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Abstract

In this Note, infrared image sequences of a SiCf/SiC composite excited with a uniform heat pulse are processed using a modal
approach. A new analytical integral transform (called analytical SVD or ASVD) inspired by the classical Singular Value Decompo-
sition is developed and implemented on the raw experimental data. The second resulting spatial mode (out of a thousand) yielded
by the ASVD provides, without further processing, a 2D mapping of the normalized local transverse diffusivity variations around
a nominal value. Such mapping yields information on the inner structure of the material, and can be used to reveal the presence
of voids inside the medium. This method is thus implemented on a tensile testing machine, to detect microcracks in a SiCf/SiC
composite sample under mechanical stress in almost real time. To cite this article: M. Bamford, J.C. Batsale, C. R. Mecanique
336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Décomposition en Valeurs Singulières Analytique de séquences d’images infrarouges : détection de microfissures sur des
composites céramiques sous contraintes mécaniques. Dans cette étude, des séquences d’images infrarouges obtenues en filmant
un composite SiCf/SiC excité par un flash uniforme sont traitées avec une approche modale. Une nouvelle transformation intégrale
analytique (appelée SVD analytique ou ASVD) inspirée de la Décomposition en Valeurs Singulières classique est mise au point et
appliquée aux données expérimentales brutes. Le deuxième mode spatial (parmi un millier) issu de l’ASVD fournit sans traitement
supplémentaire une cartographie 2D normalisée des variations locales de diffusivités transverses autour d’une valeur nominale.
De telles cartographies nous renseignent sur la structure interne du matériau, et peuvent être utilisées en particulier pour révéler
la présence de cavités sous la surface. Cette méthode est donc implémentée sur un banc de traction, pour détecter en temps réel
d’éventuelles microfissures sur un échantillon de composite SiCf/SiC soumis à une importante contrainte mécanique uniaxiale.
Pour citer cet article : M. Bamford, J.C. Batsale, C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Image sequences from a transient state provided by infrared cameras are often used for Non Destructive Testing
(NDT) of composites [1]. Such testing is either done by computing thermophysical properties distributions of the
composite [2]—by associating infrared sequences with physical models of heat transfer—or by qualitatively inter-
preting spatial modes resulting from the decomposition of the raw infrared sequences, using orthogonal transforms,
such as Singular Value Decompositions—SVD—for example [3].

Usual inversion methods implemented so far to retrieve parameter fields are generally based on the local implemen-
tation of finite difference schemes at each pixel—or node—[4]; therefore they are referred to as ‘nodal approaches’.
Some difficulties associated with these nodal approaches are the local lack of sensitivity to the parameters studied,
and the need to collect and manipulate a great amount of data to extract only little significant information. As a
consequence, simple and fast modal decompositions such as the SVD are preferably applied to infrared sequences
to perform real time NDT of heterogeneous media. In the literature, this approach is referred to as the Principal
Component Analysis (PCA) [5] and is confined to qualitative studies because it lacks some physical content.

In this study, a new simple analytical integral transform inspired by the SVD is developed. This Analytical SVD
(ASVD) is implemented on raw infrared sequences of a composite sample excited with a flash lamp. Due to a better un-
derstanding of the simple ASVD computation procedure (as compared to the SVD), quantitative physical information
on the inner structure of the composite sample is obtained from a straightforward observation of its modes. Effective
2D distributions of the normalized local transverse diffusivity variations around a nominal value of a composite sam-
ple under tensile testing are provided by the second spatial ASVD mode and related to the presence of microcracks in
the composite [6], thus demonstrating that ASVD—coupled with an infrared camera and a flash device—can be used
as a local damage indicator to study SiCf/SiC composite samples under tensile testing.

2. Experimental setup

The ‘Flash’ method is associated here with an ‘ORION’ infrared camera (CEDIP) whose properties are described
in [7]. The SiCf/SiC sample dimensions are l = 200×10−3 m, L = 16×10−3 m, and e = 2×10−3 m. The composite
is placed between the flash lamp and the infrared camera (Fig. 1).

The ‘flash’ excitation is performed on the front face of the sample, and the rear face temperature distribution is
filmed with an infrared camera. The resulting infrared sequences are processed to estimate normalized mappings of
the local transverse diffusivity variations of the material.

Fig. 1. Scheme of the ‘flash’ experiment.

Fig. 1. Schéma du dispositif ‘flash’.
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3. Simplified heat transfer model

In the case of a uniform flash excitation, heat transfer inside the medium is considered 1D in the Oz direction and
the in-plane diffusion is neglected. Even though such configuration is experimentally difficult to realize, it remains
a good approximation for thin samples at short times—which is the case here since the thickness e of the sample is
small as compared to its length l. The rear face temperature distribution can thus be expressed as the following product
of functions [8]:

T (x, y, e, t) = Tmax(x, y) · f [
t/τ (x, y)

]
(1)

where Tmax(x, y) is the maximum temperature reached at position (x, y) and is related to the local flash intensity, and
τ(x, y) is a local transverse characteristic time defined by

τ(x, y) = e2/az(x, y) (2)

with az(x, y) the local transverse diffusivity. Using expression (1), a Taylor’s development of the temperature at each
pixel can be performed around the nominal value τ0 = e2/a0

z

T (x, y, e, t) ≈ Tmax(x, y) · [f (t/τ0) + (τ − τ0)(x, y) · ∂f (t/τ0)/∂τ0
]

(3)

and with

{T }x,y(t) =
[ L∫

0

l∫
0

T (x, y, e, t)dx dy

]/
lL (4)

where {·}x,y denotes a space average; relation (3) becomes

T (x, y, e, t) ≈ Tmax(x, y) · [{T/Tmax}x,y(t) + (τ − τ0)(x, y) · ∂[{T/Tmax}x,y(t)
]
/∂τ0

]
(5)

Under the assumption that {T/Tmax}x,y ≈ {T }x,y/{Tmax}x,y ,—meaning that the heat flux induced by the flash lamp is
spatially rather uniform, and that the sample is slightly heterogeneous—it yields:

T (x, y, e, t) ≈ B(x, y) · [{T }x,y(t) + (τ − τ0)(x, y) · ∂[{T }x,y(t)
]
/∂τ0

]
with B(x, y) = Tmax(x, y)/{Tmax}x,y (6)

The resolution of Eq. (6) requires an accurate definition of the sensitivity function ∂{T }x,y/∂τ0, yet in most experimen-
tal configurations such model is not available. In previous studies ([8]) this function was replaced by t · ∂{T }x,y/∂t ;
in this paper a new simple and robust way to compute ∂{T }x,y/∂τ0 is proposed using the Analytical SVD.

4. Analytical SVD algorithm

Given a sequence {Tk(x, y)}k=1..N = {T (x, y, e, tk)}k=1..N of N measured temperature distributions—(x, y) being
the space variables and tk corresponding to the kth time step—it is possible to implement a recursive algorithm that
performs successive approximations as follows

ψ1(x, y, t) = T (x, y, e, t) initialization (7)

where ψn(x, y, t), n ∈ �1,N�, corresponds to ‘residues’ between a function and its approximation. When n = 1,
the residues are equal to the studied function—i.e. the temperature distribution T (x, y, e, t) here. Each successive
approximation is performed by decomposing ψn(x, y, t) into a product of separable functions obtained by ‘projecting’
ψn(x, y, t) over both space and time. The normalized projection of ψn over space is called Un and is computed as
follows:

Un(x, y) = {
ψn · {ψn}x,y

}
t
(x, y)/

∥∥{
ψn · {ψn}x,y

}
t

∥∥
x,y

, n ∈ �1,N� (8)

Notations are simplified by introducing the space and time averages i.e. {·}x,y and {·}t , and the space and time L2

norms i.e. ‖ · ‖x,y and ‖ · ‖t . The normalized projection of ψn over time is called V n and is computed as follows

V n(t) = {ψn · Un}x,y(t)/
∥∥ψn · Un

x,y

∥∥ , n ∈ �1,N� (9)

t
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The ‘norm’ of the resulting decomposition of ψn is then given by

λn = {{ψn · V n}t · Un
}
x,y

, n ∈ �1,N� (10)

and a possible separable approximation of ψn is ϕn given by

ψn(x, y, t) ≈ ϕn(x, y, t) = λn · Un(x, y) · V n(t), n ∈ �1,N� (11)

The residues of this approximation are simply

ψn+1(x, y, t) = ψn(x, y, t) − ϕn(x, y, t), n ∈ �1,N� (12)

Finally the whole sequence of temperature distributions can be written as

T (x, y, e, t) =
N∑

k=1

λk · Uk(x, y) · Vk(t)
T + ψN+1(x, y, t) (13)

When ψN+1 ≈ 0, this formulation is exactly the same as for the classical SVD. Besides, if the sequence {λn}n∈�1,N�

is rapidly decreasing, then only the first few modes of the decomposition are significant, which appears to be very
suitable for data compression. Both conditions are satisfied when the following criteria are respected:

{Uk · Ul}x,y = δl
k = {Vk · Vl}t

{Ui}x,y �= 0 and λ2
i �

N∑
k=i+1

λ2
k · [{Uk}x,y/{Ui}x,y

]2
, i ∈ �1,N − 1�

(14)

Here δl
k designates the Kronecker symbol. These conditions are always fulfilled in the examples treated. However, the

most interesting feature of this analytical transform is that it provides decompositions similar to that obtained with
the SVD, with less computation time, and a more simple algorithm allowing a better understanding of the physical
meaning of its resulting modes.

This can be illustrated using simulated data representing the rear face temperature response of a 2D heterogeneous
medium to a spatially uniform flash. The simulated medium is depicted in Fig. 2 along with the resulting temperature
profiles in Fig. 3:

The simulated rear face temperature profiles, presented in Fig. 3, are decomposed using both the standard SVD
and the Analytical SVD (ASVD). The resulting singular values are plotted Fig. 4 to visualize their rapid decay.
The quadratic distances between the modes obtained with both decompositions are computed, Fig. 5, to show the
similarities between them.

For both decompositions, the singular values decrease sharply with the mode index (Fig. 4). Besides, the modes
yielded by each decomposition are rather similar, as illustrated by the low quadratic distances between them (Fig. 5).

Fig. 2. Scheme of the simulated 2D medium.

Fig. 2. Schéma du milieu 2D simulé.

Fig. 3. Temperature profiles, simulated using the medium described in Fig. 2.

Fig. 3. Profils de température simulés à partir du milieu de la Fig. 2.
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Fig. 4. Singular values from both SVD and ASVD of the data simulated
in Fig. 3.

Fig. 4. Valeurs singulières issues de la SVD et de la SVDA du signal
présenté Fig. 3.

Fig. 5. Quadratic distances between SVD and ASVD of the data simu-
lated in Fig. 3.

Fig. 5. Distances quadratiques entre les modes de la SVD et de la
SVDA du signal présenté Fig. 3.

In addition, the computation time required for the ASVD is at least ten times inferior to that needed by the standard
SVD on the examples treated.

The exposed similarities—between SVD and ASVD—allow us to study the physical significance of the modes
yielded by the ASVD to finally explain—by analogy—why SVD allows for thermal NDE of composites.

5. Full diffusivity fields measurement using the Analytical SVD

By setting n = 1 in expression (7) and considering relation (6), it can be shown that

U1(x, y) = {T · μ1}t (x, y)/
∥∥{T · μ1}t

∥∥
x,y

, V 1(t) = {T · ν1}x,y(t)/
∥∥{T · ν1}x,y

∥∥
t

(15)

with μ1(t) and ν1(x, y) the following time and space weighting coefficients:

μ1 = {T }x,y/
{{T }x,y

}
t
, ν1 = {T }t /

{{T }x,y

}
t

⇒ {μ1}t = 1, {ν1}x,y = 1, μ1 � 0, ν1 � 0 (16)

In addition, looking at relation (6),

{T μ1}t ≈ {
B(x, y) · [{T }x,y(t) + (τ − τ0)(x, y) · ∂[{T }x,y(t)

]
/∂τ

] · {T }x,y(t)
}
t
/
{{T }x,y

}
t

{T ν1}x,y ≈ {
B(x, y) · [{T }x,y(t) + (τ − τ0)(x, y) · ∂[{T }x,y(t)

]
/∂τ

] · ν1(x, y)
}
x,y

(17)

which means that

{T μ1}t ≈ B(x, y) · [{{T }2
x,y

}
t
+ (τ − τ0)(x, y) · {∂[{T }x,y(t)

]
/∂τ · {T }x,y

}
t

]/{{T }x,y

}
t

{T ν1}x,y ≈ {T }x,y(t) · {B(x, y) · ν1(x, y)
}
x,y

+ ∂
[{T }x,y(t)

]
/∂τ · {B(x, y) · (τ − τ0)(x, y) · ν1(x, y)

}
x,y

(18)

and since∣∣(τ − τ0)(x, y) · {∂[{T }x,y(t)
]
/∂τ · {T }x,y

}
t

∣∣ 	 {{T }2
x,y

}
t
= ∥∥{T }x,y

∥∥2
t∣∣∂[{T }x,y(t)

]
/∂τ · {B(x, y) · (τ − τ0)(x, y) · ν1(x, y)

}
x,y

∣∣ 	 {T }x,y(t) · {B(x, y) · ν1(x, y)
}
x,y

(19)

it yields that

{T μ1}t ≈ B · ∥∥{T }x,y

∥∥2
t
· [1 + (τ − τ0) · {∂[{T }x,y

]/
∂τ · {T }x,y

}
t

/∥∥{T }x,y

∥∥2
t

]/{{T }x,y

}
t

{T ν1}x,y ≈ {T }x,y · {B · ν1}x,y

[
1 + ∂[{T }x,y]/∂τ · {B · (τ − τ0) · ν1}x,y

{T }x,y · {B · ν1}x,y

] (20)

and

{T μ1}t ≈ B · ∥∥{T }x,y

∥∥2
t
· [1 + o(1)

]/{{T }x,y

}
t
= B · ∥∥{T }x,y

∥∥2
t

/{{T }x,y

}
t
+ o

(
B · ∥∥{T }x,y

∥∥2
t

/{{T }x,y

}
t

)
{T ν } ≈ {T } · {B · ν } · [1 + o(1)

] = {T } · {B · ν } + o
({T } · {B · ν } ) (21)
1 x,y x,y 1 x,y x,y 1 x,y x,y 1 x,y
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This leads to∥∥{T μ1}t
∥∥

x,y
≈ ‖B‖x,y · ∥∥{T }x,y

∥∥2
t

/{{T }x,y

}
t∥∥{T ν1}x,y

∥∥
t
≈ ∥∥{T }x,y

∥∥
t
· {B · ν1}x,y

(22)

So that finally

U1 = {T μ1}t /
∥∥{T · μ1}t

∥∥
x,y

≈ B/‖B‖x,y + o
(
B/‖B‖x,y

) ≈ Tmax/‖Tmax‖x,y + o
(
Tmax/‖Tmax‖x,y

)
V 1 = {T ν1}x,y/

∥∥{T ν1}x,y

∥∥
t
≈ {T }x,y/

∥∥{T }x,y

∥∥
t
+ o

({T }x,y/
∥∥{T }x,y

∥∥
t

) (23)

where U1 and V 1 are the first space and time modes yielded by the ASVD of T . Relation (23) emphasizes the fact that
U1 gives a close approximation to the normalized local maximum temperature distribution Tmax/‖Tmax‖x,y whereas
V 1 is an approximation to the normalized time evolution of the averaged rear face temperature {T }x,y/‖{T }x,y‖t . As a
conclusion, the first ASVD mode accounts for the first order of Taylor’s development. At this stage, it is thus possible
to write

ψ2 = T − λ1 · U1 · V 1 ≈ B · (τ − τ0) · ∂{T }x,y/∂τ (24)

and thus{
ψ2 · {ψ2}x,y

}
t
≈ {

B · (τ − τ0)
}
x,y

· B · (τ − τ0) · {[∂{T }x,y/∂τ
]2}

t
(25)

so that, given the definitions of U1 and U2

U2 ∝ U1 · (τ − τ0) (26)

It appears that normalized local characteristic time variations can be observed by considering U2/U1 without fur-
ther computation. For spatially uniform flashes with slightly heterogeneous samples, the first spatial mode U1 is slowly
varying and U2 is a normalized approximation to (τ − τ0)/τ0 (e.g. it is an approximation to (τ − τ0)/‖τ − τ0‖x,y ).
This point can be illustrated Fig. 6 by comparing the exact characteristic time variations profile of the medium pre-
sented in Fig. 2 with the 2nd spatial mode U2 of the ASVD, computed with the simulated data presented in Fig. 3.

It appears in Fig. 6 that the second spatial mode yielded by the ASVD is a good approximation to the characteristic
time relative variations profile.

However, it must be noticed that when performing the ASVD on a unique set of initial data, the signs of the
resulting both U2 and V 2 can either be simultaneously negative or simultaneously positive—without changing the

Fig. 6. Comparison between the exact profile of the relative characteristic time variations, and the 2nd spatial mode provided by the ASVD of the
data depicted in Fig. 3.

Fig. 6. Comparaison entre le profil exact des variations relatives de temps caractéristique, et le second mode spatial issu de la SVDA des données
représentées Fig. 3.
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product U2 · V 2—due to the ASVD algorithm (the same phenomenon occurs with SVD). It is thus necessary to
multiply U2 by the sign of the scalar product {V 2 · t · ∂{T }x,y/∂t}t , to make sure the interpretation of U2 is not
biased. Besides, using the following notations

(τ − τ0)/τ0 = 	τ/τ0 with 	τ = e2 · 	(1/az) = −e2 · 	az/(a
0
z )

2 (27)

it can be shown that

	τ/τ0 = −	az/a
0
z (28)

so that eventually, U2 can be considered as a normalized approximation to the transverse diffusivity relative variations
distribution −	az/a

0
z .

Such considerations allow to apply the ASVD to infrared sequences obtained with the experimental device pre-
sented Fig. 1, in order to extract normalized distributions of the characteristic time relative variations from a composite
sample under tensile testing.

6. Experimental results

Using the experimental setup presented in Fig. 1, infrared sequences of a SiCf/SiC composite under tensile testing
are obtained for increasing mechanical stresses. Examples of obtained infrared images are presented in Fig. 7. The
ASVD is applied to each sequence and the evolution of the resulting second modes with respect to the mechanical
stresses is studied in Fig. 8.

The resulting mappings reveal the presence of transverse diffusivity variations. The dark areas correspond to low
transverse diffusivities, and thus presumably to damaged areas. For ‘low’ mechanical stresses (50 to 100 MPa) a
single small area on the left part of the sample concentrates all the microcracks, this location is assumed to be a
moot point of the composite even before tensile testing. For higher stresses (150 to 200 MPa) the microcracks appear
homogeneously throughout the surface of the sample, at 250 MPa microcracks cross the sample perpendicularly to the
traction direction which is in agreement with the damage process described in [9]. These cracks prefigure the ultimate
failure that happens at 275 MPa.

Finally, simple ASVD-based NDT allows one to visualise microscopically in depth cracks that would usually
require more sophisticated means of characterization such as X-rays or a chemical attack of the damaged composite.
As an illustration the real size of the crack responsible for the ultimate failure can be seen on Fig. 9, and compared to
the size of the blue area on the right part of Fig. 8.

Fig. 7. Rear face infrared images of the sample at different times after
the flash.

Fig. 7. Images infrarouges de la face arrière d’une éprouvette compo-
site à différents instants après le flash.

Fig. 8. Evolution of the Second ASVD modes with respect to mechan-
ical stress.

Fig. 8. Evolution des deuxièmes modes issus de l’ASVD en fonction
de la contrainte mécanique.



M. Bamford, J.C. Batsale / C. R. Mecanique 336 (2008) 440–447 447
Fig. 9. Real microscopic size of the cracks that cause the large diffusivity variations depicted in Fig. 8.

Fig. 9. Taille réelle microscopique des fissures à l’origine des larges variations de diffusivités représentées Fig. 8.

7. Conclusions

A new original analytical integral transform is developed to assess normalized thermal diffusivity distributions of
a heterogeneous medium using a flash device coupled with an infrared camera. This modal approach is used to study
SiCf/SiC composites under tensile testing for increasing stress.

Effective normalized local diffusivity variations are measured and related to the presence of microcracks in the
composite thus demonstrating the convenience of this method for damage evaluation. The small computation time
required by the simple ASVD-based estimation procedure and its roughness—since no matrix inversion is needed—
are put forward. Such assets associated with the simplicity of the experimental setup—as compared to other standard
means devoted to microcracks characterization—allow performing in situ and almost real time NDT on composites
during tensile testing.

In this Note, the role of the second mode yielded by the ASVD in assessing normalized transverse diffusivity
distributions is highlighted. It must be noted that further works shall address the issue of obtaining complementary
physical information by observing other ASVD modes; the estimation of exact transverse and longitudinal diffusivity
profiles using the same heat transfer models as presented here associated with nodal and modal strategies is also under
discussion.
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