry approach” (H.D. Bui, in A propos des grands Systèmes des Sciences et de la Technologie, in the honor of
Robert Dautray, by J. Horowitch & J.L. Lions (Eds.), Masson, Paris, 1993, [10]). To solve such a problem, one needs
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Fig. 2. Generalization of Tonti’s diagram to elastodynamics: The potentials (φ,H) have no duals. Functions (φ,H) and (Z,B) are called conjugate
pairs of functions, which are the key tools for a boundary integral equation method using symmetrical and regular kernels (Bui, [8]). They are like
parents and parents-in-laws of children (v, ε) and (p, σ ) who are related by a marriage (constitutive laws).

Fig. 3. Elastic–plastic behavior with softening.

a family of dual vectors ud
i (x : λ) and T d

i (x;λ) := DN(ud
i (x : λ)), depending on some parameter λ defining a family

of surfaces Sλ (the boundary of the solid corresponds to λ = 0) and then to solve a Cauchy problem.
There are many methods for solving the Cauchy problem. One method is based on duality as explained in the

following. Let the domain between S0 and Sλ be denoted by Ωλ, which is assumed to be free of defects. The variational
form of elasticity in Ωλ can be written as

aλ(u,v) = bλ(v), ∀v

with test functions v assumed to be independent of λ. The notations aλ and bλ mean that the bilinear and linear forms
depend on λ which parameterizes the domain Ωλ and its boundary. A convected differentiation of the variational form
on a moving domain Ωλ yields the differential equation determining the evolution of the dual pair (u,T)

d

dλ
aλ(u,v) = d

dλ
bλ(v), ∀v ⇒ d

dλ

(
u
T

)
= A.

(
u
T

)
where A is a transfer matrix of tangential operators along Sλ which is an unbounded operator (ill-posedness of the
Cauchy problem), Bui [10]. Therefore, an explicit integration of the differential equation is not possible. We need a
regularization technique which consists in replacing operator A by AS, where S is a ‘smoothing’ operator (see Lorentz
and Andrieux, [11]; Bui et al., [12]). Since AS is a bounded operator, the continuation of the pair (u,T) through Sλ
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can be obtained by the integration of the differential equation with small integration steps. This geometrical method
determines the greatest solid domain not containing defects, using data (u,T) on the outer boundary S0.

Duality has also many applications in Fracture Mechanics. In 1973, I found that Rice’s J -integral, [13], is only one
description of the energy release rate G, by a path-independent integral and that the dual I -integral is another possible
one. This offers a great advantage in considering both descriptions with dual variables and spaces, conservation laws
and dual laws since the minimum theorems for the potential energy W(ε) and the complementary potential U(σ),
under certain conditions, provide us exact bounds of the J -integral (“Dual path independent integrals in the boundary-
value problems of cracks”, H.D. Bui, Engineering Fracture Mechanics, 1974, 6, pp. 287–296, [14])

J = −dW

da
, I = −dU

da

where a is the crack length, and J = I = G only for exact solutions. Another important applications of the virtual
power principle in Fracture Mechanics is provided by the notion of the virtual crack propagation. Classically, one
deals with the energy release rate G as the derivative of the energy with respect to the crack length. Therefore G in
mixed modes I + II is well known as the quadratic form G = (1 − ν2)(K2

I + K2
II)/E. The question has been arisen

on how to separately extract the stress-intensity factors. Many methods were proposed consisting in calculating the
derivatives of the energy in the Ox1 direction J1 = (1 − ν2)(K2

I + K2
II)/E (crack propagation along Ox1) and in

the Ox2 direction J2 = −(1 − ν2)KIKII/E (crack translation out of its plane). Such an unphysical method (for an
actual derivative) was criticized by many authors. I tried to look at the virtual power method, with arbitrary adjoint
fields u∗ and discovered that the virtual power of the energy of a cracked body, in two-dimensions, is equal to the
bilinear form

G(u,u∗) = 2(1 − ν2)

E
{KIK

∗
I + KIIK

∗
II}

By choosing a symmetric adjoint field (K∗
I = 1, K∗

II = 0) we extracted the SIF in mode I by G(u,u∗) = 2(1 −
ν2)KI/E and similarly by considering an anti-symmetric adjoint field (K∗

I = 0, K∗
II = 1) I obtained the stress-intensity

factor in mode II. The virtual crack propagation is richer than the derivative of energy since it contains the classical
result 1

2G(u,u) ≡ J1-integral. There is a profound difference between the virtual crack propagation method and the
J2- method which involves a crack translation out of its plane with the same loading. The virtual method G(u,u∗) is
based on a crack propagation in its direction, but under a virtual load giving rise to u∗, K∗

I and K∗
II.

In the seventies, I found some intriguing results for the energy release rate in elastodynamics. As a student, I always
learned that a formula describing physical phenomena must be independent of the motion of the frame reference in
which measurements are made. This is the objectivity principle in Physics. The energy release rate formula in elasto-
dynamics for a moving crack with the velocity V does not satisfy this principle since the velocity is explicitly present
in its expression, in plane strain mode I

G = 1 − ν2

E
K2

I fI(V )

where fI(V ) = β1(1 − β2
2 )/{(1 − ν)(4β1β2 − (1 + β2

2 )2)}, βi =
√

1 − (V 2/c2
i ), c1 for P -wave, c2 for S-wave. How

to restore the objective formula for the dynamic G? My response to this question was duality.
Let me introduce for the mode I the same local definitions of stress-intensity factor and crack displacement intensity

factor as known in quasi-statics, respectively

Kσ
I = lim

r→0
σ22

√
2πr, Ku

I = lim
r→0

μ

4(1 − ν)
[[u2]]

√
2π

r

In quasi-statics, both definitions provide the same SIF. In elastodynamics, I found a symmetrical formula for the
energy release rate which is nothing but the duality between stress and strain rate near the moving crack tip

G = 1 − ν2

E
Kσ

I Ku
I

This objective formula agrees with the traditional one, Achenbach and Bazant [30], since it can be proved that Ku
I =

Kσ fI(V ) (see H.D. Bui, Fracture, ICF4, Waterloo, June 19–24, 1977, pp. 91–95, [15]).
I
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Another beautiful application of duality is about a conservation law in linear thermo-elasticity, with applications
to fracture mechanics. It is well known that classical conservation law in thermo-elasticity includes a source term,
namely in the form divA(u, θ) = B(u, θ), where θ is the temperature field. Precisely, because of the source term
B = (∂W/∂θ)grad θ , the thermo-elastic Jth-integral is not a purely path-independent integral, since it involves an area
integral too

Jth =
∫
Γ

{
W(ε, θ) − σijnjui,1

}
ds −

∫
A(Γ )

w,θ θ,1 dA

We lose the main interest of path-independent integrals which is to avoid the calculation of singular fields near the
crack tip. Does a path-independent integral exist in thermoelasticity? This was a question addressed to me by George
Herrmann in the 1980s. The symmetry is lost when we consider the pair (u, θ) alone. We restored the symmetry
by considering the dual pair {(u, θ), (u∗,w∗)} and obtained a conservation law in the form divA(u, θ;u∗,w∗) = 0,
without a source term, using dual variables (u∗,w∗). The conservation law in linear thermoelasticity of the pure
divergence form, for a line crack problem (along negative Ox1) is given by

∂

∂xj

{
uiσ

∗
ij,1 − u∗

i,1σij − γ θ(u∗
1,j − w∗

,j ) + γ θ,j (u
∗
1 − w∗)

} = 0

where γ = −αμ(3λ + 2μ)/(λ + μ), α is the thermal coefficient, λ and μ are Lamé’s coefficients. The actual tem-
perature field θ as well as the scalar adjoint field w∗ are harmonic. The stress free is assumed on the crack σ.n = 0
as well as the normal heat flux ∂θ/∂n = 0. The adjoint fields (u∗,w∗) are not the thermoelastic ones. There is a
coupling between adjoint fields, by imposing the following condition on the crack faces ∂(w∗ − u∗

1)/∂n = 0. Under
these conditions, we get a path-independent integral in linear thermoelasticity

T =
∫
Γ

1

2

{
uiσ

∗
ij,1nj − u∗

i,1σijnj − γ θ(u∗
1,n − w∗

,n) + γ (u∗
1 − w∗)θ,n

}
ds

T = 1 − ν2

E
(KIK

∗
I + KIIK

∗
II)

The results were presented at the French Academy by Paul Germain himself and also at the Eshelby Symposium
(Fundamentals of deformation and Fracture, April, 1984, pp. 2–5, [16]), in honour of a great scientist who impinged
on many works in Fracture Mechanics, Bui [32].

Does symmetry exist in conservation laws in elastodynamics? It is clear that the conservation law divσ [u] = ρii
or those derived by Fletcher [17]

div

{
W − 1

2
ρv.v − σ.∇u

}
+ ∂

∂t
(ρv.∇u) = 0

are not symmetric. To restore the symmetry, it is necessary to introduce adjoint fields v(x, t; τ) satisfying the elasto-
dynamic wave equations divσ [v] = ρv̈ such that v(x, t; τ) ≡ 0 for t > τ where τ is an arbitrary constant. We obtained
symmetric conservation laws in elastodynamics given in (“Facteur d’intensité des contraintes mécaniques globales”,
H.D. Bui and H. Maigre, C. R. Acad. Sci. Paris, II, 306, p. 1213, 1988, [18]) by

div

{ τ∫
0

(
n.σ [u].v − n.σ [v].u)

dt

}
= 0, for any v

These conservation laws have been exploited by Bui et al. [33] to extract the stress intensity factors in dynamic
modes I and II by choosing appropriately adjoint dynamical fields.

Dual variables are crucial in the thermodynamics of irreversible processes. The contributions of J.J. Moreau,
Q.S. Nguyen, P. Germain, P. Suquet, A. Ehrlacher, C. Stolz and others in France, during the period 1960–1990 are
very important in clarifying the nature of dissipation in Plasticity and Fracture. Internal rate variables α̇, including the
plastic strain rate ε̇p , α̇ = (ε̇p, β̇) describe the evolution of materials. The variable α̇ is the dual to the generalized



18 H.D. Bui / C. R. Mecanique 336 (2008) 12–23
force A, so that A.α̇ � 0 represents the dissipation rate. If one introduces the free energy per unit volume W(ε,α) so
that

σ = ∂W

∂ε
, A = −∂W

∂α

then one obtains the state equation. One needs to introduce a complementary law by introducing a pseudo-potential
Φ(α̇) so that (B. Halphen and Q.S. Nguyen, [19])

A = ∂Φ

∂α̇

The dual presentation consists in introducing the conjugate function Ψ (A) in the sense that conjugate functions Φ(α̇)

and Ψ (A) are linked by Legendre transform

Φ(α̇) = sup
A∈V

{
A.α̇ − Ψ (A)

}
where V is some convex of generalized forces. In the smooth convex case one has α̇ = ∂Ψ (A)/∂A, while in the case
of a non-differentiable convex, one may use Moreau’s notion of sub-differential α̇ ∈ ∂Ψ (A).

If the crack length is considered as a state variable, then ȧJtip can be identified as the dissipation rate due to fracture
at the crack tip! Here we have defined Jtip as the J -integral for a vanishing contour around the crack tip. In plasticity
Jtip is equal to zero, which is the paradoxical result revealed by Rice (1966), so that the dissipation rate in a cracked
body is essentially distributed by plastic heating inside the solid domain rather than concentrated at the crack tip. In
elasticity, Jtip is not equal to zero and ȧJtip represents the dissipation rate the crack tip even in an elastic body (which
is a non-dissipative medium in its volume!). The dissipative nature of crack propagation in an elastic body resulted
in a new interpretation of the energy release rate and to the discovery of the positive logarithmic singularity of the
temperature field T for a moving crack tip, which behaves like a moving point heat source (Bui et al., Comptes Rendus
Acad. Sci. Paris, t. 289, pp. 211–214, 1979, [20])

T = − ȧJtip

2kπ
log r

These are new aspects of Fracture Mechanics based on thermodynamical considerations. Such considerations have
been introduced in Plasticity by my teacher, Professor Jean Mandel, with whom I wrote my first research paper on
experimental Plasticity (1962). Later, in 1965, I published another paper [21] on the experimental verification of his
plastic dissipation formula [22]

Dp =
∫

(T.u̇ − Ṫ.u)dt

which is nothing but a symmetry lost in Plasticity (Cahier du Groupe Français de Rheologie, t. 1, no. 1, 1965, pp. 15–
19, [21]).

Virtual power is more general than the time derivative of the energy. Dual variables in continuum Mechanics are
more general than the variables considered in the formulation of equations. Consider the expression of the energy
release rate in Linear Fracture Mechanics as the derivative of the energy with respect to the crack length

G = 1

2

∫
∂Ω

(
T.

∂u
∂a

− u.
∂T
∂a

)
ds

I remember a discussion with Paul Germain in which he questioned me about the anti-symmetry found in the
above formula, in the sense that the interchanges u ↔ du/da and T ↔ dT/da change the sign of G. It seems that G

looks like a Poisson’s bracket! like the Mandel formula of plastic dissipation. At this time I had no correct answer
to his question on the anti-symmetry. Today, I can say that this is simply a symmetry lost. In recent works with my
colleagues in two groups of research at École polytechnique and Electricité de France, and also with the University
of Tunis, I discover that symmetry lost is a fundamental notion in crack detection problems. The reciprocity theorem
in elasticity expresses the symmetry between two states (u1,u2). Consider a homogeneous elastic solid with the two
states and the integral R defined as

R =
∫ (

u1.T (u2) − u2.T (u1)
)

ds
∂Ω
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which expresses the Betti reciprocity theorem by R = 0, revealing the symmetry between the two states. The sym-
metry is lost when R �= 0, for instance in the case where the solid is not homogeneous or contains cracks. One field
corresponds to the non-homogeneous or cracked body, another field for the homogeneous one.

Therefore R is a defect indicator (also called a reciprocity gap):

R = 0 ⇔ no defect inside ∂Ω

R �= 0 ⇔ existence of a defect

Finally, crack detection problems reduce to the search of the zeros of a functional. A series of recent papers of
my groups, in EDF and École polytechnique, showed that the reciprocity gap functional method provided a closed
form solution to some inverse crack detection problems, for electrostatics (Andrieux and Ben Abda, [23,31]), static
elasticity (Andrieux et al., Inverse Problems, 15, pp. 59–65, 1999, [24]), diffusion equation (Ben Abda and Bui, Inverse
and Ill-posed Problems, 11, no. 1, pp. 27–31, 2003, [25]), transient acoustics (Bui et al., Comptes Rendus Acad. Sci.
Paris, 327, II, pp. 971–976, 1999, [26]), elasto-dynamics with the exact solution to an earthquake inverse problem
(Bui et al., Inverse and Ill-posed Problems, vol. 13, no. 6, pp. 553–565, 2005, [27]). As shown above, the reciprocity
gap R is the external boundary functional which is known from the data u1 = ud and T (u1) = Td and from the chosen
adjoint functions {u2, T (u2)}. In planar crack detection problems (quasistatic elasticity), we can prove the following
variational equation (R is an integral over Sext, with known data and known adjoint functions)∫

Σ(u)

[[u]].T (u∗)ds = R
(
ud ,Td;u∗, T (u∗)

)
, ∀u∗

In the homogeneous body case (no crack), the left-hand side of the above equation equals zero. By R = 0, we recover
the symmetry between fields u and u∗. In the symmetry lost case, the above equation provides a non-linear equation for
determining the crack plane (containing Σ ) as well as the displacement discontinuity [[u]]. It is impossible to solve the
non-linear inverse problem with classical methods based on the field equations, since the crack support Σ(u) depends
on the unknown u. Now, the variational form makes it possible to solve the inverse problem in closed form, by first
finding suitable adjoint fields to determine the crack plane and then considering a linear inverse problem, which is
incomparably simpler than the original one. For more details on the solutions of the above variational equations, for
different physics, the readers can refer to Bui [28]. An adequate choice of the adjoint function allows the invertibility
of the above equation. We exploit here the arbitrariness of the choice of functions u∗ to obtain the desired results.
Classical methods deal with the fields equations (elastic equilibrium equation, boundary conditions, with an unknown
geometry). Therefore the only possible method consists in finding the best fitting of true measurements with predicted
data corresponding to some guessed geometry S{

Σ and [[u]]} = arg min
S.[[v]]

{|v − ud |2 + |T (v) − T d |2}
where v is the solution of the boundary value problem with the geometry Ω\S and with one of the boundary condition,
either ud or Td (two possible numerical solutions!). This classical method of solution is essentially a numerical one.
It is well known that the above optimization procedure is mathematically ill-posed. One interesting statement of the
work by Das and Suhadolc [29] on the earthquake inverse problem is the following one: “even if the fitting of data
seems to be quite good, the faulting process is poorly reproduced, so that in the real case, it would be difficult to
know when one has obtained the correct solution”. Undoubtedly, the reciprocity gap functional method based on the
symmetry lost and on duality (through the variational form) is the right tool to solve these inverse problems in closed
form.

To illustrate the method of closed form solutions using the symmetry lost, let us consider first a parabolic inverse
problem of crack detection using the heat diffusion equation (Ben Abda and Bui, [25]) and then a hyperbolic problem
of elastodynamic inverse scattering by a crack (Bui et al., [12]). The first problem is particularly interesting to be
investigated because measurements of surface temperature and heat flux are today technically possible with infra-red
cameras.

The field equations of (forward) heat diffusion are:

∂iu − �u = 0, in (Ω\Σ) × [0, T ]
u(x,0) = 0, in (Ω\Σ)
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u = ud, on Sext (measured data)

∂nu = 0, on Σ (unknown crack)

∂nu(x,0) = Φ, on Sext (measured data)

The adjoint (backwards) heat equations for an homogeneous solid are:

∂iw + �w = 0, in Ω × [0, T ] (no crack)

w(x,T ) = 0, in Ω

Here, no boundary conditions are needed for w. The reciprocity gap functional is non-linear in u, because of the
unknown integration domain Σ(u)

π∫
0

∫
Σ(u)

[[u]]∂nw dS dt =
T∫

0

∫
Sext

(Φw − ud∂nw)dS dt, ∀w

Three steps are needed to solve the inverse problem to determine the crack Σ(u):

– First step: Determination of the normal N to the crack plane. By using the following adjoint field, it can be proved
that N is given by

N = arg
{

min|n|=1
max

|m|=1, n.m=0
F(n ∧ m)

}
F(p) = RG(w(p))

w(p) =
⎧⎨
⎩1 − erf

{
x.n

2
√

T − t

}
(t � T )

0 (t > T )

– Second step: Find the crack plane position. By taking Ox3 along N and defining the crack plane by x3 − C = 0,
we determine the constant C by the zero of the reciprocity gap function c → F(c)

F (c) = RG(w(c))

w(c)(x, t;T ) = 1√
4π(T − t)

exp

{−(x3 − c)2

4(T − t)

}
– Third step: Find the crack geometry, defined as the support of the discontinuity [[u]]. For this purpose, we introduce

an adjoint function w(s1,s2,q) parametrized by (s1, s2, q), which is

w(s1,s2,q)(x, t) = exp(iqt) exp
{−i(s1x1 + s2x2)

}
exp

{
x3(s

2
1 + s2

2 − iq)1/2}
with q > 0 and (s1, s2) ∈ R. From the reciprocity gap functional we get:∫

R2

H(x, q) exp
{−i(s1x1 + s2x2)

}
dx1 dx2 = −(s2

1 + s2
2 − iq)1/2

∞∫
0

dt

∫
Sext

(Φw − ud∂nw)dS

with H(x, q) being the time Fourier transform of the crack discontinuity

H(x, q) =
∞∫

0

[[u]] exp(iqt)dt

We notice that both functions of x, [[u(x, t)]] and H(x, q), have the same spatial support! Therefore, the crack
geometry Σ is nothing but the support of an inverse spatial Fourier transform

Σ = supp

{
F−1

x

{
−(s2

1 + s2
2 − iq)1/2

∞∫
0

dt

∫
Sext

(Φw − ud∂nw)dS

}}

All quantities in the right hand side are known. This formula solves the inverse heat diffusion problem.
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The second problem on crack detection by elastic waves is an important one in engineering. This is generally
solved for unbounded solids and under some restrictive assumptions: approximate ray theory or limitations on the
frequency range (Born’s approximation in low frequency, Kirchhoff’s approximation in high frequency). Let us show
how, without entering into the complete details of the derivation, the symmetry lost principle can provide us the exact
solution to the inverse elastodynamic scattering problem in time domain. We restrict ourselves to the determination
of the crack geometry, using data (ud ,Td) on the external boundary Sext of a cracked solid (see Bui et al., [12]), by
assuming that the crack plane has been previously determined by appropriate adjoint fields. The key tool is again the
reciprocity gap functional R over the outer boundary and the full time of experiments

R :=
∞∫

0

∫
Sext

{
u.σ [v].n − v.σ [u].n}

dS dt

where v is the adjoint field. The internal boundary of the cracked solid Σ is yet unknown. From the elastodynamic
conservation law, we get the fundamental variational equation

∞∫
0

∫
Σ

[[u]].σ [v].n dS dt =
∞∫

0

∫
Sext

{
u.σ [v].n − v.σ [u].n}

dS dt := Rd(v), ∀v

It is remarkable that this equation is valid either for a stress free crack as considered in Non-Destructive Testing
method (NDT), or for a sliding crack (or fault) with friction as considered in the earthquake inverse problem. In
the first case, fields u and σ [u].n = Td , are known as data on Sext. In the second case, the solid is modelled by
a half sphere of large radius, compare to the fault size. The stress is free on the ground while velocity and stress
vectors can be estimated by geophysical considerations on the remaining half-spherical surface of Sext embedded in
the underground. If the seismic source is near the ground, spherical waves on the part of Sext in the underground can
be well estimated by a point source model. Other available data are the acceleration measured on the ground, due to
the release of stresses on the fault. The above non-linear variational equation can be solved analytically, step by step,
by determining the normal to the crack plane, the plane position and then the crack geometry. In what follows, we
only determine the crack geometry, after finding the crack plane by suitable adjoint fields (for more details, see Bui et
al., [27,12], Bui [28,34]).

The field equations for the NDT problem are:

divσ [u] − ρ∂2u/∂t2 + η∂u/∂t = 0, in (Ω − Σ) × [0,∞]
σ [u] = L.ε[u], σ [u].n = Td on Sext, σ [u].n = 0 on Σ

u = 0, ∂u/∂t = 0 for t � 0

t2|u| → 0, t2|∂u/∂t | → 0 for t → ∞
In the first field equation, for mathematical reasons a damping term is introduced, assuming that η is a small positive
and vanishing number. The wave equation is recovered in the limit η → 0+.

The adjoint equations are:

divσ [v] − ρ∂2v/∂t2 − η∂v/∂t = 0, in (Ω − Σ) × [0,∞]
σ [v] = L.ε[v], [[v]] = 0 on the crack

Neither time conditions at infinity, nor boundary conditions on Sext are demanded for the adjoint field. This makes it
easier to find the solution for Σ . In the NDT problem, the adjoint field is given by (s = (s1, s2), the crack plane is
x3 = 0):

v(s,q)(x, t) = gradφ(x, t; s, q)

φ(x, t; s, q) = exp(iqt − ηt) exp(is.x) exp
[
x3

{|s|2 + (iq − η)2/c2
p

}1/2]
, η → 0+

As in the inverse heat diffusion case, the geometry of the crack is identical to the support of [[u]] in the crack plane,
more precisely the support of div[[u]]. From the fundamental variational equation, we can see that the time Fourier
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transform Ft combined with the spatial Fourier transform Fx of div[[u]] is precisely related to the reciprocity gap
functional (to within a factor depending on s and q). Therefore, by inversion we get div[[u]] in explicit form

div[[u]] = 1

2μ
(Ft )

−1(Fx)
−1Rd

(
v(s, q)

){|s|2 − (q + i0+)2/c2
p

}−1/2

This gives the exact solution to the inverse problem, Σ ≡ Support div [[u]]. Due to the presence of the imaginary
term i0+, the bracketed term {.} in the right-hand side of the above equation does not vanish in the s-plane. Thus, it
can be rigorously proved that div[[u]] is a compactly supported function of x.

Remark. In the earthquake inverse problem, the adjoint field to be considered is the solenoidal field v =
curl {φ(x, t; s, q)e3} with shear wave velocity cs instead of cp for φ. The solution is Σ = Support {div[[u⊥]]}, with
[[u⊥]] = ([[u2]],−[[u1]],0) and div[[u⊥]] given by similar formulae.

Conclusion

As a concluding remark, I would like to mention that duality which is found all along this paper is a very old
philosophical principle in Asia. Duality is synonym of parallelism, or complementary things, sometimes an opposition
between things tied together in an integral whole: Yin and Yang in China, Âm and Duong in Vietnam (the Vietnamese
words for Female and Male respectively), Positive and Negative, the Sky and the Earth, Water and Fire, etc.
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