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Abstract

We discuss the fast-reaction limit of a two-scale reaction—diffusion model. We point out that if the reaction constant a explodes
to infinity, then a two-scale PDE system with free boundary at the micro cell is obtained. The aim of this note is to answer the
question: Can the same two-scale free-boundary problem be obtained if we first pass to the fast-reaction limit ¢ — oo and then take
the homogenisation limit ¢ — 0 that is behind the derivation of the two-scale model? Here ¢ is the width of a thin two-dimensional
strip. Using the method of asymptotic expansions, we show that it does not matter whether we first take ¢ — 0 and then a — oo,
or vice-versa. Finally, we illustrate numerically the solution behaviour of the two-scale model in case of a fast reaction. To cite this
article: S.A. Meier, A. Muntean, C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur un systeme de réaction—diffusion avec une frontiére libre de réaction pénétrant la micro-structure. On considére un
modele de réaction-diffusion a deux échelles, dont la micro-structure contient une réaction rapide. Lorsque la constante de réaction
a explose vers I'infini, le modele a deux échelles converge vers un modele a frontiere libre concentrée dans la micro-structure. Le
but de cette Note est de montrer qu’en échangeant la limite d’homogénéisation ¢ — 0 avec celle de la réaction rapide a — oo, on ne
change pas le modele limite. Des résultats numériques sont également presentés. Pour citer cet article : S.A. Meier, A. Muntean,
C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

We consider the following prototypical reaction—diffusion scenario: A gaseous species A penetrates a non-saturated
porous medium via the air phase of its pore space and instantaneously dissolves in the pore water where A reacts very
fast with a species B. The species B becomes available by a dissolution mechanism. See, for instance, [1-3] for
fast-reaction—slow-diffusion settings playing an important role in pattern formation and corrosion of porous materials,
and [4,5] for further conceptually related scenarios arising in the modelling of catalytic reactors and deformation in
hydrophilic swelling porous media.

In this Note, we present a coupled two-scale reaction—diffusion system whose distributed micro-structure hosts the
fast reaction of A and B. Making use of singular-limit analysis we derive a non-standard free-boundary problem as
the fast-reaction limit a — oo of the two-scale model. a stands for the corresponding reaction constant. The question
that we answer here is: Is the same two-scale free-boundary problem obtained if we first pass to the fast-reaction limit
a — oo and then take the homogenisation limit ¢ — 0 (that is behind the derivation of the two-scale model)? Using
the method of formal homogenisation, we show that interchanging the limits ¢ — 0 and a — oo gives the same result.

2. The microscopic system (P, ) on a thin strip

Let L > 0and R € (0, 1) be given lengths and let € > 0 be a small number. We consider a two-dimensional micro
geometry as depicted in Fig. 1(a). We define the sets 22f := (0, L) x (¢R,¢), 25 :=(0,L) x (0,eR) and I"* :=
0827 N 0525 Then the unit normal at I"® pointing towards £27 is v® := (0, T. Moreover, let ' := {0} x (¢R, &)
and FINS =007\ (' UTr*®") and FZN’S =025\ I,

We denote by S7 the time interval (0, T'), where T > 0 is finite and arbitrarily fixed. The active concentrations
are CIA‘s (x,1), Cé“g(x, t), and CBe(x, t). By the upper indices A and B, we indicate the two reactants. The lower
index concerns either phase 1 or phase 2. The species A is present in both phases while the species B only appears in
phase 2. We consider the following set of balance equations acting at the micro-scale:

¥ C¥ — DEAC =0, xef, tesSy (1)

3 C3¥ — DI ACE = —aC3eCP, xe 25, teSr 2)

3 CB = —acecP, xeR5 teSr 3)
with boundary conditions

D8, C¥ =D, C4¢, x=(x1,x) €T, t€Sr (4)

cle=cfe, xers reSr )

cfe=ct™M@), xel®™ reSr (6)

DAVCA . v=0, xelN*, teSr, i=1,2 (7)
and initial conditions

C0,x) =0, xe0f, CH(0,x) =0, xe05, CB0,x)=CY, xe2 (8)

The system (1)—(8) is referred to as (P}). For typical fast-reaction—slow-transport scenarios, the parameter a is large
and defines a high Thiele modulus.
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Fig. 1. (a) Geometry of the model (P£). (b) Possible position of the free boundary X () in the model (P%,).
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Macroscopic concentration profile
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Fig. 2. Solutions of the two-scale model (P, ). (a) Profiles of Cf. (b) Profiles of Cé‘\ and CB/C(‘)5 for frozen x = 0.14.
3. First e —> 0, then a — o0
3.1. Homogenisation limit € — O of the micro problem (P})

It is well-known that in the limit ¢ — O of (P}), we obtain the two-scale model (9)—(16), which we call (P;). We
denote §2 := (0, L) and Y := (0, R). The equations are

Ct — D19 Ct = —(1 = R)'DPS,C (1, x,R), xefR,1eSr )

3C3 — D23y Cf = —aCiCB, xe, yeY, tesr (10)

CB=—aCiCB, xe, yeY teSr (11)
with initial conditions

C0,x)=0, C50,x,y)=0, CB00,x,y)=CY% xe@, yev (12)
a boundary condition connecting the micro scale with the macro one

CHt,x, R)=C{(t,x), xe€f,teSr (13)
one boundary condition at the micro scale

3CH(1,x,00=0, xef2,teSr (14)
as well as of boundary conditions for the species living at the macro scale

i, 00 =) (15)

3CPt,L)=0, teSr (16)

The species A is active on both scales, while the species B only appears on the micro-scale. Rigorous convergence
proofs are given in [6] for a linear model and in [7] for a non-linear version. This set of mass-balance equations was
motivated in [2] for a double-porosity modelling approach to a fast-reaction process taking place in concrete-based
materials.

As an illustration, typical solution profiles of (P,) are plotted in Fig. 2 for parameters L =1, R = 0.6, DIA =0.5,
D? =35, C(I)B = 10 and a = 500. Diffusion of C f‘ takes place at the macro scale (Fig. 2(a)). In Fig. 2(b), the local
profiles of CZA and CB/ C(f for frozen x = 0.14 are shown. It can be seen that the reaction between A and B concen-
trates on a narrow zone. We expect that the faster the reaction is, the narrower this reaction zone will be. The coupling
condition (13) can be read off the two plots as follows: The boundary values of Cé‘ at y = 0.6 in the right plot coincide
with the values of C ]A at x = 0.14 in the left plot.
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3.2. Fast-reaction limit of the two-scale problem (P,)

Next we address the following question: What happens in the limit a — oo with problem (P,)? Relying on argu-
ments from [1,8,9], we deduce that in the limit the two reactants A and B on the micro scale are completely separated
by a reaction front at position y = s(x, t) € [0, R]. Rigorous convergence proofs will be presented elsewhere [10]. We
denote by cf', ¢# and ¢ the active concentrations arising in the following limit problem

gt — DMocf =—(1 = R)'Dfoycf (1, x, R), xe€f,1eSr a7
dcy — Ddyyes =0, x €2, ye(s(),R), t€Sr (18)
chcg, x € 2, ye(O,s(t)), teSr, (19)

initial conditions
cf(O,x) =0, cf(O,x, y)=0, ye(so,R), s0,x)=s9, x€£2 20)

where 0 < sg < R is the initial position of the interface s, one boundary condition matching the micro with the macro
scale,

et x, Ry =cft,x), xef,teSr 21)
and boundary conditions for the species living at the macro scale

t(t,00 =), reSr (22)

deci(r,L)=0, teSr (23)
The free-boundary conditions are

C?(t,x,s(t,x)) =0, (24)

s'(t, x)cg = —Dfaycf (t, x,s(t, x)), xef,teSr (25)

as long as s(¢, x) > 0. Otherwise, we have
s'(t,x)=0 and D3dych (t,x,s(t,x)) =0 (26)

(25) is the classical Stefan condition with cg as “latent heat”. Here y = s(¢, x) represents the position of the free
boundary at time ¢ € St in the micro-cell associated to the point x € £2. The system (17)—(26) is the free-boundary
problem resulting in the fast-reaction limit of the two-scale model (P,). We refer to this problem as (Pwo).

4. First a —» oo, thene — 0
4.1. Fast-reaction limit a — oo of the micro problem (P})

We have seen that if we consider first ¢ — 0 and then a — 0o, we obtain the free-boundary problem (17)—(25).
Now our second question is: Do we obtain the same PDE system as homogenised singular limit if we permute the two
limits? In other words, what happens if we first take a — oo and then ¢ — 0?

Similar as for the system (Po), in the singular limit of (P;) for a — oo the two reactants are separated by a sharp
interface X¢(¢) C £25, which is evolving in time (cf. Fig. 1(b)). This interface hosts the instantaneous reaction and
can be represented via

(x1,x2) € X8(t) < x2=5°(t,x1), teSr, x1 €52.

We select s°(0, x1) = 5o € (0, R] and define £25(¢) := 2 x (s°(¢), eR). By w®(t, x), we denote the normal velocity
of X*(¢) pointing outwards from £25(¢). By passing to the limit @ — oo in (1)—(8), we obtain the one-phase Stefan
problem (27)—(34) denoted by (P%), viz.
deff — DA =0, xeRf, reSr 27)
dcse —e?DAACSE =0, xeR5(t), t€Sr (28)
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with boundary conditions

Dfancfg = 82D§\8x2c§‘8, x=(0x1,x)el? teSr (29)
cfw:cfg, xel?® teSr (30)
=), xer®™ reSy 31
DVel . v=0, xelV¢, tesSy (32)

and initial conditions

cf¥0,x) =0, xe2f, cH80,x) =0, x € £25(0), s€(0,x1) =s0, X1 €L (33)
The limit problem is closed by the interface conditions

we(t, x)cl = —2DAVeRe(r,x) Vo, x), A, x) =0, teSr, xe ) (34)
as long as s(¢, x) > 0, and otherwise

wé(t,x)=0 and —e>DPVe(t,x) - vi(r,x) =0, teSr, xe ) (35)
4.2. Homogenisation limit ¢ — 0 of the free-boundary problem (P%,)

We sketch now the homogenisation procedure by asymptotic expansions; see [11,12], e.g. analogous technique

have also been applied in [13,14] for similar models with varying microstructure. We assume that the functions cf‘g

and c?g admit the asymptotic representations

X2 X2
Ci%(f,x)=6f‘0(t,x1,—>+80fu(t,x1,—>+-~-, X1 €82, x2 € (Re, )
I I
X2 X2
c?e(t,x)=c§‘°<t,x1, ;) +sc§“(t,x1, ;) +oo, x1 €02, x2€ (0, Re)

valid for small ¢, where all coefficients are Y -periodic functions w.r.t. their third coordinate. Moreover, we rescale
s8(t,x1) =:6s°(t,x1), t€Sr, x1€R (36)

By (36), we obtain the important geometrical relations

Ve(t,x) ~ <_0 ) + O(¢) (37)

1
we(t, x) ~ —edis(t, x1) + O@E?), teSp, x e X(1) (38)

The limit equations are calculated by plugging into (27)—(34) the asymptotic expansions introduced above. The model
(Poo) is obtained by collecting the zeroth order (in ¢) terms.

Remark. Note that the asymptotic expansion are only formally correct. Convergence of the homogenisation process
may be proven by transformation to a fixed geometry; see [15,16].
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