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Abstract

The first bifurcation in a lid-driven cavity characterized by three-dimensional Taylor–Görtler-Like instabilities is investigated for
a cubical cavity with spanwise periodic boundary conditions at Re = 1000. The modes predicted by a global linear stability analysis
are compared to the results of a direct numerical simulation. The amplification rate, and the shape of the three-dimensional pertur-
bation fields from the direct numerical simulation are in very good agreement with the characteristics of the steady S1 mode from
the stability analysis, showing that this mode dominates the other unstable unsteady modes. To cite this article: J. Chicheportiche
et al., C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Simulation numérique directe et analyse de stabilité globale des instabilités tridimensionnelles dans une cavité entraînée.
Le but de cette étude est d’étudier les instabilités de type Taylor–Görtler qui mènent à la première bifurcation d’un écoulement
de cavité entraînée. Les modes prédits par une analyse de stabilité linéaire globale sont comparés aux résultats d’une simulation
numérique directe d’une cavité cubique à Re = 1000 avec des conditions aux limites périodiques dans la troisième direction. Le taux
d’amplification et la forme des perturbations issues de la simulation numérique directe permettent clairement d’identifier le mode
stationnaire S1 de l’analyse de stabilité, qui domine les autres instabilités instationnaires. Pour citer cet article : J. Chicheportiche
et al., C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The study of instabilities in a 3D lid-driven cavity is an active field of research. The cavities often considered
both numerically or experimentally have no-slip boundary conditions in the spanwise direction. For low Reynolds
numbers, these endwalls induce a quick destabilization of the steady flow toward an unsteady one. Three-dimensional
structures, called Taylor–Görtler-Like (TGL) vortices are identified in the experiments of Koseff and Street [1]. They
are triggered by the curvature of the primary eddy formed by the motion of the upper wall. The role of endwalls is
crucial as underlined by Albensoeder and Kuhlmann [2]. Since the present investigation focuses on the onset of the
centrifugal instabilities, spanwise periodic conditions are used in the simulations to suppress the role of the endwalls.
The conditions of the onset of TGL vortices are then investigated. Linear stability analysis can help to answer this
question. The global stability theory proves to be a powerful tool to study strongly non-parallel flows as the lid-
driven cavity [3]. Nevertheless the stability analysis gives only the potentially unstable modes, but cannot predict the
dominant instability, or the combination of instabilities, which drives the flow at Re = 1000. The aim of the present
study is to compare direct numerical simulations (DNS) and global linear stability approach to identify the mechanism
of transition.

In the first part of the paper, the equations solved by the global stability code are described. Several unstable modes
are identified for a square cavity, in accordance with the work of Theofilis et al. [3]. The numerical methods for the
incompressible DNS solver are detailed in the second part. The flow in a cubical cavity at Re = 1000, based on the
unitary length of the cavity, is validated with the benchmark of Albensoeder and Kuhlmann [4]. In the last part, a
comparison between the DNS results and the stability analysis is realized, and shows which instability triggers the
first bifurcation and the onset of non-linear TGL vortices.

2. Global linear stability analysis

The proposed stability analysis is based on the classical perturbation technique where the instantaneous flow
q = (u, v,w,p)t is the superimposition of unknown fluctuations q̂ on a given 2D steady basic flow Q̄: q(x, y, z, t) =
Q̄(x, y) + εq̂(x, y, z, t) where ε � 1 and q̂(x, y, z, t) = q̃(x, y) exp(i(βz − ωt)) + complex conjugate. The per-
turbation is then non-homogeneous in the x- and y-directions. Since a temporal approach is adopted, the span-
wise wavenumber β is a real parameter, whereas the global circular frequency is the unknown complex number
ω = ωr + iωi . After introducing this decomposition in the dimensionless 3D incompressible Navier–Stokes equa-
tions, a linearization leads to the following equations:
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∂ũ

∂y
+

(
−β2

Re
− ∂Ū
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ṽ = −iωũ
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These equations can be written as a complex non-symmetric generalized eigenproblem, with eigenvalue ω and
eigenvector q̃: [A(Re, β)−ωB(Re, β)]q̃ = 0. The problem is discretized on a non-uniform Cartesian grid refined near
the walls. A finite difference scheme, optimized in the wavenumber space, along with a coordinate transform are used
to evaluate the first and second derivatives [5]. Lastly, the eigenvalue problem is solved with an Implicitly Restarted
Arnoldi Method [6]. As a result, the imaginary and real parts of ω pertain respectively to the growth/damping rate
and the frequency of an instability mode. If ωi < 0 the perturbation decreases in time so the flow is stable, whereas if
ωi > 0 the flow is unstable.

The basic flows for the square cavity at Re = 1000, obtained on two grids of 1252 and 1502 points with a 2D
version of the incompressible solver described later, are in good agreement with the benchmark datas of Botella and
Peyret [7]. The results from the two grids are used in the stability code with no interpolation, and allow to quantify
the convergence of the eigenmodes. In Table 1, the characteristics of the four least-stable instability modes are given.
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Table 1
Maxima of amplication rate and circular frequency of the first four eigenmodes, given for 1252 and 1502 point grids

Re = 1000 S1, β = 17.0 T1, β = 17.0 T2, β = 7.0 T3, β = 15.0

ωi ωr ωi ωr ωi ωr ωi ωr

1252 0.1422 0.0000 0.0988 0.6967 0.0118 0.4962 0.0162 1.3721
1502 0.1430 0.0000 0.0995 0.6971 0.0117 0.4966 0.0168 1.3730

Fig. 1. Neutral curves on the left, and amplification rates versus the spanwise wavenumber on the right, at Re = 1000 for the first
four eigenmodes (grid 1252).

They are referred to as S1 for the steady mode and T1, T2, T3 for the traveling modes, already described by Theofilis
et al. [3]. The amplification rate and the frequency of each modes converge with two digits after the decimal point
when the grid is refined.

The neutral curves for the four modes, depicted in Fig. 1, are in very good agreement with those of Theofilis et
al. [3]. They represent the limit of stability of a mode in the parameter space (Re, β). The first critical Reynolds number
Rec � 780, for β � 15, is associated with the S1 mode. The unsteady modes T1, T2, T3 become unstable respectively
for (Rec, β) � (840,15), (920,7.5), and (960,14). Note that the corresponding most amplified wavenumber is very
close for the S1 and T1 modes, whereas the preferred wavenumber of T2 is well distinct. For Re = 1000, all these
modes are potentially unstable, and the dependence of the amplification rate ωi on the spanwise wavenumber is shown
in Fig 1. The growth rates of T2 and T3 are very weak, so that the flow is dominated by the competitive modes S1
and T1. In their experiments for a square cavity with a spanwise aspect ratio of 3, Benson and Aidun [8] identify
an unsteady flow, whose frequency is very close to the one of T1, as noted by Theofilis et al. [3]. To understand
which mode is selected when the effects of endwalls are not taken into account, direct numerical simulations are now
performed with periodic conditions in the spanwise direction.

3. Direct numerical simulation

The 3D incompressible Navier–Stokes equations are solved in dimensionless form. Since the velocity–pressure
formulation is retained, the strategy to be adopted is either grid staggering or collocation to store working variables.
Since central differencing is used, we favor the first strategy to avoid grid-to-grid oscillations. Spatial discretization
of non-linear terms are performed with a compact six-order finite difference scheme with coefficients calculated
for a non-uniform Cartesian staggered grid. Viscous terms are discretized with second-order accuracy in space and
integrated in time with a second-order implicit Crank–Nicolson, requiring the solution of a linear algebraic system
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Fig. 2. Histories of residuals for the 36 × 36 × 26 (left) and 64 × 64 × 44 (right) point grids: u, v (- - -); w, (—–); p, (- · - ·).

Fig. 3. Left: Histories of residuals for the 100 × 100 × 64 point grid: u, v (- - -); w, (—–); p, (- · - ·). Right: Logarithmic evolution of the spanwise
component of flow versus time for 100 × 100 × 64 grid and anoise = 10−6.

with a block-tridiagonal matrix. Other terms are advanced with a third-order Adams–Bashforth scheme leading to a
classical semi-implicit method. Interpolation between node and vertex grids is a crucial step performed with six-order
Lagrange interpolation on a non-uniform grid. The satisfaction of discrete divergence-free velocities is enforced by
a projection method ensuring second-order accuracy in time for both velocity and pressure. The spanwise boundary
conditions of the cavity are periodic, thus, a spectral collocation based on a Fourier decomposition is used in the
spanwise direction.

The calculations are performed for a cubical cavity at Re = 1000, i.e. with a spanwise extent Λ = 1, corresponding
to β = 2π . They are started impulsively from a null field, and the evolution of the residuals, defined as

∑Ntot
i=1(f (xi , t +

�t) − f (xi , t))/Ntot (where Ntot is the total number of points of each grid) for the different variables f = u,v,w,p

are reproduced in Fig. 2 and in Fig. 3 for three refined grids. The history of the residual values in Fig. 2 are very
similar for the two coarser grids. All the values seem to decrease except for the spanwise velocity residual which rises
gradually from 10−16. As it reaches a threshold value of 10−9, the slope of the three other residuals is inverted. At
the inversion time, it is verified that the intermediate state corresponds exactly to the 2D steady state previously used
as an entry for the stability analysis. During the quasi-linear rise which follows, the flow becomes three-dimensional.
The driving instability then saturates and a new phase of decrease of the residuals is visible, leading to a final steady
non-linear three dimensional state. The scenario is a little bit different for the finer grid. The spanwise component
remains zero at the beginning of the calculation, so that the other residuals decrease until zero machine is reached.
The intermediate 2D flow obtained at convergence is numerically stable as seen in Fig. 3 for 400 < t < 1500. By
analogy with the destabilization mechanism observed for the coarser grids, a very small perturbation on w with an
amplitude anoise is introduced at t = 1500. The residuals are then seen to rise and fall toward the 3D steady state
previously observed, and carefully validated with the benchmark of Albensoeder and Kuhlmann [4]. In particular, the
wavelength of the final three dimensional structures is closed to one third of the spanwise extent (i.e. β = 18.85). The
level of convergence is quantified by extracting the growth rate ωi from the history of the spanwise component w.
By plotting the logarithm of w in Fig. 3 during the development phase of the 3D instability (between t = 1520 and
1640 for the finer grid), a well-defined exponential growth is identified, whose slope gives ωi . As the grid is refined,
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Table 2
Left: amplification rates ωiDNS and wavenumber βDNS for different grids and levels of noise anoise. Right: values for the first four eigenmodes

from the stability calculation at β = 18.85 (1502 point grid)

ωiDNS βDNS

36 × 36 × 26 0.1075 17.27
64 × 64 × 44 0.1226 18.43
100 × 100 × 64, anoise = 10−3 0.1287 18.70
100 × 100 × 64, anoise = 10−6 0.1289 18.70
150 × 150 × 96, anoise = 10−6 0.1311 18.85

β = 18.85 ωi

S1 mode 0.1322
T 1 mode 0.0896
T 2 mode −0.3826
T 3 mode −0.0061

Fig. 4. Isocontour of perturbative field for DNS (100 × 100 × 64 points, first row), and S1 stability mode (150 × 150 × 44 points, second row):
u-component of velocity (left), v-component of velocity (centre), and norm of the vorticity (right). The lid motion is indicated by the arrow.

the growth rate from DNS, in Table 2, converges toward a value which is close to the growth rate of the mode S1 for
β = 18.85. The influence of the level of noise used to trigger the instability on the finer grid remains very weak.

To confirm that the final non-linear 3D structures are indeed induced by the S1 instability, the perturbation fields
during the linear phase are extracted. For that purpose, the 2D basic flow is subtracted from instantaneous fields taken
at one instant in the middle of the exponential growth phase previously identified (t = 1600). The perturbation fields
obtained are compared to the S1 eigenmode from the stability analysis in Fig. 4. We observe a great similarity between
these fields. Moreover, the S1 mode is clearly a centrifugal instability which is related to TGL vortices. Finally, the
instability mode observed is the one having the greatest growth rate in the stability analysis, which is the S1 mode. The
spanwise wavenumber is selected by the periodic conditions to be close to a multiple of the wavelength corresponding
to the maximal amplification, leading to β = 3×2π/Λ. This selection mechanism has been described by Albensoeder
and Kuhlmann [2], by varying Λ.

4. Conclusion

In this investigation, a three-dimensional steady Taylor–Görtler-Like flow is found for a cubical lid-driven cavity at
Re = 1000 with periodic spanwise boundary conditions. This steady mode corresponds to the S1 mode of a stability
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analysis, and dominates the other unsteady unstable modes predicted by the theoretical approach. The wavelength of
the vortical structures matches a submultiple of the spanwise extent of the cavity. The bifurcation reported with no-slip
endwalls is quite different and can lead directly to an unsteady flow. Further investigations are needed to characterize
the second bifurcation toward an unsteady flow for spanwise periodic conditions with the DNS solver.
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