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Chaotic gas bubble oscillations in a viscoelastic fluid
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Abstract

Regular and chaotic radial oscillations of an acoustically driven gas bubble in a viscoelastic fluid have been theoretically ana-
lyzed. For parameter values usually found in diagnostic ultrasound period-doubling routes to chaos have been identified. Thresholds
values of the external pressure amplitude for a first bifurcation in terms of the elasticity and the shear viscosity of the host fluid
have also been evaluated. To cite this article: J. Jiménez-Fernández, C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Oscillations chaotiques d’une bulle de gaz au sein d’un fluide viscoélastique. Les oscillations radiales, régulières ou chao-
tiques, d’une bulle de gaz au sein d’un fluide viscoélastique et soumise à l’action d’un champ acoustique sont analysées théori-
quement. Pour des valeurs des paramètres qui sont normalement rencontrées dans le diagnostic médical, des chemins vers le chaos
par doublement de la période ont été identifiés. Les valeurs limites pour la première bifurcation en fonction de l’élasticité et de la
viscosité du fluide, ont été aussi déterminées. Pour citer cet article : J. Jiménez-Fernández, C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

A gas bubble immersed in a liquid and subjected to the action of an external acoustical field behaves like a non-
linear oscillator. Thus, depending on the values of the frequency and of the external pressure amplitude the bubble
undergoes radial oscillations which may be steady or chaotic [1]. Besides basic aspects, the non-linear dynamics of
gas bubbles is a subject of interest in numerous areas and particularly in the biomedical field where gas bubbles as well
as encapsulated gas bubbles, are proven to be very valuable tools as contrast agents for medical ultrasound diagnosis.
More recently, the use of microbubbles for non-invasive therapy and drug delivery as well as in high intensity focused
ultrasound treatments has also been recognized as an efficient tool in clinical applications [2].
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For frequencies and bubble equilibrium radii usually found in diagnostic applications (1–10 MHz, 1–5 µm) chaotic
behaviors could be expected for moderate values of the external pressure amplitude when the host fluid is water. For
instance, for a free gas bubble of 1 µm driven at 2.5 MHz in water, a first bifurcation occurs for an amplitude of 160 kPa
and chaos for an amplitude of about 280 kPa. However, if the viscosity is increased to 30 mPa s, a gas bubble with the
same radius and for the same frequency undergoes a first bifurcation for pA = 3.7 MPa and a chaotic oscillation for
pA = 3.9 MPa, i.e., for pressure amplitudes considerably greater. So, taking into account that the viscosity values of
biological fluids or biological tissues may be significant larger than the viscosity of water (∼ 5 cP for blood, ∼ 50 cP
for the synovial fluid) it should be expected that the radial bubble oscillations encountered in diagnostic ultrasound
applications be periodic. Nevertheless, it is well recognized that biological fluids exhibit a Non-Newtonian behavior
and hence, besides viscosity, other physical parameters must be considered in order to provide a realistic description
of bubble dynamics in living tissues [3–6]. In this context, recent works on the dynamics of gas bubbles immersed in
viscoelastic fluids have shown that fluid elasticity enhances the radial oscillations so that even for moderate values of
the external amplitude the behavior may be chaotic [5]. In fact, as it will be shown below, fluid elasticity may reduce
dramatically the threshold values of the driven pressure amplitudes for bifurcation and chaos.

In this work, the dynamics of spherical gas bubbles in viscoelastic fluids subjected to an external acoustic field
is studied. The problem is formulated considering for the extra stress tensor a differential constitutive equation with
an interpolated time derivative: a form of the 4-constant Oldroyd model. It is confirmed that fluid elasticity produces
a significant growth of the amplitude of bubble oscillations. Furthermore, it is found that as the Deborah number
(the ratio between the relaxation time of the fluid and the characteristic time of the flow) is increased, the radial
oscillations undergo period-doubling bifurcations and become chaotic. Finally, the threshold values of the driven
pressure amplitude for which the first bifurcation occurs have been determined in terms of both the fluid elasticity as
well as the shear viscosity. These values may provide useful information for diagnostic applications about the region
of the parameter space where periodic or chaotic oscillations could be expected.

2. Governing equations

Consider a spherical bubble with an equilibrium radius R0 immersed in a viscoelastic fluid. The dynamics of the
bubble is governed by the Rayleigh–Plesset equation which in a spherical coordinate system centered at the bubble
center, may be written in the form [3]:
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Ṙ2
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= pg − p∞ − 2σ
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τrr − τθθ
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where R is the instantaneous bubble radius and the dot denotes differentiation with time, ρ is the liquid density and
σ is the coefficient of surface tension. p∞ = p0 + pA sin(2πf t), is the driving sound field, where p0 is the ambient
pressure, pA is the driving pressure amplitude and f is the acoustic frequency. pg is the uniform gas pressure inside the
bubble which is assumed to be given by an adiabatic relation: pg = pg0 (R0/R)3γ , where γ = 1.4 and pg0 and R0 are
respectively, the gas bubble pressure and the bubble radius at the initial equilibrium state, that is: pg0 = p0 + 2σ/R0.
Finally, τrr and τθθ are the components of the extra stress tensor τ which must be defined by means of an appropriate
constitutive equation. Radial bubble motions are elongational flows which, according to previous analyses [3,5], are
adequately described by the following constitutive equation:

τ = τp + 2ηse (2)

τp + λ

(
Dτp

Dt
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)
= 2ηpe (3)

In the above expressions, ηs and ηp are shear viscosity coefficients so that η = ηs + ηp , is the shear viscosity of
the host fluid, and λ is a stress relaxation time. e is the rate of strain tensor defined as: e = 1

2 (∇v + (∇v)T ) where ∇v
is the velocity gradient, and Dτp

Dt
= ∂τp

∂t
+ v∇τp is the usual convective derivative. As it may be noted, mass diffusion

and compressibility effects have been neglected in the present formulation. These are quantitatively important effects
but here interest is mainly focused in studying the role played by the fluid elasticity in order to compare the Newtonian
behavior versus the viscoelastic behavior.
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After a transformation to Lagrangian coordinates Eqs. (1)–(3) may be reduced to the differential system: [3,5]
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where:
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3. Numerical results

3.1. Steady oscillations and transition to chaos

First, we analyze the influence of the fluid elasticity on the bubble radius evolution in time. To this end, the sys-
tem (4), (5) has been integrated with the initial conditions: R(0) = R0, Ṙ(0) = Sp(0) = 0. Numerical calculations
have been performed with Mathematica (Wolfram Research Inc.). As usual, the fluid elasticity is here quantified
by means of the Deborah number defined by: De = λ/tc , i.e., the ratio between the relaxation time of the fluid λ,
and the characteristic time of the flow given by tc = R0

√
ρ/p0. Normalized bubble radius R∗ = R/R0 versus time

(acoustic periods) curves and Poincaré section plots: V ∗
p = Ṙptc/R0 versus R∗

p = Rp/R0 curves, where Rp is the
bubble radius at the end of each cycle, are shown in Fig. 1 for a system of interest in ultrasound medical applica-
tions [4]: R0 = 1 µm, ρ = 103 kg/m3, σ = 0.072 N/m, and η = 30 cP, for a pressure amplitude pA = 1.5 MPa, and
an acoustic frequency f = 3 MHz. Four values of the Deborah number have been considered: De = 0 (Newtonian
case) De = 0.25, De = 0.5, and De = 1.25 respectively. As it may be observed, in a Newtonian fluid (1st row) the
bubble oscillates with the period of the driving acoustic field. For a viscoelastic host fluid with De = 0.25 (2nd row)
a period-2 oscillation occurs. For De = 0.5 (3rd row) the period is doubled again, and finally for De = 1.25 (4th row),
the behavior becomes chaotic. This transition to chaos as the Deborah number is increased may be more clearly vi-
sualized by means of bifurcation diagrams as the one shown in Fig. 2, where the normalized bubble radius Rp/R0 at
a given phase of the driving sound field is plotted versus the Deborah number which is taken as control parameter.
This diagram has been performed for the system considered in Fig. 1 for an external amplitude pA = 1.5 MPa and
an acoustic frequency f = 3 MHz. For any value of the Deborah number, starting with De = 0.01, the differential
system (4), (5) has been solved for 500 acoustic cycles and the values of R at the end of each cycle have been plot-
ted (dropping the first 300 values). This diagram shows indeed a period-doubling bifurcation route to chaos as the
Deborah number increases.

3.2. Thresholds for the first bifurcation

We have seen in the previous section that a gas bubble which undergoes stable radial oscillations in a Newtonian
fluid may have a chaotic behaviour in a viscoelastic fluid. In other words, for fixed De there is a threshold value of the
external pressure amplitude below which the oscillations are periodic. From a practical point of view it is of interest to
determine this value in order to gain a first insight on the parameter space region where regular or chaotic oscillations
may be expected. This threshold value is drastically reduced as the De number increases, as it is shown in Fig. 3,
where results are plotted for the system of Fig. 1 and the frequencies f = 1,3,5 MHz, respectively.

Finally, the quantitative influence of the dynamic viscosity on the threshold pressure values for a first bifurcation is
also evaluated. As it is shown in Fig. 4, for the system of Fig. 1 linear behaviors are observed in the Newtonian case as
well as in the viscoelastic case for De = 1 in the interval considered: 1–30 mPa s. It must be remarked, however, that
the slope for De = 1 is clearly smaller than the slope for a Newtonian fluid. Thus, the influence of the fluid elasticity
on the thresholds values for bifurcation becomes increasingly important as the shear viscosity is raised.

It may be concluded, therefore, that fluid elasticity cancels out viscous damping so that in a viscoelastic fluid the
threshold values for bifurcation and chaos are largely reduced. The above results suggest that further work about
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Fig. 1. Left column: Normalized bubble radius R∗ versus time in acoustic periods. Right column: Poincaré section plots: V ∗
p versus R∗

p . R0 = 1 µm,

ρ = 103 Kg/m3, σ = 0.072 N/m, η = 30 cP, ε = 0.2, f = 3 MHz, pA = 1.5 MPa. 1st row: De = 0 (Newtonian fluid), 2nd row De = 0.25, 3rd row:
De = 0.5, 4th row: De = 1.25.

Fig. 1. Colonne de gauche : Rayon de la bubble normalisé R∗ en function du temps en périodes acoustiques. Colonne de droite : sections de
Poincaré : V ∗

p versus R∗
p . R0 = 1 µm, ρ = 103 Kg/m3, σ = 0.072 N/m, η = 30 cP, ε = 0.2, f = 3 MHz, pA = 1.5 MPa. 1ère ligne : De = 0

(fluide newtonien), 2ème ligne De = 0.25, 3ème ligne : De = 0.5, 4ème ligne : De = 1.25.

Fig. 2. Bifurcation diagram. Control parameter: Deborah number. Data as in Fig. 1, f = 3 MHz, pA = 1.5 MPa.

Fig. 2. Diagramme de bifurcation. Paramètre de contrôle : Nombre de Deborah. Données de la Fig. 1 f = 3 MHz, pA = 1.5 MPa.
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Fig. 3. Pressure amplitude threshold for the first bifurcation as function of the Deborah number. Data as in Fig. 1, f = 1,3,5 MHz (from bottom to
top).

Fig. 3. Seuil de l’amplitude de la pression pour une première bifurcation en fonction du nombre de Deborah. Données de la Fig. 1, f = 1,3,5 MHz.

Fig. 4. Pressure amplitude threshold for the first bifurcation as function of the shear viscosity for a Newtonian fluid (dark line) and a viscoelastic
fluid with De = 1 (dashed line). Data as in Fig. 1, f = 3 MHz.

Fig. 4. Amplitude de la pression pour une première bifurcation en fonction de la viscosité pour un fluide Newtonien (ligne continue) et un fluide
viscoélastique avec De = 1 (ligne pointillée). Données de la Fig. 1, f = 3 MHz.

non-linear bubble dynamics in viscoelastic media should be done in order to provide a realistic description of bubble
behavior in biological media.
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