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Abstract

We discuss the fast-reaction limit of a two-scale reaction–diffusion model. We point out that if the reaction constant a explodes
to infinity, then a two-scale PDE system with free boundary at the micro cell is obtained. The aim of this note is to answer the
question: Can the same two-scale free-boundary problem be obtained if we first pass to the fast-reaction limit a → ∞ and then take
the homogenisation limit ε → 0 that is behind the derivation of the two-scale model? Here ε is the width of a thin two-dimensional
strip. Using the method of asymptotic expansions, we show that it does not matter whether we first take ε → 0 and then a → ∞,
or vice-versa. Finally, we illustrate numerically the solution behaviour of the two-scale model in case of a fast reaction. To cite this
article: S.A. Meier, A. Muntean, C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur un système de réaction–diffusion avec une frontière libre de réaction pénétrant la micro-structure. On considère un
modèle de réaction-diffusion à deux échelles, dont la micro-structure contient une réaction rapide. Lorsque la constante de réaction
a explose vers l’infini, le modèle à deux échelles converge vers un modèle à frontière libre concentrée dans la micro-structure. Le
but de cette Note est de montrer qu’en échangeant la limite d’homogénéisation ε → 0 avec celle de la réaction rapide a → ∞, on ne
change pas le modèle limite. Des résultats numériques sont également presentés. Pour citer cet article : S.A. Meier, A. Muntean,
C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

We consider the following prototypical reaction–diffusion scenario: A gaseous species A penetrates a non-saturated
porous medium via the air phase of its pore space and instantaneously dissolves in the pore water where A reacts very
fast with a species B . The species B becomes available by a dissolution mechanism. See, for instance, [1–3] for
fast-reaction–slow-diffusion settings playing an important role in pattern formation and corrosion of porous materials,
and [4,5] for further conceptually related scenarios arising in the modelling of catalytic reactors and deformation in
hydrophilic swelling porous media.

In this Note, we present a coupled two-scale reaction–diffusion system whose distributed micro-structure hosts the
fast reaction of A and B . Making use of singular-limit analysis we derive a non-standard free-boundary problem as
the fast-reaction limit a → ∞ of the two-scale model. a stands for the corresponding reaction constant. The question
that we answer here is: Is the same two-scale free-boundary problem obtained if we first pass to the fast-reaction limit
a → ∞ and then take the homogenisation limit ε → 0 (that is behind the derivation of the two-scale model)? Using
the method of formal homogenisation, we show that interchanging the limits ε → 0 and a → ∞ gives the same result.

2. The microscopic system (P ε
a ) on a thin strip

Let L > 0 and R ∈ (0,1) be given lengths and let ε > 0 be a small number. We consider a two-dimensional micro
geometry as depicted in Fig. 1(a). We define the sets Ωε

1 := (0,L) × (εR, ε), Ωε
2 := (0,L) × (0, εR) and Γ ε :=

∂Ωε
1 ∩ ∂Ωε

2 . Then the unit normal at Γ ε pointing towards Ωε
1 is νε := (0,1)T . Moreover, let Γ ε,ext := {0} × (εR, ε)

and Γ Nε
1 := ∂Ωε

1 \ (Γ ε ∪ Γ ε,ext) and Γ
N,ε

2 := ∂Ωε
2 \ Γ ε .

We denote by ST the time interval (0, T ), where T > 0 is finite and arbitrarily fixed. The active concentrations
are CAε

1 (x, t), CAε
2 (x, t), and CBε(x, t). By the upper indices A and B , we indicate the two reactants. The lower

index concerns either phase 1 or phase 2. The species A is present in both phases while the species B only appears in
phase 2. We consider the following set of balance equations acting at the micro-scale:

∂tC
Aε
1 − DA

1 �CAε
1 = 0, x ∈ Ωε

1 , t ∈ ST (1)

∂tC
Aε
2 − ε2DA

2 �CAε
2 = −aCAε

2 CBε, x ∈ Ωε
2 , t ∈ ST (2)

∂tC
Bε = −aCAε

2 CBε, x ∈ Ωε
2 , t ∈ ST (3)

with boundary conditions

DA
1 ∂x2C

Aε
1 = ε2DA

2 ∂x2C
Aε
2 , x = (x1, x2) ∈ Γ ε, t ∈ ST (4)

CAε
1 = CAε

2 , x ∈ Γ ε, t ∈ ST (5)

CAε
1 = C

A,ext
1 (t), x ∈ Γ ε,ext, t ∈ ST (6)

DA
i ∇CAε

i · ν = 0, x ∈ Γ Nε
i , t ∈ ST , i = 1,2 (7)

and initial conditions

CAε
1 (0, x) = 0, x ∈ Ωε

1 , CAε
2 (0, x) = 0, x ∈ Ωε

2 , CBε(0, x) = C0
B, x ∈ Ωε

2 (8)

The system (1)–(8) is referred to as (P ε
a ). For typical fast-reaction–slow-transport scenarios, the parameter a is large

and defines a high Thiele modulus.

(a) (b)

Fig. 1. (a) Geometry of the model (Pε
a ). (b) Possible position of the free boundary Σε(t) in the model (Pε∞).
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(a) (b)

Fig. 2. Solutions of the two-scale model (Pa ). (a) Profiles of CA
1 . (b) Profiles of CA

2 and CB/CB
0 for frozen x = 0.14.

3. First ε → 0, then a → ∞

3.1. Homogenisation limit ε → 0 of the micro problem (P ε
a )

It is well-known that in the limit ε → 0 of (P ε
a ), we obtain the two-scale model (9)–(16), which we call (Pa). We

denote Ω := (0,L) and Y := (0,R). The equations are

∂tC
A
1 − DA

1 ∂xxC
A
1 = −(1 − R)−1DA

2 ∂yC
A
2 (t, x,R), x ∈ Ω, t ∈ ST (9)

∂tC
A
2 − DA

2 ∂yyC
A
2 = −aCA

2 CB, x ∈ Ω, y ∈ Y, t ∈ ST (10)

∂tC
B = −aCA

2 CB, x ∈ Ω, y ∈ Y, t ∈ ST (11)

with initial conditions

CA
1 (0, x) = 0, CA

2 (0, x, y) = 0, CB(0, x, y) = C0
B, x ∈ Ω, y ∈ Y (12)

a boundary condition connecting the micro scale with the macro one

CA
2 (t, x,R) = CA

1 (t, x), x ∈ Ω, t ∈ ST (13)

one boundary condition at the micro scale

∂yC
A
2 (t, x,0) = 0, x ∈ Ω, t ∈ ST (14)

as well as of boundary conditions for the species living at the macro scale

CA
1 (t,0) = C

A,ext
1 (t) (15)

∂xC
A
1 (t,L) = 0, t ∈ ST (16)

The species A is active on both scales, while the species B only appears on the micro-scale. Rigorous convergence
proofs are given in [6] for a linear model and in [7] for a non-linear version. This set of mass-balance equations was
motivated in [2] for a double-porosity modelling approach to a fast-reaction process taking place in concrete-based
materials.

As an illustration, typical solution profiles of (Pa) are plotted in Fig. 2 for parameters L = 1, R = 0.6, DA
1 = 0.5,

DA
2 = 5, CB

0 = 10 and a = 500. Diffusion of CA
1 takes place at the macro scale (Fig. 2(a)). In Fig. 2(b), the local

profiles of CA
2 and CB/CB

0 for frozen x = 0.14 are shown. It can be seen that the reaction between A and B concen-
trates on a narrow zone. We expect that the faster the reaction is, the narrower this reaction zone will be. The coupling
condition (13) can be read off the two plots as follows: The boundary values of CA

2 at y = 0.6 in the right plot coincide
with the values of CA at x = 0.14 in the left plot.
1
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3.2. Fast-reaction limit of the two-scale problem (Pa)

Next we address the following question: What happens in the limit a → ∞ with problem (Pa)? Relying on argu-
ments from [1,8,9], we deduce that in the limit the two reactants A and B on the micro scale are completely separated
by a reaction front at position y = s(x, t) ∈ [0,R]. Rigorous convergence proofs will be presented elsewhere [10]. We
denote by cA

1 , cB
2 and cB the active concentrations arising in the following limit problem

∂t c
A
1 − DA

1 ∂xxc
A
1 = −(1 − R)−1DA

2 ∂yc
A
2 (t, x,R), x ∈ Ω, t ∈ ST (17)

∂t c
A
2 − DA

2 ∂yyc
A
2 = 0, x ∈ Ω, y ∈ (

s(t),R
)
, t ∈ ST (18)

cB = cB
0 , x ∈ Ω, y ∈ (

0, s(t)
)
, t ∈ ST , (19)

initial conditions

cA
1 (0, x) = 0, cA

2 (0, x, y) = 0, y ∈ (s0,R), s(0, x) = s0, x ∈ Ω (20)

where 0 < s0 � R is the initial position of the interface s, one boundary condition matching the micro with the macro
scale,

cA
2 (t, x,R) = cA

1 (t, x), x ∈ Ω, t ∈ ST (21)

and boundary conditions for the species living at the macro scale

cA
1 (t,0) = c

A,ext
1 (t), t ∈ ST (22)

∂xc
A
1 (t,L) = 0, t ∈ ST (23)

The free-boundary conditions are

cA
2

(
t, x, s(t, x)

) = 0, (24)

s′(t, x)cB
0 = −DA

2 ∂yc
A
2

(
t, x, s(t, x)

)
, x ∈ Ω, t ∈ ST (25)

as long as s(t, x) > 0. Otherwise, we have

s′(t, x) = 0 and DA
2 ∂yc

A
2

(
t, x, s(t, x)

) = 0 (26)

(25) is the classical Stefan condition with cB
0 as “latent heat”. Here y = s(t, x) represents the position of the free

boundary at time t ∈ ST in the micro-cell associated to the point x ∈ Ω . The system (17)–(26) is the free-boundary
problem resulting in the fast-reaction limit of the two-scale model (Pa). We refer to this problem as (P∞).

4. First a → ∞, then ε → 0

4.1. Fast-reaction limit a → ∞ of the micro problem (P ε
a )

We have seen that if we consider first ε → 0 and then a → ∞, we obtain the free-boundary problem (17)–(25).
Now our second question is: Do we obtain the same PDE system as homogenised singular limit if we permute the two
limits? In other words, what happens if we first take a → ∞ and then ε → 0?

Similar as for the system (P∞), in the singular limit of (P ε
a ) for a → ∞ the two reactants are separated by a sharp

interface Σε(t) ⊂ Ωε
2 , which is evolving in time (cf. Fig. 1(b)). This interface hosts the instantaneous reaction and

can be represented via

(x1, x2) ∈ Σε(t) ⇐⇒ x2 = sε(t, x1), t ∈ ST , x1 ∈ Ω.

We select sε(0, x1) = s0 ∈ (0,R] and define Ωε
2 (t) := Ω × (sε(t), εR). By wε(t, x), we denote the normal velocity

of Σε(t) pointing outwards from Ωε
2 (t). By passing to the limit a → ∞ in (1)–(8), we obtain the one-phase Stefan

problem (27)–(34) denoted by (P ε∞), viz.

∂t c
Aε
1 − DA

1 �cAε
1 = 0, x ∈ Ωε

1 , t ∈ ST (27)

∂t c
Aε
2 − ε2DA

2 �cAε
2 = 0, x ∈ Ωε

2 (t), t ∈ ST (28)
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with boundary conditions

DA
1 ∂x2c

Aε
1 = ε2DA

2 ∂x2c
Aε
2 , x = (x1, x2) ∈ Γ ε, t ∈ ST (29)

cAε
1 = cAε

2 , x ∈ Γ ε, t ∈ ST (30)

cAε
1 = c

A,ext
1 (t), x ∈ Γ ε,ext, t ∈ ST (31)

DA
1 ∇cAε

1 · ν = 0, x ∈ Γ Nε
1 , t ∈ ST (32)

and initial conditions

cAε
1 (0, x) = 0, x ∈ Ωε

1 , cAε
2 (0, x) = 0, x ∈ Ωε

2 (0), sε(0, x1) = s0, x1 ∈ Ω (33)

The limit problem is closed by the interface conditions

wε(t, x)cB
0 = −ε2DA

2 ∇cAε
2 (t, x) · νε(t, x), cAε

2 (t, x) = 0, t ∈ ST , x ∈ Σε(t) (34)

as long as s(t, x) > 0, and otherwise

wε(t, x) = 0 and − ε2DA
2 ∇cAε

2 (t, x) · νε(t, x) = 0, t ∈ ST , x ∈ Σε(t) (35)

4.2. Homogenisation limit ε → 0 of the free-boundary problem (P ε∞)

We sketch now the homogenisation procedure by asymptotic expansions; see [11,12], e.g. analogous technique
have also been applied in [13,14] for similar models with varying microstructure. We assume that the functions cAε

1
and cAε

2 admit the asymptotic representations

cAε
1 (t, x) = cA0

1

(
t, x1,

x2

ε

)
+ εcA1

1

(
t, x1,

x2

ε

)
+ · · · , x1 ∈ Ω, x2 ∈ (Rε, ε)

cAε
2 (t, x) = cA0

2

(
t, x1,

x2

ε

)
+ εcA1

2

(
t, x1,

x2

ε

)
+ · · · , x1 ∈ Ω, x2 ∈ (0,Rε)

valid for small ε, where all coefficients are Y -periodic functions w.r.t. their third coordinate. Moreover, we rescale

sε(t, x1) =: εs0(t, x1), t ∈ ST , x1 ∈ Ω (36)

By (36), we obtain the important geometrical relations

νε(t, x) ≈
(

0

−1

)
+O(ε) (37)

wε(t, x) ≈ −ε∂t s
0(t, x1) +O(ε2), t ∈ ST , x ∈ Σε(t) (38)

The limit equations are calculated by plugging into (27)–(34) the asymptotic expansions introduced above. The model
(P∞) is obtained by collecting the zeroth order (in ε) terms.

Remark. Note that the asymptotic expansion are only formally correct. Convergence of the homogenisation process
may be proven by transformation to a fixed geometry; see [15,16].
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[11] D. Ciorănescu, P. Donato, An Introduction to Homogenization, Oxford University Press, 1999.
[12] E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Springer-Verlag, Berlin, 1980.
[13] T. van Noorden, Crystal precipitation and dissolution in a thin strip, CASA report 07-30, Eindhoven University of Technology, 2007.
[14] C. Eck, P. Knabner, S. Korotov, A two-scale method for the computation of solid–liquid phase transitions with dendritic microstructure,

J. Comput. Phys. 178 (2002) 58–80.
[15] M.A. Peter, Homogenisation of a chemical degradation mechanism inducing an evolving microstructure, C. R. Mecanique 335 (11) (2007)

679–684.
[16] S.A. Meier, Two-scale models of reactive transport in porous media involving microstructural changes, PhD thesis, University of Bremen,

Germany, in preparation.


