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Abstract

A method is proposed to build a sparse polynomial chaos (PC) expansion of a mechanical model whose input parameters
are random. In this respect, an adaptive algorithm is described for automatically detecting the significant coefficients of the PC
expansion. The latter can thus be computed by means of a relatively small number of possibly costly model evaluations, using a
non-intrusive regression scheme (also known as stochastic collocation). The method is illustrated by a simple polynomial model, as
well as the example of the deflection of a truss structure. To cite this article: G. Blatman, B. Sudret, C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Chaos polynomial creux et éléments finis stochastiques adaptatifs : une approche par régression. Dans cette communica-
tion, on propose un algorithme permettant de construire une représentation par chaos polynomial creux de la réponse d’un modèle
mécanique dont les paramètres d’entrée sont aléatoires. L’algorithme construit de façon adaptative une représentation creuse en
détectant automatiquement les termes importants et en supprimant ceux qui sont négligeables. A chaque étape, le calcul des coeffi-
cients s’effectue par minimisation au sens des moindres carrés (méthode non-intrusive dite de régression). L’algorithme est déroulé
pas à pas sur un modèle polynomial, puis appliqué à l’étude de la fiabilité d’un treillis élastique. Pour citer cet article : G. Blatman,
B. Sudret, C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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La propagation des incertitudes sur les paramètres dans les modèles mécaniques a fait l’objet de nombreux travaux
de recherche depuis une vingtaine d’années. Les approches spectrales s’appuyant sur un développement de la réponse
aléatoire dans une base de chaos polynomial [1,2] ont montré leur efficacité pour traiter des problèmes de mécanique,
diffusion, transfert thermique et plus récemment, fiabilité des structures [6,7,9].

Les méthodes non-intrusives de calcul des coefficients du chaos (projection ou régression) permettent d’obtenir ces
derniers à partir d’un certain nombre d’évaluations du modèle déterministe (e.g. modèle éléments finis) sans avoir à
intervenir dans le code lui-même. Cependant, le nombre de termes du développement, et donc le nombre de calculs
déterministes à effectuer pour les estimer, augmente très rapidement avec le nombre de variables aléatoires d’entrée
du modèle. En pratique cependant, beaucoup de ces coefficients s’avèrent négligeables a posteriori.

L’objectif de cette communication est de proposer une approximation par chaos polynomial creux, dans laquelle
seuls les termes importants du développement sont calculés de façon adaptative par un algorithme itératif. A chaque
étape, des termes d’ordre supérieur sont ajoutés un par un au développement courant, et seuls ceux qui conduisent à
une augmentation significative du coefficient de détemination R2 de la régression sont retenus. Puis les coefficients
retenus aux étapes précédentes sont supprimés un par un tant que cette suppression ne conduit pas à dégrader R2.

L’algorithme est déroulé pas à pas sur un modèle polynomial, montrant ainsi sa capacité à retrouver la structure
creuse. On applique enfin la méthode à un calcul de fiabilité d’un treillis élastique (10 variables aléatoires). La proba-
bilité de défaillance est obtenue avec une grande précision, pour un nombre de termes dans le chaos à peu près 7 fois
plus petit que dans une représentation classique. Le coût de calcul (nombre d’appels au code éléments finis) est de
façon corrolaire divisé par un facteur compris entre 3 et 5.

1. Introduction

Uncertainty propagation methods, which aim at studying the influence of the randomness of input parameters
of a model onto the model response, have received much attention in the past twenty years. Among others, spectral
stochastic methods based on polynomial chaos (PC) expansions [1,2] have shown their great potential in various appli-
cations ranging from diffusion and thermal problems [3], computational fluid dynamics [4,5] and structural reliability
[6,7].

Polynomial chaos (PC) expansions allow one to represent explicitly the random response of a mechanical system
whose input parameters are modelled by random variables. The PC coefficients may be efficiently computed using
non-intrusive techniques such as projection [8] or regression [9]. However, the required number of model evaluations
(i.e. the computational cost) increases with the PC size, which itself dramatically increases with the number of input
variables when the common truncation scheme of the PC expansion is applied. To circumvent this problem, an adaptive
algorithm is proposed in order to retain only the significant PC coefficients, leading to a sparse PC representation (see
also the stochastic reduced basis technique proposed by [10]).

The basics of polynomial chaos expansion is first recalled in Section 2. Then the sparse PC representation and the
associated adaptive algorithm is detailed in Section 3. The method is finally applied to the study of the reliability of a
truss structure having uncertain mechanical properties.

2. Polynomial chaos representation

2.1. Polynomial chaos representation of a numerical model with uncertain input

Consider a mechanical system described by a numerical model M which can be analytical or more generally
algorithmic (e.g. a finite element model). Suppose that this model has M uncertain input parameters which are repre-
sented by independent random variables (X1, . . . ,XM) gathered in a random vector X of prescribed joint probability
density function pX(x). Hence the model response denoted by Y = M(X) is also random. For the sake of simplic-
ity, Y is assumed to be scalar throughout the paper (in case of a vector response Y , the following derivations hold
componentwise). Provided the random variable Y has finite variance, it can be expressed as follows [2]:

Y = M(X) =
∑

M

aαψα(X) (1)

α∈N
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This expansion is referred to as the finite-dimensional polynomial chaos (PC) representation of Y . The aα’s are
unknown deterministic coefficients and the ψα’s are multivariate polynomials which are orthonormal with respect to
the joint PDF pX of the input random vector X, i.e. E[ψα(X)ψβ(X)] = 1 if α = β and 0 otherwise. For instance, if
X is a standard normal random vector, the ψα are normalized multivariate Hermite polynomials.

2.2. Non-intrusive computation of the polynomial chaos coefficients

The PC coefficients can be estimated using a non-intrusive regression scheme [11,9,12]. This method requires the
choice of a truncation of the PC ab initio, hence of a non-empty finite set A = {α0, . . . ,αP−1} ⊂ N

M which contains
the multi-indices of the retained basis polynomials ψα0 , . . . ,ψαP−1 . A is referred to as the truncation set in the sequel.
The corresponding PC approximation is denoted by YA ≡ MA(X) = ∑

α∈A aαψα(X) which rewrites YA = aTψ(X),
by introducing the vector notation a = {aα0, . . . , aαP−1}T and ψ(X) = {ψα0(X), . . . ,ψαP−1(X)}T.

Let us consider a set of realizations of X denoted by X = {x(1), . . . ,x(N)} and referred to as the experimental
design (ED). Let us denote by Y the associated set of model response, say Y = {M(x(1)), . . . , M(x(N))}. The
unknown coefficients a may be computed by performing a least-square minimization [9], i.e. by minimizing the
mean-square truncation error 1/N

∑N
i=1(M(x(i)) −MA(x(i)))2. Using the above notation the solution reads:

â = (�T�)−1�TY (2)

where � is a N × P matrix such that �ij = ψαj
(x(i)), i = 1, . . . ,N, j = 0, . . . ,P − 1.

The size N of the ED must be greater than P to make this problem well posed. For practical implementation,
the series in Eq. (1) is commonly truncated by retaining those polynomials ψα whose total degree |α| is less than p.

This leads to the truncation set AM,p = {α ∈ N
M :

∑M
i=1 αi � p}. Accordingly, the number of PC terms is given by

P = (
M+p

p

)
. Hence it dramatically increases with both p and M . Consequently, the minimal size of the ED that is

required for an accurate solution of the regression problem [13] blows up. Thus increasing the accuracy of the PC
expansion may lead to intractable calculations in high dimensions. Nevertheless, as all the input variables do not have
the same influence on the response and as only low order interactions are physically meaningful in practice, both P

and N might be reduced by only retaining a small number of important coefficients, i.e. by an appropriate choice of a
sparse truncation set A ⊂ N

M such that card A � card AM,p for a given accuracy.

3. Adaptive polynomial chaos approximation

3.1. Assessment of the goodness-of-fit of the PC approximation

Let A be a non-empty finite subset of N
M and YA be the associated truncated PC expansion. Let us denote by ŶA

its regression-based approximation, whose coefficients are computed by regression from a given ED. The latter can
be selected randomly [11] or based on the roots of orthogonal polynomials [9]. The error of approximation can be
quantified by the empirical lack of fit defined by:

L̂OFA =
∑N

i=1(M(x(i)) − aTψ(x(i)))2

∑N
i=1(M(x(i)) − f̄ )2

(3)

where f̄ = 1/N
∑N

i=1 M(x(i)). The accuracy of the response approximation ŶA can thus be assessed by means of
the determination coefficient defined by R2

A = 1 − L̂OFA. The value R2
A = 1 indicates a perfect fit of the true model

response Y , whereas R2
A = 0 indicates no linear relationship between Y and the multivariate polynomials {ψα,α ∈ A}.

3.2. Adaptive algorithm to construct a sparse PC expansion

Let us respectively define the interaction order j and the total degree p of any multi-index α ∈ N
M by:

j =
M∑

1αi>0(α), p = |α| =
M∑

αi (4)

i=1 i=1



G. Blatman, B. Sudret / C. R. Mecanique 336 (2008) 518–523 521
where 1αi>0(α) equals 1 if αi > 0 and 0 otherwise. Moreover, for any truncation set A ⊂ N
M , the quantity maxα∈A |α|

is referred to as the maximal degree of the PC expansion. Lastly, let us denote by Ij,p the set of multi-indices of
interaction order j and total degree p. An iterative adaptive procedure is now presented for constructing a sparse PC
approximation of the system response:

(i) Choose an ED X and perform the model evaluations Y once and for all.
(ii) Select the values of the algorithm parameters, i.e. the target accuracy R2

tgt, the maximal PC degree pmax and
maximal interaction order jmax and the cut-off values ε1, ε2.

(iii) Initialize the algorithm: p = 0, truncation set A0 = {0}, where 0 is the null element of N
M .

(iv) For any degree p ∈ {1, . . . , pmax}:
– Forward step: for any interaction order j ∈ {1, . . . , jmax}, gather the candidate terms in a set Ij,p . Add each

candidate term to Ap−1 one-by-one and compute the PC expansion coefficients by regression (Eq. (2)) and
the associated determination coefficient R2 in each case. Retain eventually those candidate terms that lead to
a significant increase in R2, i.e. greater than ε1, and discard the other candidate terms. Let Ap,+ be the final
truncation set at this stage.

– Backward step: remove in turn each term in Ap,+ of degree strictly not greater than p. In each case, compute
the PC expansion coefficients and the associated determination coefficient R2. Eventually discard from Ap,+
those terms that lead to an insignificant decrease in R2, i.e. less than ε2. Let Ap be the final truncation set.

– If R2
Ap � R2

tgt, stop.

Note that the various regression analyses only involve analytical computations (see Eq. (2)). Thus their computa-
tional cost is usually small compared to that associated to the model evaluations onto the ED.

3.3. The adaptive algorithm in action

The adaptive procedure detailed above is now tested on the following simple polynomial model: M(ξ1, ξ2) =
1 + H1(ξ1)H1(ξ2) + H3(ξ1), where Hk is the k-th Hermite polynomial and ξ1, ξ2 are independent standard normal
variables. A random design made of N = 100 Latin Hypercube samples (LHS) (see e.g. [14]) is used. The various
steps of the PC construction are illustrated in Fig. 1. As the model itself is polynomial, the exact solution should be
retrieved. Thus the target determination coefficient is set equal to R2

tgt = 1.
The iterations on the PC total degree p and the interaction order j are respectively displayed from left to right

and from top to bottom in Fig. 1. The polynomials that are discarded during the procedure are grey-shaded. In this
example the polynomials H1(ξ1) and H2(ξ2) are correctly neglected in the forward steps associated with p = 1 and
p = 2 respectively. All the remaining useless polynomials are removed in the last backward step that is associated
with p = 3.

Note that the standard “full” truncation set A2,3 has 10 coefficients, whereas only three coefficients are eventually
required to represent the model.

4. Application example: reliability of a truss structure

Let us consider the truss structure sketched in Fig. 2. Ten independent input random variables are considered,
namely the Young’s moduli and the cross-section areas of the horizontal and the oblical bars (respectively denoted by
E1,A1 and E2,A2) and the applied loads (denoted by Pi, i = 1, . . . ,6) [7].

The deflection at midspan V1 is regarded as the model random response. It is approximated by a PC expansion in
normalized multivariate Hermite polynomials (note that the input random variables listed in Fig. 2 are first transformed
into standard normal variables). A reliability analysis is carried out with respect to the failure criterion {V1 > 11 cm}.
An ED made of N = 100 LHS is used. The maximum degree pmax is set equal to 5, the maximum interaction order
jmax to 2 and the cut-off values ε1, ε2 to 5 × 10−6. A parametric study is performed varying the target accuracy R2

tgt.

Results are compared in terms of the generalized reliability index β = −Φ−1(Pf ), where Pf = P(V1 > 11 cm)

denotes the probability of failure. The reference value is obtained using crude Monte Carlo simulation of the problem
(1,000,000 samples, i.e. 1,000,000 finite element runs are used). A PC-based solution is also computed using a full
PC of degree p = 3 (P = (10+3) = 286), whose coefficients were computed by regression (a Latin Hypercube design
3
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Fig. 1. Polynomial model – adaptive construction of the PC approximation.

Variable Distribution Mean Standard deviation

E1, E2 (Pa) Lognormal 2.10 × 1011 2.10 × 1010

A1 (m2) Lognormal 2.0 × 10−3 2.0 × 10−4

A2 (m2) Lognormal 1.0 × 10−3 1.0 × 10−4

P1–P6 (N) Gumbel 5.0 × 104 7.5 × 103

Fig. 2. Truss example – Statement of the problem.

of size N = 500 was used). The PC-based reliability results are obtained by sampling the PC expansion. Results are
reported in Table 1 together with the size Pfinal and total degree pfinal of the resulting PC approximation as well as the
maximum size Pmax attained within the iterations of the adaptive algorithm.

It appears that the PC approximations provide estimates of β which are all the more accurate since the target
accuracy R2

tgt is high. In particular, a relative error on β less than 5% is obtained when setting R2
tgt = 0.9900, by using

only N = 100 samples whereas the full PC model of order p = 3 would require more than 286 samples. As a whole,
the number of terms P = 43 required to evaluate accurately the probability of failure is 7 times less than that of a
full PC representation. A computational gain factor ranging from 3 (when N is set equal to the minimum required
number of samples, i.e. N = P = 286) to 5 (for the current choice N = 2P ) is thus obtained. It is also observed that
Pmax increases with the target accuracy, and hence choosing values too close to 1 for R2

tgt might lead to overfitting as

N � P in this case, misleadingly yielding a value of R2 very close to 1.
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Table 1
Truss example – Reliability index obtained from various sparse PC representations

Target accuracy R2
tgt Number of FE runs Prob. of failure Reliability index β Pmax Pfinal pfinal

0.9000 100 3.24 × 10−3 2.7225 11 11 1
0.9900 100 6.73 × 10−3 2.4716 21 21 2
0.9990 100 8.43 × 10−3 2.3899 64 41 2
0.9999 100 8.76 × 10−3 2.3757 70 43 3

Full PC (p = 3) 500 8.69 × 10−3 2.3784 286 286
Reference solution 1,000,000 8.70 × 10−3 2.3781

5. Conclusion

A method is proposed to build iteratively a PC expansion of the random response of a model with random input
parameters. It is based on an adaptive algorithm which automatically detects the significant PC terms, leading to a
sparse PC representation. The retained PC coefficients can thus be computed efficiently by regression using a rather
low number N of model evaluations compared to what would be required to compute a “full” PC approximation.
The step-by-step application of the algorithm to a polynomial model M shows that it satisfactorily yields the exact
solution in this case. The truss example shows that the algorithm may be used for solving structural reliability prob-
lems. Accurate results may be obtained in reliability analysis using few runs of the (FE) model when the values of
the threshold parameters are reasonably low. An adaptive scheme aimed at optimizing adaptively the number N of
model evaluations, i.e. the size of the experimental design in order to avoid overfitting problems, is currently being
investigated. Furthermore, error estimates based on resampling techniques are being studied to improve the robustness
of the method.

References

[1] R. Ghanem, P. Spanos, Stochastic Finite Elements: A Spectral Approach, Courier Dover Publications, 2003.
[2] C. Soize, R. Ghanem, Physical systems with random uncertainties: chaos representations with arbitrary probability measure, SIAM J. Sci.

Comput. 26 (2) (2004) 395–410.
[3] D. Xiu, G.E. Karniadakis, A new stochastic approach to transient heat conduction modeling with uncertainty, Int. J. Heat Mass Transfer 46

(2003) 4681–4693.
[4] O.P. Le Maître, O.M. Knio, H.N. Najm, R.G. Ghanem, A stochastic projection method for fluid flow, J. Comput. Phys. 173 (2001) 481–511.
[5] O.M. Knio, O.P. Le Maître, Uncertainty propagation in CFD using polynomial chaos decomposition, Fluid Dyn. Res. 38 (9) (2006) 616–640.
[6] B. Sudret, A. Der Kiureghian, Comparison of finite element reliability methods, Prob. Eng. Mech. 17 (2002) 337–348.
[7] G. Blatman, B. Sudret, M. Berveiller, Quasi-random numbers in stochastic finite element analysis, Mécanique & Industries 8 (2007) 289–297.
[8] D.M. Ghiocel, R.G. Ghanem, Stochastic finite element analysis of seismic soil–structure interaction, J. Eng. Mech. (ASCE) 128 (2002) 66–77.
[9] M. Berveiller, B. Sudret, M. Lemaire, Stochastic finite element: a non-intrusive approach by regression, Rev. Européenne Mécanique

Numérique 15 (1–3) (2006) 81–92.
[10] A. Nouy, A generalized spectral decomposition technique to solve stochastic partial differential equations, Comput. Methods Appl. Mech.

Engrg. 196 (45–48) (2007) 4521–4537.
[11] S.K. Choi, R.V. Grandhi, R.A. Canfield, Structural reliability under non-Gaussian stochastic behavior, Computers & Structures 82 (2004)

1113–1121.
[12] B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models – Contributions to structural reliability and stochastic spectral

methods, Habilitation à diriger des recherches, Université Blaise-Pascal, Clermont-Ferrand, France, 2007.
[13] B. Sudret, Global sensitivity analysis using polynomial chaos expansions, Reliab. Eng. Sys. Safety 93 (2008) 964–979.
[14] M.D. McKay, R.J. Beckman, W.J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output

from a computer code, Technometrics 2 (1979) 239–245.


