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Transition of unsteady flows of evaporation to steady state
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Abstract

We investigate the half-space problem of evaporation and condensation in the scope of discrete kinetic theory. Exact solutions
are found to the boundary value problem and the initial boundary value problems of the flow in the half space for a discrete
velocity model. The results are used to analyze the transition of the unsteady solutions towards steady states. To cite this article:
A. d’Almeida, C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Transition vers l’état stationnaire d’écoulements instationnaires d’évaporation. On étudie dans le cadre de la théorie ci-
nétique discrète les phénomènes d’évaporation et de condensation dans le demi-espace. Des solutions exactes sont trouvées pour
le problème aux valeurs initiales et aux limites de l’écoulement dans le demi-espace pour un modèle discret et on analyse leur
convergence vers les solutions du problème aux limites stationnaire. Pour citer cet article : A. d’Almeida, C. R. Mecanique 336
(2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Consider a gas and its condensed phase respectively located in the region y > 0 and y < 0. Depending on the
thermodynamical conditions of the two phases, evaporation or condensation occurs at the interface. This problem is
known as the half space problem of evaporation and condensation. Various methods of solution have been used. Inter-
esting results have been obtained using the linearization of the classical Boltzmann equation or its continuous models
around a uniform flow at infinity or extensive numerical analysis of the BKW equation for the long time behavior of
time dependent studies of the half-space problem [1–4]. The nonlinear problem is studied only approximatively or nu-
merically. However it is necessary to solve the boundary value problem of the nonlinear Boltzmann equation to obtain
the relations required for the existence of the steady solution [5]. The modelling via discrete models is recent [10,11].
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A discrete velocity gas is a medium composed of particles whose velocities belong to a given set of vectors. Exact
and numerical solutions have been found and analytical form of the relation between the macroscopic variables on
the interface and at infinity have been derived for some discrete models [6–8]. In this paper we study, in the scope
of discrete kinetic theory, the long time behavior of the solution of the time dependent half-space problem. We show
in Section 2 that there is no solution for the steady half-space problem of evaporation for the symmetrical model C1
[9,7]. In Section 3 we find exact solutions to the unsteady half-space problem of evaporation and condensation and
we analyze their convergence for large times to solutions of the corresponding steady half-space problem.

2. Steady solutions

The model C1 is a ten velocity three dimensional discrete model. When we assume the distribution of the velocities
of the model to be symmetrical with respect to the axis normal to the interface, the flow is one-dimensional and the
number of unknown densities is reduced to four. They are the microscopic densities: Ni , i = 1,2,9,10. We shall look,
by analogy with the studies of the subject in classical kinetic theory of gases [5] for a solution of the half-space problem
under the additional assumption that the microscopic densities depend only upon the space variable y. Therefore, the
solution is a special case of the one obtained in [7] when only binary collisions are retained. The macroscopic variables
of the flow are the total density N = 4(N1 + N3) + N9 + N10, the normal component V = 4(N1 − N3) + N9 − N10 of
the macroscopic velocity U and the total energy E. We denote by nw , n∞ and l∞ respectively the saturation density
of the vapor corresponding to the temperature and the pressure of the condensed phase, the total density and the mean
free path at infinity. Then we introduce the nondimensional variables n = N/n∞, v = V/c, e = E/mc2, ni = Ni/n∞,
i = 1, . . . ,10, νw = nw/n∞, ỹ = y/l∞ and Kn = (Sn∞l∞)−1. The solution for n1 and n9 is:
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The relation required for the existence of the steady solution is νw(1 + vw) = 1 + v∞. The accommodation coefficient
νw is thus given as a function of the normal velocities at the interface and at infinity. The solution blows up at infinity
for v∞ > 0. So the solution of the steady half-space for the model C1 only describes condensation on the interface
for v∞ �= 0. For v∞ = 0 the vapor is in Maxwellian equilibrium with the condensed phase and the flux of incoming
particles with respect to the gas phase is balanced by the flux of outgoing particles.

3. Unsteady solutions

We denote by t∞ the average time between collisions in the steady state at infinity and in addition to those defined
in the previous section, we introduce the nondimensional variables t̃ = t/t∞, γ = ct∞/l∞. For the symmetrical ten
velocity model studied in the previous section the kinetic equations reduce to:(
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∂ỹ

)
n9 = −

(
∂

∂t̃
− γ

∂

∂ỹ
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We solve them for the general initial and boundary conditions ni(0, ỹ) = hi(ỹ), i = 1,3,9,10, and ni(t̃ ,0) = kj (t̃),
j = 1,9, limỹ→∞ nj (t̃ , ỹ) = lj (t̃), j = 1,3,9,10. The general solutions are:

n9(τ, η) = a1
[
G(τ,η) + μ

]
, n10(τ, η) = a2
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K
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τ = ỹ + γ t̃, η = ỹ − γ t̃, K =
√

6B√
6 + 4Bγ Kn

,

2n(t̃, ỹ) = a1(η) + a2(τ ), 2nv(t̃, ỹ) = a1(η) − a2(τ ) (3)

B and μ are integration constants. The solutions (3) is the sum of a Maxwellian part proportional to ai , i = 1,2, and
a nonequilibrium part proportional to aiG, i = 1,2. The forms (3) of the solution and of the number of initial and
boundary conditions impose compatibility relations between the data. A discussion of these conditions is made in [9].
Here we solve the problem for the particular case
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]
, lim

ỹ→∞
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4
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The ni0, niw and ni∞ are respectively the densities of an arbitrary Maxwellian state of the gas phase taken as the
initial state of the vapor, the densities of the discrete gas in equilibrium with the condensed phase and the densities
of the Maxwellian state of the vapor far away from the interphase. When t̃ tends to infinity w(t̃) vanishes and we
obtain the boundary conditions of the steady half-space problem [7,6]. The initial and boundary conditions imply
the continuity of a1. Hence from limt̃→0 (limỹ→0 a1(η)) = limỹ→0 (limt̃→0 a1(η)) and limt̃→∞ (limỹ→∞ a1(η)) =
limỹ→∞ (limt̃→∞ a1(η)) we deduce the relation:

ν0(1 + v0) = νw(1 + vw) = (1 + v∞) (5)

which gives the accommodation coefficients νw and ν0. The solutions for n9 and n10 are the solutions (3) with:
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The geometry of the model imposes |v∞| < 1 and the solution (6) is bounded at infinity provided K > 0 and∫ η

τ
w(s)ds is bounded at infinity. In the case of condensation we prove in [9] the convergence of the solution (6)

to the solution (1) of the steady half-space problem of condensation. When e0 = e∞ the solution (6) is a Maxwellian
state of the model. Otherwise the solution is not Maxwellian and depends on the initial and boundary conditions.

An unsteady solution exists for evaporation or condensation for w(x) = 0 ∀x ∈ R and e0 = e∞ and converges to
a steady state as t̃ tends to infinity provided the condition (5) is satisfied. The vapor is in the Maxwellian equilibrium
state associated to 1, v∞ and e∞ whatever v∞. For v∞ = 0 we have the case where the incoming flux of matter
balances the outgoing one.

4. Conclusion

We find an exact solution to the unsteady half-space problem of condensation and evaporation for model C1. The
fact that the flow results from a superposition of two waves is clearly shown by the solution. We establish the relation
(5) of the macroscopic variables at interface and at infinity that allows a steady flow of evaporation and condensation
from the time dependent analysis of the half-space problem. This is in agreement with numerical results obtained
with continuous models of the Boltzmann equation [5,1–3]. For the model we use for the computations, the steady
half-space problem has no solution for evaporation for nonzero v∞. However, unsteady solutions exist for evaporation
in the half-space for nonzero v∞. Moreover they converge when t̃ tends towards infinity to a steady state of the flow
provided the relation between the macroscopic variables of the flow at interface and at infinity is satisfied. The reason
for this result seems to be the dependence of the solution of the unsteady half-space problem upon the initial conditions
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which determine the type of the transition to the steady state at infinity. Unlike the case of condensation, the existence
of a steady state for evaporation needs additional relations linking the macroscopic variables of the initial and the final
states of the vapor which cannot be satisfied in the time independent analysis of the half-space problem for model C1.
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