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Abstract

By modeling a colloidal suspension at rest as a solid, a new expression for the linear elastic modulus is obtained. This estimate
is valid for a yield stress colloidal suspension submitted to a small strain. Interestingly, it is also possible to construct an hypothesis
allowing one to recover the high-frequency modulus classically found by means of a classical ‘fluid approach’. However, in most of
the situations, the moduli obtained by the two approaches are different. To cite this article: L. Pasol, X. Chateau, C. R. Mecanique
336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Module d’élasticité d’une suspension colloidale de sphéres dures au repos. En modélisant une suspension colloidale au
repos comme un solide, on obtient une nouvelle expression pour le module d’élasticité linéaire. Cette expression permet d’estimer
le module d’une suspension colloidale possédant un seuil d’écoulement soumise a une déformation infinitésimale. On montre
également que sous certaines hypotheses, cette approche permet de retrouver 1’expression du module élastique a grande fréquence
obtenu par une approche classique de type fluide. Pour citer cet article : L. Pasol, X. Chateau, C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The macroscopic rheological properties of a colloidal suspension are the counterpart at the macroscopic scale of
phenomena occurring at the length scale of the particles. The forces applied to the particles originate from different
phenomena: colloidal forces, hydrodynamic interactions, Brownian motions, etc. The intensity of these forces depends
upon several parameters as the temperature, the size of the particles, the separation gap between particles, or the pH
of the suspending fluid.
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At the macroscopic scale, the elastic modulus is one of the parameters which characterize the suspension behavior.
It has been recognized from a long time that its value depends in particular upon the interactions between particles.
The problem of the transition from the microscale to the macroscale in view of the prediction of the macroscopic
properties of the suspension has been the matter of intensive research for decades. The main underlying motivation
for this work is to predict the overall behavior of the suspension from the description of the particles properties.
Most of the results have been obtained in the framework of statistical physics. For example Zwanzig and Mountain
computed the high frequency shear modulus of a simple monoatomic fluid where only binary interactions are likely
to occur in the absence of Brownian motion and hydrodynamic forces [1]. Wagner generalized this result in order
to account for Brownian motion and hydrodynamic interaction by means of a linear theory [2]. He showed that the
Zwanzig and Mountain results are still valid when hydrodynamic interactions between particles are negligible. For
concentrated suspensions Lionberger and Russel showed that long-range hydrodynamic interactions can be neglected,
the main contribution coming from the lubrification forces [3]. Brady developed in [4] a theory accounting for specific
interparticle force laws and their influence on the suspension rheology in the linear regime in the framework of a
mechanical approach. Divergence of the viscosity at random close packing density was recovered and the value of the
exponent is predicted as a function of the interparticles forces (Brownian hard spheres or particle interacting through
strongly repulsive colloidal forces).

The difficulty encounted to experimentally measure colloidal forces also motivated interest in this field, mainly
for elasticity. The idea is to use theoretical results obtained in the framework of change of scale methods in order to
determine microscopic properties of the suspension from the measurement of macroscopic elastic modulus. Such a
method was proposed in [5] to estimate the effective surface charge of particles of a concentrated suspension from the
measurement of the high-frequency elastic modulus.

In most of these works, the suspension is modeled as a fluid. From a practical point a view, it is well known that
concentrated colloidal suspensions often exhibit a yield stress: they flow and behave like a fluid only when submitted
to a stress above the yield stress. Otherwise, they behave like a solid. In the solid state, a colloidal suspension can
be seen as a disordered solid in which the particles form a connected network. As long as the applied forces are not
big enough to trigger off finite displacement of the particles from their rest position, the overall mechanical properties
of the suspension can be predicted in the framework of change of scale methods pertaining to heterogeneous solid
materials.

In this Note, we show that it is possible to perform such approach in order to estimate elastic modulus for a colloidal
suspension. For simplicity, we restrict ourselves to the situations where hydrodynamic interactions and Brownian
motions are neglected. As a consequence, our results are valid only for naught-velocity loading in the solid regime
(quasistatic elastic behavior) or high-frequency loading in the fluid regime.

The paper is organized as follows. We begin by recalling the relation linking the Cauchy stress tensor to the
interaction force. Then, we compute the macroscopic strain—stress behavior law in the linear regime. Finally, a new
estimate for the elastic shear modulus of the suspension is obtained before we conclude.

2. Cauchy tensor for a colloidal suspension at rest

We consider a monodiperse suspension of spherical particles with radius a distributed in an incompressible New-
tonian fluid. Particles interact through colloidal interaction forces. The suspension is at rest both at the microscopic
and the macroscopic scales, so that hydrodynamic interaction forces are negligible. It is assumed that no forces from
outside are applied on the particles or on the fluid.

Consider a representative elementary volume (r.e.v.) of the suspension occupying the geometrical domain V and
containing N particles (N > 1). The macroscopic Cauchy stress tensor ¢ can be computed from the knowledge of
the microscopic quantities using the classical Batchelor equation [6,7]:

N
1 . 1 1
v Vi i=1
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where p denotes the fluid pressure, § the second order unit tensor, V¢ the geometrical domain filled by the fluid and s;
the stresslet of the particle i, equal to

s,~=%/(6-n®()_c—)_ci)+()_c—)_ci)®6-rz)d5= (x—xi)®0 -ndS (2)
A; A;

with &, the Cauchy stress tensor field in the particles, x; the center of particle i and A; the boundary of the domain
occupied by the particle i. In Eq. (2), n denotes the outer unit normal to the domain A; and x the position vector in
the studied configuration.

We consider only stable colloidal dispersions where interaction forces dominate Brownian effects. Then the parti-
cles form a disordered network. The only contribution of particle i to the stress tensor is the stresslet s;. Thanks to the
assumption that no external forces apply on the particles, the strain tensor ¢ is symmetric and so is the macroscopic
Cauchy stress tensor. Furthermore, the fluid pressure is uniform over the domain occupied by the fluid in the repre-
sentative elementary volume. As it is classical, it is assumed that interparticle forces derive from a potential [8]. Then,
F;_;, the force applied by particle j to particle i reads F;,; = —g—)‘z()_ci j) where x;; = x; — x; denotes the vector
connecting the center of particle i to the center of particle j. It is advisable to note here that when the interparticle
forces are described by force vectors, the Batchelor’s equation (1) is no more valid. Putting the equilibrium equation
for both the whole r.e.v. and each particle in Eq. (1) allows one to compute the macroscopic Cauchy stress tensor as a
function of the interparticle forces and the fluid pressure [7-9]

N
0=—P3—%Zﬂi—>j®)_€ij 3)

1<j
This relation can also be obtained in the framework of a micromechanical approach to the behavior of a heterogeneous
material [10]. It is recalled that mechanical homogenization techniques aim at finding the overall behavior of a system
in a form of relationship between macroscopic stress and strain tensors from the response of the r.e.v. to a mechanical
loading in which one of the two macroscopic tensors acts like a loading parameter. As the mechanical behavior of the

suspension does not depend on the value of the fluid pressure, it is assumed that p is naught in the following.

Of course, one has to consider an arbitrary realization of the material system to compute Eq. (3). In order to
obtain results which do not depend on the particular selected realization, it is necessary to average Eq. (3) over all
the possible realizations of the system. Let Cy = {x1, x2, ..., xn} denotes a particular realization for the centers of
the N particles embedded in the r.e.v. and let Py(x1, X2, ..., xy) denotes the probability of finding simultaneously
the particle centers in x1, x2, ..., xy. As the particles are indistinguishable the probability to find simultaneously the
center of one particle in x; and the center of another particle in x, reads

pa(x1,x2) = [ Py(Cy)dx3---dxy =n’g(r) 4)

yN-2

(N =2)!

where r = x| —x7 and n = N/ V denotes the number density of particles in the representative elementary volume. The
second equality of Eq. (4) is only valid for statistically homogeneous suspensions. It is assumed that this condition
is fulfilled in the following. g is the radial distribution function [11]. Averaging the stress tensor, Eq. (3), with the
probability pa(x1, x2) defined by (4) yields

2
() = —”3 f r® F(r)g(r)dv(r) 5)
\%

where the convention F'(r) = F»_,1(r) has be used to simplify the notations.
3. Elastic modulus

In order to identify the tangent moduli of the suspension, a macroscopic linearized strain & is applied to the rep-
resentative elementary volume occupying the geometrical domain V{ in the undeformed configuration. A particle
located at X; in the reference configuration moves to the position x; in the deformed configuration. Such a macro-
scopic loading can be defined by the so-called Hashin boundary condition according to which the displacement of
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particles located on the boundary of the r.e.v. is prescribed, equal to € - X;. As the particles are rigid, the macroscopic
loading must comply with the incompressibility condition § : € = 0. It is worth noting that for each realization of the
suspension, local material heterogeneities are responsible for microscopic fluctuations of the displacement around the
linear field & - X.

Up to the first order in &, the Cauchy stress tensor on the deformed configuration reads

2
-2 dao . .
(o) =(m") 2/<E®E<d§ A.e)—l—(A.e@E—i—E@dK A.e)go)dV (6)
Vo
with
2
) =-% / R® F(R) go(R)dV ™
Vo

70 denotes the Piola—Kirchhoff stress tensor on the underformed configuration [12,13]. (z°) is equal to the Cauchy
stress tensor in the undeformed configuration. It is worth noting that quantities F', gg and A are function of the position
vector R (the dependence have been omitted for simplicity). The relative displacement concentration tensor defined
by A(R) = dR/de allows one to compute the relative displacement r — R = x — x| — (X2 — X) of two particles
induced by the loading &.

Explicitly knowing the third order tensor A(R) would allow one to compute the behavior law linking the Cauchy
stress tensor to the linearized strain tensor . It is assumed in the following that the behavior of the suspension is linear
elastic at the macroscopic scale. Then, the macroscopic state law reads [13]

o=+ 747" e+C:e=n"+Lx":e 8)

where L(x?) denotes the tangent tensor and C the elastic tensor. It is recalled that the tensor L(xY) is generally not
equal to the elastic tensor C and does not satisfy the classical property of definite positivity [13]. Comparing Eq. (6)
with the second equality (8) allows one to compute L.

IL_——/<R®F®— A+ 0<R®d—F A+F ® A)) ©)

12

with F ®162 A = FjAjree; ® ej ® ex ® eg. The elastic tensor C can be easily computed by combining Egs. (8)
and (9).

In the following, it is assumed that the suspension is isotropic in the undeformed configuration. Then the radial
distribution function reads go(R) = go(|R|) = go(R). Moreover, it is also assumed that the interparticle forces are
central, which writes ¥ (R) = ¥ (R). The interparticle forces read

1d
F=—2p (10)
R dR
Putting Eq. (10) into expression (5) yields the value of the stress tensor in the undeformed configuration
o
2 dy (R)
0 2 3
= R R)dRS 11
=t [ R ) an
R=2a

In Eq. (11), it was assumed that R is unbounded whereas one would expect that the r.e.v. is of finite extent. Insofar as
the r.e.v. must be large enough to be of typical composition and that its overall properties do not depend ont its size,
the macroscopic behavior of the suspension can be defined only if the decay of the interparticle forces for large R is
strong enough that the contribution of long range forces is negligible. When these conditions are fulfilled, it is possible
to simplify the computation of quantities defined as an average over the r.e.v. by assuming that the r.e.v. is unbounded.
The same truncature process is used in the sequel of the paper. As the stress tensor in the reference configuration
is isotropic, the internal force is characterized by a pressure, equal (up to the fluctuation term nkp7T') to the osmotic
pressure of a colloidal system classically defined in the framework of statistical mechanics [8]. Thanks to the fact that
the initial configuration is isotropic and the interparticle forces are central, we obtain
@ 1 dgo

=——R (12)
dR ~ RdR
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The tensor field A depends upon the morphological properties of the suspension in the undeformed configuration. As
it is not possible to compute A from a practical point of view, we purpose to compute the overall properties of the
suspension using the classical choice VR, A(R) : € = & - R leading to the popular “mean field theory”. Using this
particular localization field allows one to obtain only estimates of the overall properties of the suspension because this
choice defines the solution of the problem under consideration only in particular situation (uniform radial distribution
function, periodic lattice, ...).

Combining this estimate with the relations (6), (12) and the incompressibility condition & : § = 0 yields the follow-
ing behavior law of the suspension

[o/0]

| 3 [ d(dy

=2G"e, th G* = — (| R"T— (X R) )dR 13

() =2G%, wi s | dR( e (0g0(R) (13)
R=2a

where ¢ = ndma’/3 denotes the volumic fraction and T = o — (§ : ¢)/38 the deviatoric part of the Cauchy stress
tensor. It can be shown that the “solid modulus” (13) is no more than the classical Voigt estimate one can obtain using
the uniform strain field as a trial field in a variational approach to the problem under consideration. Then, Eq. (13)
defines an upper bound of the real solid shear modulus of the suspension.

It is reminded that classically, the actual configuration is taken as the reference configuration to compute the elastic
moduli tensor [2]. This result can be recovered by performing exactly the same computations than above on the
undeformed configuration. This approach yields the “liquid” elastic shear estimate

2 0.¢]

() =2G', withG'= 437";6 / diR( 43%(R)>go(R) dR (14)
R=2a

The difference between the two estimates comes from the fact that the radial distribution function is derived with

respect to R in Eq. (13) and not in Eq. (14). It is possible to obtain the “liquid” estimate from the “solid” one by

assuming the radial distribution function conservation in the course of deformation. Then, it is shown from Eq. (6)

that, up to the first order of e, the Cauchy stress tensor reads

0 ﬁ/d[mz]

(o) =(m") -3 e Ss®dV(R) 15)

Vo

(it is always assumed that the material is incompressible). Considering one more time that the suspension is isotropic
in the reference configuration, one readily obtains from Eq. (15) the estimate (14) for the elastic shear modulus of the
suspension in the framework of a mean field theory.

4. Conclusions

We have obtained a new expression for the elastic shear modulus of a colloidal suspension modeled as a solid. This
expression allows one to estimate the elastic modulus of a yield stress suspension submitted to a load smaller than the
yield stress. This result was obtained in the framework of an homogenization approach to the behavior of a colloidal
suspension considered as a discrete solid medium. Even if this approach relies on assumptions rather different from
those classically performed to obtain estimates for the overall properties of suspensions in the framework of statistical
mechanics, it is worth noting that classical results can also be recovered. Thus, we have shown that our estimate
coincides with the classical high-frequency modulus estimate when the actual configuration is taken as the reference.
From our point of view, this result was recovered by modeling the suspension as a “liquid”, i.e. a suspension without
a yield stress. In this situation, it is not possible to define an “undeformed” configuration and the actual configuration
is taken as the reference. In our opinion, this similarity is a strong indication that both approaches are consistent one
to the other.

Furthermore, it has been recalled that the tangent modulus is not equal to the elastic modulus when the stress
applied to the material in the reference configuration and the elastic modulus are of the same order of magnitude.
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