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Abstract

For domain penalization methods, there can be a gap between the expected speed of convergence and the observed one, by nu-
merical means. Such a gap has been observed by Paccou, et al. [A. Paccou, G. Chiavassa, J. Liandrat, K. Schneider, A penalization
method applied to the wave equation, C. R. Mecanique 333 (2005) 79–85], concerning the penalization of a wave equation. We
answer here one of their questions by proving that the observed lack in convergence speed is clearly related to the formation of
boundary layers on one side of the boundary. To cite this article: B. Fornet, C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Influence des couches limites sur la vitesse de convergence dans une méthode de pénalisation. Pour les méthodes de péna-
lisation de domaine, il est possible qu’il y ait un écart entre la vitesse de convergence attendue et celle observée numériquement.
Un tel écart a été mis en évidence par Paccou, et al. [A. Paccou, G. Chiavassa, J. Liandrat, K. Schneider, A penalization method
applied to the wave equation, C. R. Mecanique 333 (2005) 79–85], lors de la pénalisation d’une équation des ondes. On répond ici
à une question posée dans, en prouvant que le défaut de vitesse de convergence observé est clairement provoqué par la formation
de couches limites, localisées d’un seul côté du bord. Pour citer cet article : B. Fornet, C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Penalization methods are frequently used in numerical simulation of fluid dynamics, when a boundary is involved,
for example we can refer to [1] by Angot, Bruneau and Fabrie. Roughly speaking, the main idea of this kind of
approach is to immerse the original domain into a geometrically bigger and simpler one called a fictitious domain.
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The main interest is that, for the obtained singularly perturbed problem, the discretization is not boundary-fitted to the
original domain.

In [2], written in collaboration with Guès, in view of future applications, the authors give two results concerning
the penalization of mixed semi-linear hyperbolic problems with dissipative boundary conditions. The quality of the
two methods proposed in [2] are compared based on the boundary layers they generate. However, it was not clear
whether the boundary layers forming were really detrimental from a numerical point of view.

The goal of this Note is then, taking as a basis the numerical study of the convergence made in [3], to show that the
numerical rate of convergence, not as good as awaited, observed in [3] can be explained by the formation of boundary
layers.

As in [3], we will investigate the quality of the approximation of the solution U of the 1-D wave equation (1) by a
given method of penalization:⎧⎪⎪⎨

⎪⎪⎩
∂ttU − c2∂xxU = 0, (x, t) ∈ (0,π) × R

+
U |x=0 = U |x=π = 0
U |t=0(x) = sin(x)

∂tU |t=0 = 0

(1)

As ε → 0+, we analyze the approximation of U by Uε on x ∈ (0,π), where Uε = Uε+10<x<π + Uε−1x<0 is
defined as the solution of the following hyperbolic transmission problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ttU
ε+ − c2∂xxU

ε+ = 0, (x, t) ∈ (0,π) × R
+

∂ttU
ε− − c2∂xxU

ε− + 1
ε2 Uε− = 0, (x, t) ∈ ]−∞,0[ × R

+
Uε+|x=0 − Uε−|x=0 = 0
∂xU

ε+|x=0 − ∂xU
ε−|x=0 = 0

Uε+|x=π = 0
Uε±|t=0(x) = sin(x)

∂tU
ε±|t=0 = 0

(2)

We prove the following result, observed numerically in [3]:

Theorem 1.1. For all 0 < ε < 1 and T > 0 there holds:

‖Uε − U‖L∞(]0,T [:L2((−∞,π))) = O(ε)

The proof of this theorem incorporates an asymptotic analysis of the boundary layers forming, at any order.

2. Proof of Theorem 1.1

We will now construct formally an approximate solution (Uε+
app,U

ε−
app) of the solution (Uε+,Uε−) of the transmis-

sion problem (2). We shall construct this approximate along the following ansatz:

Uε+
app =

M∑
j=0

U+
j (t, x)εj

Uε−
app =

M∑
j=0

U−
j

(
t, x,

x

ε

)
εj

where the profiles U−
j (t, x, z) := U−

j (t, x) + U∗−
j (t, z), with

lim
z→−∞ e−αzU∗−

j = 0

for some α > 0. The layer profiles U∗−
j serve the purpose of describing quick fluctuations of the solution as ε → 0+.

We will only focus on the construction of

Uε
app := Uε+

app1x∈(0,π) + Uε−
app1x<0
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Plugging Uε±
app into problem (2) and identifying the terms with same power of ε, we obtain the following equation:

U−
0 = 0

moreover, U∗−
0 = 0 as it is solution of the problem:

⎧⎨
⎩

U∗−
0 − c2∂zzU

∗−
0 = 0, {z < 0}

∂zU
∗−
0 |z=0 = 0

limz→−∞ U∗−
0 = 0

The function Uε+
app converges towards U+

0 as ε → 0+. As awaited, U+
0 is the solution of the well-posed 1-D wave

equation:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ttU
+
0 − c2∂xxU

+
0 = 0, (x, t) ∈ (0,π) × R

+
U+

0 |x=0 = U−
0 |x=0 + U∗−

0 |z=0 = 0
U+

0 |x=π = 0
U+

0 |t=0(x) = sin(x)

∂tU
+
0 |t=0 = 0

Let us now proceed with the construction of the next profiles. First, remark that, not only U−
0 = 0, but for all j � 1,

there holds:

U−
j = 0

The profile U∗−
1 satisfies the well-posed equation:

⎧⎨
⎩

U∗−
1 − c2∂zzU

∗−
1 = 0 {z < 0}

∂zU
∗−
1 |z=0 = ∂xU

+
0 |x=0

limz→−∞ U∗−
1 = 0

as a result, we get that:

U∗−
1 = c∂xU

+
0 |x=0 e

z
c

We will now prove, by induction, that the construction of the profiles can go on at any order, which means that for
all M ∈ N fixed beforehand, we are able to construct Uε

app satisfying:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ttU
ε+
app − c2∂xxU

ε+
app = εMRε+ (x, t) ∈ (0,π) × R

+

∂ttU
ε−
app − c2∂xxU

ε−
app + 1

ε2 Uε−
app = εMRε−, (x, t) ∈ ]−∞,0[ × R

+
Uε+

app|x=0 − Uε−
app|x=0 = 0

∂xU
ε+
app|x=0 − ∂xU

ε−
app|x=0 = 0

Uε+
app|x=π = 0

Uε±
app|t=0(x) = sin(x)

∂tU
ε±
app|t=0 = 0

where Rε+ ∈ L2((0,π) × R
+) and Rε− ∈ L2(]−∞,0[ × R

+).
Let us assume that the boundary layers profiles have been computed up to order j . The profile U+

j is then defined
as the unique solution of the following 1-D wave equation:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ttU
+
j − c2∂xxU

+
j = 0, (x, t) ∈ (0,π) × R

+

U+
j |x=0 = U∗−

j |z=0

U+
j |x=π = 0

U+
j |t=0 = 0

∂ U+| = 0
t 0 t=0
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We can thus compute the profile U∗−
j+1 since it is the unique solution the following well-posed equation:

⎧⎪⎨
⎪⎩

U∗−
j+1 − c2∂zzU

∗−
j+1 = −∂ttU

∗−
j−1, {z < 0}

∂zU
∗−
j+1|z=0 = ∂xU

+
j |x=0

limz→−∞ U∗−
j+1 = 0

Stability estimates in norm L∞(]0, T [ :L2((−∞,π))) can be obtained for the problem at hand by multiplication
of the equation by ∂tU

ε and then integration by parts.
By linearity, these stability estimates can be applied to the error Wε := Uε

app − Uε.

Constructing the approximate solution at an order M large enough, we obtain that Uε converges in L∞(]0, T [:
L2((−∞,π))) towards U , when ε → 0+ the same way as Uε

app. Finally, by construction of Uε
app, the convergence of

Uε towards U occurs as stated in Theorem 1.1.

3. Conclusion and perspectives

Let us answer the question asked in [3]: Uε− presents a boundary layer behavior in {x = 0−} since its approximate
solution is composed exclusively of boundary layer profiles, which describes quick transitions at the boundary using
a fast scale in ε. As a result of the loss in convergence induced by the boundary layers forming, we get the estimate
stated in Theorem 1.1. In [3], the chosen small parameter is μ = ε2, hence, adopting the same notations as them, our
estimate writes: ‖Uμ − U‖L∞(]0,T [: L2((−∞,π))) = O(

√
μ), which is in agreement with the estimates given in [3]. As

in the penalization approach proposed by Rauch in [5] and used by Bardos and Rauch in [4], as underlined by Droniou
in [6], boundary layers form on one side of the boundary.

In order to sharpen penalization methods used in numerical applications, an interesting question would be, in the
same line of mind as in [2], to see whether there is some alternative method of penalization preventing or minimizing
the formation of boundary layers.

For the domain penalization method proposed in [3], the convergence of Uμ|x∈(0,π) towards U is actually true
in every Sobolev spaces but at the speed O(

√
μ). Due to the boundary layers forming, we do not get bounds

establishing the convergence of Uμ|x∈(−∞,π) towards 0 for higher Sobolev norms, however the convergence in
L∞(]0, T [: L2((−∞,π))) occurs at the speed O(μ3/4). For a penalization method not generating any boundary
layers, the rate of convergence obtained theoretically would be in O(μ), on each side of {x = 0} and in every Sobolev
norm.
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