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Abstract

The present Note concerns the formulation, implementation and a first application of a micromechanically based hyperelastic
damage model. The approach is based on the second order homogenization method proposed by Lopez-Pamies and Ponte Cas-
tañeda (2000) for hyperelastic composites and recently developed by Lopez-Pamies and Ponte Castañeda (2007) in the case of
porous elastomers. We first implement the method and proceed to its verification by comparison with Finite Element simulations
on a unit cell. Taking advantage of this validation and by using standard thermodynamics arguments, we propose an hyperelastic
damage model founded on voids growth phenomena. Finally, we provide an example of validation of the model by comparison
with experimental data obtained on an EPDM/PP composite. To cite this article: V. Bouchart et al., C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Un modèle micromécanique d’hyperélasticité avec endommagement : formulation et application à un composite
EPDM/PP. La présente Note concerne la formulation, la mise en oeuvre et une application d’un modèle micromécanique d’en-
dommagement dédié aux matériaux hyperélastiques. L’approche suivie repose sur la méthode d’homogénéisation du second ordre
proposée par Lopez-Pamies et Ponte Castañeda (2000) pour les composites hyperélastiques et récemment développée par Lopez-
Pamies et Ponte Castañeda (2007) dans le cas des élastomères poreux. On met d’abord en oeuvre le modèle dans le cas de milieux
poreux et on procède à sa vérification par comparaison à des simulations éléments finis sur une cellule de base. S’appuyant ensuite
sur cette validation numérique et utilisant des arguments thermodynamiques standards, on propose un modèle d’endommagement
hyperélastique fondé sur des mécanismes de croissance de cavités. Enfin, on fournit un exemple de validation du modèle par com-
paraison avec des données expérimentales obtenues sur un composite EPDM/PP. Pour citer cet article : V. Bouchart et al., C. R.
Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Hyperelastic damage modeling has been investigated in past years by several authors dealing with elastomeric
materials. Most of the derived models are phenomenological in nature and generally consist in an adaptation of
Continuum Damage Mechanics (CDM) concepts already derived for other class of materials. Mention can be made of
works by Ogden and Roxburgh [1] based on a pseudo-elasticity approach. In the field of homogenization theory, an
evolving damage model has been proposed by Govindjee and Simo [2] based on the very simple Voigt approximation
(see also [3] dealing with Mullins damage). Brieu and Devries [4] investigated the damage phenomenon in the case
of periodic microstructures.

The present work is devoted to a modeling of damage in hyperelastic materials with random microstructure. The
principal objective is to derive a new isotropic damage model based on recent developments in the field of nonlinear
homogenization. To this end, we adopt the second order method, introduced by P. Ponte Castañeda [5] and applied
later to hyperelastic composites by [6] for random microstructures and by [7] for periodic ones. Applications of this
method to porous hyperelastic materials have been recently done by [8]. We first present and implement in the 3D con-
text the method in the case of porous hyperelastic materials, the voids being spherical. Then, we verify its predictions
by comparing them to Finite Elements simulations on a unit cell. Taking advantage of the fact that the obtained macro-
scopic strain energy density of the porous hyperelastic material depends on the macroscopic deformation gradient F̄
and on the material porosity c, we propose a full 3D isotropic damage model based on the porosity evolution.1 This
model is obtained by combining the second order homogenization method with standard thermodynamics arguments.
The predictions of the micro-macro damage model are then shown for a first validation on an EPDM/PP composite
previously studied in [9] by means of a micromechanical model which does not account for damage. An example of
cyclic behavior is also presented.

2. The second order homogenization method: principle and implementation for 3D hyperelastic porous
materials

Consider a representative elementary volume (R.E.V.), denoted Ω0, and composed of an hyperelastic matrix weak-
ened by a random distribution of voids. This R.E.V. is assumed to occupy a volume V0 in the reference configuration
and to satisfy the standard scale separation conditions. The porous material is subjected to homogeneous boundary
strain conditions: u = (F̄ − I) · X on ∂Ω0. The heterogeneous deformation gradient tensor F satisfies then F̄ = 〈F〉
with 〈·〉 the volume average over Ω0. The local behavior of the hyperelastic solid matrix is defined by a strain en-
ergy density W(1)(F) while the microcavities are described by W(r)(F) = 0 2 (r = 2, . . . ,N ). It has been shown by
Hill [10] that the homogenized constitutive law, giving the macroscopic first Piola–Kirchoff stress tensor T̄ = 〈T〉, is
determined by a macroscopic strain energy density W̃ such that:

T̄(F̄) = ∂W̃(F̄)

∂F̄
(1)

In order to assess the homogenized energy in the case of nonlinear materials, various approaches are developed in
Ponte Castañeda and Suquet [11]. In particular, the second order homogenization procedure which provides estimates
of W̃, is based on a linearization of the strain energy densities of each phase, W(r)(F), by using a Taylor expansion.

Let us consider now an hyperelastic matrix containing a unique population of voids, denoted by ‘2’. For this

two-phase hyperelastic composite, denoting by T(1)(F̄(1)) = ∂W(1)

∂F (F̄(1)) and c the porosity, the second order method
(see [6]) can be specialized and provides the following estimate of the macroscopic strain energy density:

W̃(F̄) � (1 − c)

{
W(1)

(
F̄(1)

) + 1

2

(
F̄ − F̄(1)

) : T(1)
(
F̄(1)

)}
(2)

1 Effects of voids shape change are disregarded.
2 The superscript (r) stands for a family r of microcavities.
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The macroscopic stress tensor, given by the derivative of (2) with respect to F̄, is then estimated by:

T̄(F̄) = 1 − c

2

[
T(1)

(
F̄(1)

) + [
T(1)

(
F̄(1)

) + L
1(F̄(1)

) : (F̄ − F̄(1)
)] : ∂F̄(1)

∂F̄

]
(3)

where L
1(F̄(1)) = L

1
t (F̄

(1)) = ∂2W(1)

∂F∂F (F̄(1)).

Note that the only unknown in (3) is the average deformation gradient in phase 1, F̄(1), which may be computed
from the resolution of a thermoelastic problem linked to a linear comparison composite involved in the method.
In the case of two-phase materials, the resolution of this thermoelastic problem is performed thanks to the Levin’s
theorem [12] which reads in the case of porous media:

F̄(r) = A
(r)

(
F̄(r)

) : F̄ + (
A

(r)
(
F̄(r)

) − I
) : (L(1)

(
F̄(1)

))−1 : τ (1)
(
F̄(1)

); r = 1,2 (4)

where τ (1) = T(1)(F̄(1)) − L
1 : F̄(1) is a polarization tensor which can be seen as a fictitious thermal stress and A

(r) is
the localization tensor associated to phase (r) in the linear comparison composite.

In the present study, taking into account the matrix-inclusion type morphology of the (porous) material, we will
consider the well-known Hashin–Shtrikman bound [13]. The micromechanical model will be then referred as HS-
based model.

Note. For the Hashin–Shtrikman bound, due to the dependence of the localization tensors (and therefore of F̄(1))
on c, expression (2) of the macroscopic strain energy density may depend nonlinearly on c. Comparatively, the Voigt
model, which corresponds to an assumption of uniform strain in the material (F̄(1) = F̄(2) = F̄), provides the following
estimate, W̃(F̄) � (1 − c)W(1)(F̄), linear with c.

For the implementation of the nonlinear micromechanical model of porous materials, some specific points need to
be clarified. First, due to the anisotropy of L

(1), it is necessary to compute numerically the Hill tensor P (required in
the determination of the Hashin–Shtrikman bound). This is done by means of a Gaussian integration technique used
for the numerical integration over the surface of the unit sphere |ξ | = 1. Secondly, as already indicated, a fictitious
thermoelasticity problem have to be solved in order to determine the average deformations F̄(1) and F̄(2) of the two-
phase linear comparison composite material. From a practical point of view, it is only necessary to determine F̄(1) to
compute the macroscopic stress tensor (3), F̄(2) being deduced from the standard average rule: F̄ = c(1)F̄(1) + c(2)F̄(2).
The resolution of the nonlinear system (4) is performed by using a Newton–Raphson method (cf. [14]). Moreover,
due to the absence of a closed-form expression for P, the Jacobian matrix, J, needed in the Newton–Raphson method,
cannot be analytically determined. Consequently, a numerical derivation by finite difference with the iterative scheme
of Ridders–Richardson was used. This scheme is based on an algorithm in which a control and optimization of the
numerical errors are performed at each step of the derivation procedure (see [14]). Once the resolution of the problem
achieved, it is possible to compute the macroscopic stress from (3). To this end, the derivative of F̄(1) with respect to
F̄ has yet to be determined.

3. Numerical verification by Finite Elements simulations

In order to provide a verification of the model based on the second order method, we present in this section some
comparisons with reference solutions obtained by Finite Elements (FE) calculations. To this end, the same assumptions
on the local constituents in both homogenization and FE simulations will be considered. The FE reference solution
is obtained by considering a cylindrical unit cell representing the porous medium. As illustrated on Fig. 1, the space
is supposed filled by prisms with hexagonal basis which represent the matrix, each prism containing an inclusion
in its center. This procedure is similar to that already followed by various authors for composites materials (see for
instance [15]) and allows us to consider different types of inclusions: rigid or deformable ones but also cavities, by
considering for each case the suitable parameters in the strain energy density used to describe their behavior.

To take advantage of symmetry, the 3D unit cells are approximated by cylinders with circular basis to allow ax-
isymmetric computations. Thus, the displacement boundary conditions considered for the simulation of a uniaxial
tensile test are the following:
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Fig. 1. A periodic network of hexagons with pores; reduction to a 2D axisymmetric unit cell.

– Uz(y,0) = 0, 0 < y < R

– Uz(y,L) = Uz imposed, 0 < y < R

– Uy(0, z) = 0, 0 < z < L

– Uy(R, z) = constant, 0 < z < L

The last condition yields the same radial displacement for points at the lateral boundary; the value of this displacement
is obtained as the result of the Finite Element computation.

The FE simulations have been performed using the software Abaqus; the unit cell used contains CAX8R elements
(8-node biquadratic axisymmetric quadrilaterals, with reduced integration). These FE simulations provide heteroge-
neous strain and stress fields in the unit cell from which can be computed their volume average by using a specific
post-treatment script. Since our strategy is to compare the model predictions, first to numerical (FE) computations
on the unit cell and then to experimental data on an EPDM/PP composite (an elastomer (EPDM) reinforced by
Polypropylene particles (PP)), we have chosen for the matrix phase a suitable strain energy density W(1), proposed
by Diani-Lambert and Rey [16]3 and for the voids, a Neo-Hookean hyperelastic model W(2) available in the software
Abaqus. These densities are expressed as functions of the standard invariants (I1, I2, I3) of the dilatation tensor
C = FtF:

W(1)(F) =
I1∫

3

e(α0+α1(I1−3)+α2(I1−3)2) dI1 +
I2∫

3

β1I2
β2 dI2 (5)

where α0, α1, α2, β1, β2 are the model parameters for the matrix phase which have to be identified for the considered
EPDM.

W(2)(F) = C10
(
J−2/3 I1 − 3

) + 1

D1
(J − 1)2 (6)

where J = √
I3 and the model parameters are taken so as to model a void by an infinitely soft material: C10 → 0 and

D1 → ∞. In practice, we have considered C10 = 10−5 MPa and D1 = 104 MPa−1.

3 According to [16], the density (5) is adequate for the modeling of the behavior of elastomers even for high elongation.
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Fig. 2. Result of the identification of the Lambert-Diani and Rey density for the EPDM matrix.

(a) Macroscopic response under uniaxial tensile loading (b) Average local stress in the matrix phase as function of the macro-
scopic stretch

Fig. 3. HS-based model predictions compared to the numerical response for the hyperelastic material with 15% of porosity.

The result of the identification procedure for the considered EPDM, shown on Fig. 2, provides the following values
of the parameters: eα0 = 0.2246 MPa; α1 = 0.013051;α2 = 0.024; eβ1 = 0.38104 MPa; β2 = −2.03234.

Since the energy density of type (5) is not available in the Abaqus, we have first proceeded to its implementation
in this software via the user routine UMAT. For the purpose of comparison, a porosity of 15% is considered. The
comparison between the predicted macroscopic behavior and the results computed from the FE solution, shown on
Fig. 3(a), indicates a good agreement which is confirmed by the comparison of the local average stresses in the
matrix phase (see Fig. 3(b)). It is also interesting to investigate the strain field induced in the porous material by
the tensile loading (see Fig. 4(a)). Although a significant heterogeneity of the strain is observed, it appears that the
homogenization method provides a very accurate estimate of the average deformation in the solid matrix phase (see
comparison on Fig. 4(b)).

4. A damage model based on the second order homogenization method

We aim now at deriving a damage model based on the nonlinear homogenization method applied in the above
sections to hyperelastic porous materials. The starting point is that in contrast to the previous sections, the porosity
may be considered now as a quantity which evolves irreversibly. We consider then the micromechanical estimate (2)
of the macroscopic density as the thermodynamical potential of the damage material. It is readily seen that the porosity
c can be considered as the internal damage variable which enters together with F̄ in the definition of the potential:
W̃(F̄, c). Obviously, it comes that in contrast to purely macroscopic approaches, the homogenization method provides
not only a clear physical interpretation of the damage variable, but also gives us the expression of W̃, i.e. the way
the damage affects the material behavior. As already stated, this expression strongly depends on the homogenization
scheme used for the resolution of (4).
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(a) Longitudinal strain field (b) Average longitudinal strain in each phase

Fig. 4. Predictions of the HS-based model compared to the numerical response (15% of porosity).

4.1. Description of the damage model

As classically, the first state law, derived from W̃, reads similarly to (3) as: T̄(F̄, c) = ∂W̃(F̄,c)

∂F̄
.

The thermodynamical force, F , associated to the damage variable c, is given by the second state law:

F = −∂W̃(F̄, c)

∂c

F = W(1)
(
F̄(1)

) + 1

2

(
F̄ − F̄(1)

) : T(1)
(
F̄(1)

) − 1 − c

2

[
T(1)

(
F̄(1)

) + (
F̄ − F̄(1)

) : L
1(F̄(1)

)] : ∂F̄(1)

∂c
(7)

Although, the Hashin–Shtrikman bound is the principal homogenization scheme used in the study, it is interesting to
point out that for the Voigt scheme, the macroscopic stress, T̄(F̄, c) = (1 − c)T(1)(F̄), depends linearly on c and the
thermodynamical force, F = W(1)(F̄), is not affected by the damage variable (porosity). Note that this very simple
damage model, associated with the Voigt scheme, was the one proposed by Govindjee and Simo [2] and extended in
many variants by several authors [1] (for a pseudo-elasticity approach), [3] etc.

The next step is to specify the damage evolution law, i.e. the cavity growth process. For the coherence of the ap-
proach, this evolution law should be also deduced from micromechanical considerations. Since, until now, there is no
theoretical or physical arguments to do this, the methodology followed here consists to combine the micromechanical
approach with standard thermodynamic arguments related to the analysis of the intrinsic dissipation when damage
phenomena occur. Indeed, noting that the positivity of the intrinsic dissipation reduces to F ∂c

∂t � 0, one postulates the
existence of a dissipation pseudo-potential φ∗(F) differentiable, convex, positive, zero for F = 0 and such that:

∂c

∂t
= ∂φ∗

∂F (8)

Following Brieu [17] a Norton type form of the dissipation pseudo-potential is adopted:

φ∗(F ) = α

β + 1
Fβ, α � 0, β � 0 (9)
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(a) HS-based model predictions with damage (b) Porosity evolution predicted by the HS-based model

Fig. 5. Uniaxial tensile test for the EPDM 90–PP 10 with an initial porosity of 0.1%.

4.2. Implementation and results

Implementation of the proposed damage model requires a simultaneous resolution of the homogenization problem
and of the damage evolution. For this, we adopt a method separating the space problem i.e. the homogenization one and
the temporal problem of damage evolution. Thus, the solution is obtained at a time t by continuity of two successive
steps: for an initial porosity c0(t) and an imposed deformation gradient tensor F̄(t), we compute W̃(F̄(t), c0(t)) and
T̄(F̄(t), c0(t)) by resolving the homogenization problem. After this, we can evaluate the porosity c1(t) thanks to the
evolution law (8) and compute once again W̃(F̄(t), c1(t)) and T̄(F̄(t), c1(t)). A convergence test is performed for the
porosity (i.e. |c1(t) − c0(t)| � ε with ε very small); if the convergence is not obtained, we continue the successive
steps in order to converge for an iteration k: |ck(t) − ck−1(t)| � ε. In this algorithm, the homogenization problem
is solved as described previously in Section 2 and the porosity c(t) is determined thanks to the integration of the
evolution law (8) based on (9):

c(t) = c(0) + α

β + 1

t∫
0

F(t)(β−1) dt (10)

To compute c(t), we choose to use a trapezoidal rule. Thus, the damage evolution during a interval of time [0, T ]
is determined by considering intermediate times tj for which we compute the macroscopic stresses and the damage
(porosity) of the material. These intermediate times are defined by tj = j
t = j T

N
(j = 1, . . . ,N ), N being the

number of sub-intervals in [0, T ] which have to be small enough to for the desire accuracy. The evaluation of the
porosity at each time tj is then determined from the following approximation given by the trapezoidal rule:

c(tj ) = c0 + α

β + 1

(
F(tj )

(β−1) + 2
j−1∑
i=1

F(i
t)(β−1)

)
(11)

Let us consider now the composite EPDM/PP for which experimental data are available (see our previous study [9]).
It was also shown in [9] that a micromechanical model of composite, without damage, is not able to reproduce the
macroscopic experimental behavior. Our objective here is simply to apply the damage model derived here to the
EPDM/PP. The methodology followed consists in a two step homogenization: i) we first homogenize the EPDM/PP
in order to obtained its macroscopic behavior in absence of damage; ii) we then consider this macroscopic behavior
as the one of the solid matrix in the second homogenization step devoted to the damage modeling. In this second step
of homogenization the initial porosity is considered very low (0.1%).

For the pseudo-potential φ∗, parameters α and β are calibrated on the data from the material made up of 90%
of EPDM and 10% of PP particles: α = 1 × 10−4 and β = 0.8. Fig. 5(a), which shows the results given by the
damage model based on the Hashin–Shtrikman (HS) bound with the experimental data, confirms the relevance of the
identification. For completeness, the predictions of the model without damage phenomenon are also presented. A clear
effect of the damage is observed and makes it possible to describe the experimental behavior.
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(a) HS-based model predictions with damage (b) Porosity evolution predicted by the HS-based model

Fig. 6. Uniaxial tensile test for the EPDM 95–PP 5 with an initial porosity of 0.1%.

Fig. 7. Cyclic behavior of the EPDM 90–PP 10 composite with evolving damage.

For validation purposes, another blend EPDM/PP made up now of 95% of EPDM and 5% of PP particles is consid-
ered. The comparison of the predictions to experimental data (see Fig. 6(a)) shows an agreement which demonstrates
the predictive capabilities of the proposed model. The damage evolution during the loading is also presented on
Figs. 5(b) and 6(b) for the two considered blends EPDM/PP. It is observed that for the maximum level of deformation
in the test, the damage value is quite equal to 18%. For further details, one can refer to Bouchart [18]

Finally, the cyclic behavior of the composite in the presence of an evolving damage is presented on Fig. 7. For
the clarity of the illustration, we have considered for this simulation: α = 4 × 10−4 and β = 0.65. The obtained
behavior appears as the consequence of the irreversibility of the damage process. Note that these cycles are obtained
without any viscosity effects and no attempt is made here to reproduce hysteresis phenomena observed in elastomeric
materials.

5. Conclusion

The modeling of damage phenomena in hyperelastic materials has been investigated in the present note by
means of the second order homogenization method. We first provide a verification of this method combined with
a Hashin–Shtrikman bound by comparing its predictions to results obtained from Finite Elements calculations on a
unit cell. The formulation of the damage model is obtained by combining the micromechanical results with a stan-
dard thermodynamics-based reasoning. A first validation is provided through the comparison of the model predictions
with experimental data obtained on an EPDM/PP. Investigations on the cyclic behavior of the damaged material also
allowed to illustrate the macroscopic effects of the damage phenomenon.
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