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Abstract

The nonlinear buoyant–thermocapillary flows in a three-layer system, filling a closed cavity and subjected to a temperature
gradient directed along the interfaces, are investigated. The nonlinear simulations of convective regimes are performed by the
finite-difference method. It is found that for sufficiently large values of the Grashof number, the long vortices turn into multicell
structures. To cite this article: I.B. Simanovskii et al., C. R. Mecanique 336 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Écoulements provoqués simultanément par des gradients de densité et par thermocapillarité dans un système multi-
couche. Une étude est menée sur les écoulements induits dans un système composé de trois couches de liquides superposés, en
tenant compte des effets non-linéaires. Ces liquides sont contenus dans une cavité fermée et soumise à un gradient de tempéra-
ture parallèle aux interfaces. Les simulations numériques des régimes convectifs non-linéaires sont effectuées par la méthode des
différences finies. Il est montré que pour des valeurs suffisamment grandes des nombres de Grashof, les rouleaux de convection
longitudinaux se transforment en structures multicellulaires. Pour citer cet article : I.B. Simanovskii et al., C. R. Mecanique 336
(2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Interfacial convection in systems with interfaces is a widespread phenomenon that is of great importance in numer-
ous branches of technology, including chemical engineering, space technologies, coating, etc. (for a review, see [1]).
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Scientific interest in such systems is due to the fact that the interfacial convection in multilayer systems is characterized
by a variety of physical mechanisms and types of instability.

Numerical investigations of thermocapillary convection in multilayer systems were started in [2–4]. In these papers
the linear stability of the mechanical equilibrium state and the nonlinear regimes of convection have been studied.
Prakash and Koster found the analytical solution describing the velocity and the temperature fields for the parallel
flow in the core region of a three-layer fluid system under the action of the temperature gradient directed along the
interfaces (see [5,6]). The flow field in the end-wall region was analyzed by matching with the core region flow [6,7].
The nonlinear simulations of thermocapillary convective flows in a closed cavity filled by a symmetric three-layer
system, have been performed in [8]. Thermocapillary flows in multilayer systems with periodic boundary conditions
have been studied in [9]. The nonlinear simulations of buoyant–thermocapillary flows in a closed cavity filled by three
immiscible viscous fluids with a temperature gradient directed along the interfaces, have been performed in [10].
Generally, long unicell structures have been obtained in each fluid layer. Examples of buoyant multilayer flows in a
closed cavity are given in [11].

In the present Note, we investigate nonlinear buoyant–thermocapillary convective flows in a three-layer system,
silicone oil 1 – ethylene glycol – fluorinert FC75, filling the closed cavity, subjected to a temperature gradient directed
along the interfaces. It is found that at sufficiently large values of the Grashof number, the long unicell vortices turn
into the multicell structures.

The Note is organized as follows. In Section 2, the mathematical formulation of the problem is presented. Nonlinear
simulations of finite-amplitude convective regimes are considered in Section 3. Section 4 contains some concluding
remarks.

2. General equations and boundary conditions

We consider a system of three horizontal layers of immiscible viscous fluids with different physical properties
(see Fig. 1). The thicknesses of the layers are am, m = 1,2,3. The mth fluid has density ρm, kinematic viscosity νm,
dynamic viscosity ηm = ρmνm, thermal diffusivity χm, heat conductivity κm and thermal expansion coefficient βm.
The system is bounded from above and from below by two rigid plates, z = a1 and z = −a2 − a3. A constant temper-
ature gradient is imposed in the direction of the axis x: T1(x, y, a1, t) = T3(x, y,−a2 − a3, t) = −Ax + const, A > 0.
The surface tension coefficients on the upper and lower interfaces, σ and σ∗, are linear functions of temperature T :
σ = σ0 − αT , σ∗ = σ∗0 − α∗T , where α > 0 and α∗ > 0.

Let us define

ρ = ρ1

ρ2
, ν = ν1

ν2
, η = η1

η2
= ρν, χ = χ1

χ2
, κ = κ1

κ2
, β = β1

β2
, a = a2

a1

Fig. 1. Geometrical configuration of the three-layer system and coordinate axes.

Fig. 1. Coordonnées et géométrie du système trois couches.
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ρ∗ = ρ1

ρ3
, ν∗ = ν1

ν3
, η∗ = η1

η3
= ρ∗ν∗, χ∗ = χ1

χ3
, κ∗ = κ1

κ3
, β∗ = β1

β3
, a∗ = a3

a1
, ᾱ = α∗

α

As the units of length, time, velocity, pressure and temperature we use a1, a2
1/ν1, ν1/a1, ρ1ν

2
1/a2

1 and Aa1. The
complete nonlinear equations governing convection are then written in the following dimensionless form:

∂vm

∂t
+ (vm · ∇)vm = −em∇pm + cm�vm + bmGTme (1)

∂Tm

∂t
+ vm · ∇Tm = dm

P
�Tm (2)

∇vm = 0, m = 1,2,3 (3)

Here vm = (vmx, vmy, vmz) is the velocity vector, Tm is the temperature and pm is the pressure in the mth fluid; e is
the unit vector of the axis z; e1 = c1 = b1 = d1 = 1, e2 = ρ, c2 = 1/ν, b2 = 1/β , d2 = 1/χ , e3 = ρ∗, c3 = 1/ν∗,
b3 = 1/β∗, d3 = 1/χ∗; � = ∇2, G = gβ1Aa4

1/ν2
1 is the Grashof number, and P = ν1/χ1 is the Prandtl number

determined by the parameters of the top layer.
The boundary conditions on the isothermic rigid boundaries are:

v1 = 0, T1 = T0 − x at z = 1 (4)

v3 = 0, T3 = T0 − x at z = −a − a∗ (5)

where T0 is constant.
The conditions on the rigid lateral boundaries, which are assumed to be thermally insulated, are

x = 0,L: vm = 0,
∂Tm

∂x
= 0, m = 1,2,3 (6)

Let us discuss the boundary conditions at the interface between two fluids. One should be very careful by taking
into account the deformation of the interface when using the Boussinesq approximation, because it is known that
the interfacial deformation is a non-Boussinesq effect [12]. Indeed, the Boussinesq approximation is based on the
assumption εβ = β1θ � 1, G = O(1), therefore the Galileo number Ga = G/εβ = ga3

1/ν2
1 � 1. However, the balance

of normal stresses on the interface shows that the interface deformation is proportional to 1/Ga δ, where δ = ρ−1 − 1
(see [13]). Because 1/Ga δ = εβ/Gδ is small unless δ � 1, we come to the conclusion that in the framework of the
Boussinesq approximation the interfacial deformation has to be neglected, if the densities of the fluids are not close to
each other. The case of close densities is not considered in the present Note.

Thus, we assume that the interfaces between fluids are flat and situated at z = 0 and z = −a, and put the following
system of boundary conditions: at z = 0

∂v1x

∂z
− η−1 ∂v2x

∂z
− M

P

∂T1

∂x
= 0,

∂v1y

∂z
− η−1 ∂v2y

∂z
− M

P

∂T1

∂y
= 0 (7)

v1x = v2x, v1y = v2y, v1z = v2z = 0 (8)

T1 = T2 (9)
∂T1

∂z
= κ−1 ∂T2

∂z
(10)

at z = −a

η−1 ∂v2x

∂z
− η−1∗

∂v3x

∂z
− ᾱM

P

∂T3

∂x
= 0, η−1 ∂v2y

∂z
− η−1∗

∂v3y

∂z
− ᾱM

P

∂T3

∂y
= 0 (11)

v2x = v3x, v2y = v3y, v2z = v3z = 0 (12)

T2 = T3 (13)

κ−1 ∂T2

∂z
= κ−1∗

∂T3

∂z
(14)

Here M = αAa2/η1χ1 is the Marangoni number.
1
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In order to investigate the flow regimes generated by the convective instabilities, we perform nonlinear simulations
of two-dimensional flows [vmy = 0 (m = 1,2,3); the fields of physical variables do not depend on y]. In this case, we
can introduce the stream function ψm and the vorticity φm,

vm,x = ∂ψm

∂z
, vm,z = −∂ψm

∂x

φm = ∂vm,z

∂x
− ∂vm,x

∂z
(m = 1,2,3)

The boundary value problem was solved by the finite-difference method. Equations were solved using the explicit
scheme, on a rectangular uniform mesh 168 × 56. The details of the numerical method can be found in the book by
Simanovskii and Nepomnyashchy [13].

3. Numerical results

Below we describe results of computations of the nonlinear boundary value problem for the system silicone oil 1 –
ethylene glycol – fluorinert FC75 with the following set of parameters: ν = 0.065, ν∗ = 1.251, η = 0.048, η∗ = 0.580,

κ = 0.390, κ∗ = 1.589, χ = 0.742, χ∗ = 2.090, β = 2.16, β∗ = 0.957, ᾱ = 0.228, P = 13.9. The ratios of the layers
thicknesses have been chosen a = a∗ = 1. Simulations have been performed for L = 16.

3.1. The case of buoyant flows (G �= 0, M = 0)

For sufficiently small values of G, a steady flow takes place in the system, which contains one cell in each fluid
layer (see Fig. 2). In the middle part of the cavity the flow in practice is parallel to the interfaces. With the increase
of G, the intensity of the motion grows. The finite-amplitude curves corresponding to the intensities of motion in each
fluid layer, are shown in Fig. 3. The presence of the rigid heat-insulated lateral walls (in comparison with periodic
boundary conditions) leads to an interesting nonlinear effect—depending on G—the most intensive motion may be
observed in different layers. At the larger values of G (G � 19 500), the steady state becomes unstable. An additional
maximum of the stream function field appears in the middle layers near the cold end, and the transient process takes
place in the system (see Fig. 4). During this process, a long vortex in the middle layer breaks down and turns into
the multicell structure. In the top layer, the maximum value of the vortices’ intensity is located in the right half of
the cavity. In the bottom layer, the multicell structure is located in the left half of the cavity. During the oscillatory
process, a new vortex is generated near the hot end in the bottom layer. This vortex grows and shifts the neighbor
vortex to the right, where the latter vortex decays. Let us note that only long unicell structures in each fluid layer have
been obtained in [10].

Fig. 2. Snapshot of (a) streamlines and (b) isotherms for the buoyant steady flow (G = 1700, M = 0).

Fig. 2. (a) Lignes de courant et (b) isothermes d’un écoulement provoqué par les gradients de densité (G = 1700, M = 0).
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Fig. 3. Dependence of (ψmax)m (m = 1,2,3) on G for the buoyant steady flow (M = 0).

Fig. 3. Variation de (ψmax)m (m = 1,2,3) en fonction de G pour un écoulement stationnaire induit uniquement par le gradient de densité (M = 0).

Fig. 4. Fields of (a)–(d) streamlines for the buoyant oscillatory motion (G = 20 400, M = 0).

Fig. 4. Lignes de courant (a)–(d) pour un écoulement oscillatoire induit par la densité (G = 20 400, M = 0).

3.2. The case of buoyant–thermocapillary flows (G �= 0, M �= 0)

Under the conditions of the experiment, when the geometric configuration of the system is fixed while the tem-
perature difference θ is changed, the Marangoni number M and the Grashof number G are proportional. Define the
inverse dynamic Bond number

K = M

GP
= α

gβ ρ a2

1 1 1
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Fig. 5. Snapshot of (a) streamlines and (b) isotherms for the buoyant–thermocapillary steady flow (G = 1700, M = 24 000).

Fig. 5. (a) Lignes de courant et (b) isothermes dans un écoulement thermocapillaire stationnaire (G = 1700, M = 24 000).

Fig. 6. Dependence of (ψmax)m (m = 1,2,3) on G for the buoyant–thermocapillary steady flow (K = 1.02).

Fig. 6. (ψmax)m (m = 1,2,3) en fonction de G pour un écoulement mixte (densité + thermocapillarité) stationanire (K = 1.02).

The simulations have been performed for K = 1.02.
In the case of buoyant–thermocapillary flows, the stationary flow is essentially asymmetric with respect to the

reflection x → L − x (see Fig. 5). Three of the most intensive vortices are produced mainly by buoyancy (the fluids
go upward near the hot wall and go downward near the cold wall). These vortices are separated by vortices rotating in
the opposite direction, which are supported by the thermocapillary effect. The finite-amplitude curves for the steady
flow are presented in Fig. 6. With the increase of G, the steady motion becomes unstable and one observes the
oscillatory flow in the cavity (see Fig. 7). The chess-order configuration of vortices is obtained in the top layer. The
vortices change their form and intensity during the oscillatory process.

4. Conclusion

The nonlinear buoyant–thermocapillary flows in a three-layer system, filling a closed cavity and subjected to a
temperature gradient directed along the interfaces, are investigated. The shape and the amplitude of the convective
flows are studied by the finite-difference method. It is found that depending on G, the most intensive motion may be
observed in different layers. For sufficiently large values of the Grashof number, the steady state becomes unstable
and the transient process of the unicell structures changing into the multicell structures takes place in the system. The
specific type of nonlinear oscillations, is obtained.
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Fig. 7. Fields of (a)–(c) streamlines for the buoyant–thermocapillary oscillatory motion (G = 15 300, M = 216 000).

Fig. 7. (a)–(c) Lignes de courant dans un écoulement mixte oscillatoire (G = 15 300, M = 216 000).
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