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Abstract

A two-scale model for reactive transport in a porous medium with an evolving phase configuration is formulated. The model
equations are derived from a pore-scale model by homogenisation and are defined on a time-dependent geometry. Two different
settings are considered: In the first one, an evolving pore-water distribution is a-priori given. In the second one, the pore water
evolves due to the reaction itself. By transforming the system to a reference configuration, it can be proven that both settings lead
to mathematically well-posed problems. To cite this article: S. Meier, C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur un système de réaction–diffusion à deux échelles avec une évolution de la micro-structure. On propose un modèle
à deux échelles pour décrire le transport réactif dans des milieux poreux, dont la micro-structure change dans le temps. Les
équations du modèle sont définies dans une géométrie spatiale qui dépend du temps et elles sont obtenues a partir d’un modèle
microscopique par la méthode d’homogénéisation. Deux situations différentes sont considérés : Dans le premier cas, une évolution
de la distribution de l’eau de pores est donnée a priori. Dans le deuxième cas, c’est bien la réaction qui cause l’évolution de l’eau.
En outilisant un changement des systèmes de coordonnées, on prouve que les deux situations conduisent à des problèmes qui sont
mathématiquement bien posés. Pour citer cet article : S. Meier, C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Transport processes in media with a highly complex and varying microstructure occurs in a variety of situations
in technical, biological or geological applications. In this work, a two-scale model is presented in order to accurately
model a reaction–diffusion process in a porous medium involving highly different time scales. For the special case of
constant and periodic microstructure, the two-scale concept is well-known, for instance as a model for flow in fissured
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media [1–3]. It is mathematically justified by periodic homogenisation [4,5]. However, in general the multiple phases
in a porous medium evolve in time. Important examples are air–water systems in unsaturated soils or the porous matrix
of concrete, which grows due to precipitation of reaction products. Obviously, such changes can have an influence on
the size and connectivity of the pore channels and, consequently, affect the transport velocity and need to be modelled.

Homogenisation with evolving microstructure has been encountered in the literature in at least two different ways:
The first solution consists in describing the time-dependent interfaces between the phases either by a level set [6] or by
a smooth phase-field approximation [7]. In both cases, the balance equations for the concentrations can be rewritten
as PDEs with periodic coefficients on the whole of Ω . The second approach consists in transforming the equations to
a fixed periodic reference geometry by a (virtual) deformation [8–10], similar as done in continuum mechanics. The
first approach is more suitable for numerical simulations. The second approach, however, turns out to be very useful
for obtaining analytical results, even though the transformed PDEs are more complicated than the original ones. The
main drawback – besides a considerable technical effort – is that topology changes have to be excluded at present.

The second approach has been worked out for the evolution of the solid phase in a porous medium. In this work, we
follow similar ideas in order to construct a mathematical framework for two-scale reaction–diffusion models including
an evolving liquid phase. It is important to note that this evolution in time needs not to be periodic and is restricted only
by the assumption that the connectivity of the different phases remains invariant in time. Two conceptually different
scenarios are distinguished:

(i) The evolution is independent of the reaction–diffusion process and can be considered as a-priori given.
(ii) The evolution is caused by the reaction–diffusion process via production of water. In this case, a coupled model

is needed.

The model problem considered throughout this work is a simplified version of a reaction–diffusion system modelling
a chemical degradation process in concrete structures. For details on this real-world application, we refer to [11–13].
The complete analysis including all proofs can be found in [14] and will be presented in forthcoming publications.

2. Microscopic model with evolving geometry

Let Ω ⊂ R
n be some region occupied by the porous medium. For any time t > 0, let Ω be decomposed into

subdomains Ω = Ωε
s (t) ∪ Ωε

l (t) ∪ Ωε
g(t), where Ωε

s (t), Ωε
l (t) and Ωε

g (t) are disjoint domains occupied by the solid,
liquid and gaseous phase, respectively. The quantity ε > 0 is a typical length scale of the microstructure. The internal
boundaries or interfaces are denoted by:

Sε
lg(t) := ∂Ωε

l (t) ∩ ∂Ωε
g (t), Sε

ls(t) := ∂Ωε
l (t) ∩ ∂Ωε

s (t), Sε
gs(t) := ∂Ωε

g (t) ∩ ∂Ωε
s (t)

For α,β ∈ {s, l,g}, α �= β , let νε
αβ(t, x) be the unit normal at the point x ∈ Sε

αβ(t), directed towards the β-phase.
Moreover, let wε

αβ(t, x) be the normal velocity of the interface Sε
αβ(t). Note that, in general, the exterior boundary

Γ := ∂Ω also splits up into three time-dependent parts, namely:

Γ = (
Γ ∩ Ωε

g(t)
) ∪ (

Γ ∩ Ωε
l (t)

) ∪ (
Γ ∩ Ωε

s (t)
)

We consider now a substance A that is present in the gaseous phase as a gas with concentration cε
1(t, x) and in the

liquid phase as a solute with concentration cε
2(t, x). The concentrations are re-scaled by the (dimensionless) Henry

constant H > 0, such that their equilibrium is given by cε
1 = cε

2. In the liquid phase, A takes part in a chemical reaction
with rate η(cε

2) � 0. The diffusivity D̂2 > 0 of A in the liquid phase is assumed much slower than that in the gaseous
phase (D1) and is therefore re-scaled as D̂2 = ε2D2. As in the well-known case of a constant and periodic geometry,
this specific scaling causes the homogenisation procedure to result in a two-scale model. The mass balance of A is
then given by the system:

∂t c
ε
1 − div(D1∇cε

1) = 0 in Ωε
g (t) (1a)

∂t c
ε
2 − div(ε2D2∇cε

2) + η(cε
2) = 0 in Ωε

l (t) (1b)

H−1(−D1∇cε
1 · νε

lg − cε
1w

ε
lg) = −ε2D2∇cε

2 · νε
lg − cε

2w
ε
lg on Sε

lg(t) (1c)
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Fig. 1. Transformation of the time-dependent geometry to a periodic reference configuration.

For the second interfacial condition, we account for three different types of kinetics. They distinguish in the occurrence
of additional flux terms. Using Kronecker symbols δii := 1 and δij := 0 if i �= j , the three cases1 j ∈ {2,3,4} can be
written simultaneously as:

−ε2D2∇cε
2 · νε

lg − cε
2w

ε
lg = εk2(c

ε
2 − cε

1) − δj2c
ε
2w

ε
lg − δj3H

−1cε
1w

ε
lg on Sε

lg(t) (1d)

Here k2 > 0 is some exchange coefficient. At the external boundary, we impose a Robin condition for A in the gaseous
phase,

−D1∇cε
1 · νΓ = b1(c

ε
1 − cext

1 ) on Γ ∩ Ωε
g (t) (1e)

where b1 > 0 is another exchange coefficient and cext
1 (t) is a given ambient concentration. On the remaining bound-

aries and interfaces, exchange of A is not allowed and the corresponding fluxes are zero. After adding appropriate
initial conditions, (1) yields a closed system for determining the unknown concentrations cε

1 and cε
2. We refer to it by

Problem (Mε
ψ ).

3. The two-scale limit model

The following analysis can be regarded as a generalisation of the one-dimensional analysis presented in [15]. It is
based on an assumption on the evolving geometry.

Assumption A. The actual pore geometry is the image of an ε-periodic reference geometry by a time-dependent
one-to-one transformation, which is assumed a-priori known.

To be more precise, assume we are given a partition of the unit cube Y := (0,1)n into disjoint subdomains:

Y = Zs ∪ Zl ∪ Zg

See also Fig. 1. The periodic reference domains are defined via:

Gε
α(t) := int

(
Ω ∩

⋃
k∈Zn

ε(k + Zα)

)
, α ∈ {s, l,g}

where int(G) denotes the interior of a domain G. This reference geometry is transformed to the actual, time-dependent
(non-periodic) geometry by means of a coordinate transformation ψε acting one-to-one in the settings:

ψε(t, ·) : Gε
α(t) → Ωε

α(t), y = ψε(t, z) for each α ∈ {s, l,g}

1 The case j = 1 corresponds to the Dirichlet condition cε
1 = cε

2 (cf. [14]) and is not treated in this paper.
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We assume the following asymptotic expansion to be valid for the transformation:

ψε(t, x) = x + εψ0
(

t, x,
x

ε

)
+ ε2ψ1

(
t, x,

x

ε

)
+ · · ·

where the coefficient functions ψi(t, x, z), i ∈ N, are Y -periodic with respect to the variable z. Then the first-order
approximations of the geometry are:

Y 0
α (t, x) := ψ0(t, x,Zα), Γ 0

αβ(t, x) := ψ0(t, x,Σαβ)

Let ν0
αβ and w0

αβ be the unit normal and normal velocity at Γ 0
αβ . If we assume νε(t, x) ≈ ν0(t, x, x/ε), then wε

αβ is

related to w0
αβ via:

wε
αβ(t, x) = ∂tψ

ε(t, x) · νε
αβ(t, x)

≈ ε∂tψ
0(t, x, x/ε) · ν0

αβ(t, x, x/ε) +O(ε2)

= εw0
αβ(t, x, x/ε) +O(ε2) on Sε

αβ(t) (2)

For simplicity, we assume the porosity θ := 1 − |Y 0
s | > 0 to be constant. The space- and time-dependent saturation

is defined as s(t, x) := |Y 0
l (t, x)|/θ . The ε-expansion of the concentrations is done analogously as in the well-known

fixed-geometry case:

cε
1(t, x) = c0

1

(
t, x,

x

ε

)
+ εc1

1

(
t, x,

x

ε

)
+ · · · in Ωε

g (t) (3)

cε
2(t, x) = c0

2

(
t, x,

x

ε

)
+ εc1

2

(
t, x,

x

ε

)
+ · · · in Ωε

l (t) (4)

where the coefficient functions ci
1(t, x, y) and ci

2(t, x, y), i ∈ N, are Y -periodic with respect to the variable y. For the
nonlinear reaction rate, we assume:

η(cε
2) ≈ η(c0

2) +O(ε) (5)

Note that (5) is certainly true if g is linear. The asymptotic expansions (3) and (4) and the scaling relation (2) are
plugged into (1) and the coefficients of different orders of ε are collected. Assuming that |Y 0

g (t, x)| > 0 for all t and x,
we denote the effective diffusivity by:

D∗
1(t, x) := 1

|Y 0
g (t, x)|

∫

Y 0
g (t,x)

D1[δij + ∂yi
ςj ]ij dy

For j ∈ {1,2}, the Y -periodic functions ςj (t, x, ·) are solutions of the auxiliary problems:

−�ςj = 0 in Y 0
g (t, x)

∇yςj · ν0 = −ej · ν0 on Γ 0
lg(t, x) ∪ Γ 0

gs(t, x)

Omitting the upper index “0” at all quantities, the limit concentrations satisfy the following two-scale PDE system.
The macroscopic equations are

∂t

(
(1 − s)c1

) − div
(
(1 − s)D∗

1∇c1
)

+ θ−1H

∫
Γlg

k2(c1 − c2) + (δj2c2 + δj3H
−1c1)wlg dσy = 0 in Ω (6a)

−D∗
1∇c1 · νΓ = b1(c1 − cext

1 ) on Γ (6b)

The local cell problem at each x ∈ Ω is given by:

∂t c2 − divy(D2∇yc2) + η(c2) = 0 in Yl(t, x) (6c)

−D2∇yc2 · νlg = k2(c2 − c1) − (δj2 − 1)c2wlg − δj3H
−1c1wlg on Γlg(t, x) (6d)

−D2∇yc2 · νls − c2wls = 0 on Γls(t, x) (6e)
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The system (6) is a nonlinear parabolic system of partial differential equations with nonstandard coupling. We refer
to it as Problem (Tnat

ψ ).

4. Weak formulation and analytical results

We derive a weak formulation of Problem (Tnat
ψ ) in the time-dependent geometry. Let S := [0, T ] be some finite

time interval. For a smooth test function ϕ = ϕ(t, x) satisfying ϕ|t=T = 0, we obtain from (6a), (6b):

−
∫
S

∫
Ω

(1 − s)c1∂tϕ dx dt −
∫
Ω

(1 − s)c1ϕ dx

∣∣∣∣
t=0

+
∫
S

∫
Ω

(1 − s)D∗
1∇c1∇ϕ dx dt

+
∫
S

∫
Γ

(1 − s)b1(c1 − cext
1 )ϕ dσx dt

= θ−1H

∫
S

∫
Ω

∫
Γlg(t,x)

[
k2(c2 − c1) − (δj2c2 + δj3H

−1c1)wlg
]
ϕ dσy dx dt (7)

The local cell problems (6c)–(6e) are multiplied by a smooth test function Φ = Φ(t, x, y) depending on the fast
variable y ∈ Yl and satisfying Φ|t=T = 0. Integration over Yl, Ω and S gives:

−
∫
S

∫
Ω

∫
Yl(t,x)

c2∂tΦ dy dx dt −
∫
Ω

∫
Yl(t,x)

c2Φ dy dx

∣∣∣∣
t=0

+
∫
S

∫
Ω

∫
Yl(t,x)

D2∇yc2∇yΦ dy dx dt

+
∫
S

∫
Ω

∫
Γlg(t,x)

k2(c2 − c1) − (δj2c2 + δj3H
−1c1)wlg Φ dσy dx dt +

∫
S

∫
Ω

∫
Yl(t,x)

η(c2)Φ dy dx dt = 0 (8)

Since the geometry varies with time, the above weak formulation is not directly accessible to prove existence of solu-
tions, for instance, by the method of a-priori estimates. However, this technique becomes applicable after transforming
(8) to the reference geometry introduced above, provided that the transformation ψ and the velocity ∂tψ admit first
derivatives in z. It turns out that certain restrictions on the magnitude of the interfacial velocity wlg are needed – de-
pending on the interfacial condition type j ∈ {2,3,4} – in order to guarantee pointwise bounds for the concentrations
that are uniform in time. We state the main result of this analysis. For the proof and further details, we refer to [14]
(Prop. 4.5.1 and Thm. 4.5.2) and forthcoming publications.

Theorem 4.1. Assume that the interfacial velocity satisfies:

wlg

⎧⎨
⎩

� k2 if j = 2

> −min{H,1}k2 if j = 3

� −k2 if j = 4

Then the Problem (Tnat
ψ ) possesses a unique weak solution in the sense of (7) and (8). The concentrations are uniformly

bounded and there exist constants C1,C2 > 0 such that:

max
0�t�T

(∫
Ω

|c1|2 dx +
∫
Ω

∫
Yl(t,x)

|c2|2 dy dx

)
+

∫
S

(∫
Ω

|∇c1|2 dx +
∫
Ω

∫
Yl(t,x)

|∇yc2|2 dy dx

)
dt

� C1

(
|c1|2 dx +

∫
Ω

∫
Yl(t,x)

|c2|2 dy dx

)∣∣∣∣
t=0

+ C2

∫
S

|cext
1 |2 dt

5. Reaction-driven evolution of the geometry

How can we model a phase evolution that is caused by the chemical reaction itself? The two-scale model (6) has
to be complemented by an explicit evolution law for the transformation ψ . We suggest such a law for the case where
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the liquid phase evolves due to production of water by the reaction. The model is similar as the one derived in [9]
for evolving solid phase but includes a phase transition at the interfaces (namely, evaporation of water). The model is
restricted to situations where the liquid phase remains disconnected from cell to cell.

Assumption B. The transformation ψ of the local cells can be parametrised by the saturation parameter s by means
of a known mapping ψ = Ψ (s).

More precisely, we assume there exist suitable values 0 < smin < smax < 1 such that to each value s ∈ [smin, smax]
there corresponds a unique transformation ψ = �(s). We can therefore simply write Yl(s), Γlg(s), etc. The averaged
mass balance of liquid water within one local cell can be formulated as an ordinary differential equation for s,

∂t s =
∫

Yl(s)

A3η(c2)dy +
∫

Γlg(s)

k3
(
f (seq) − f (s)

)
dσy (9)

where A3 > 0 is a constant, seq is the equilibrium saturation and f describes the kinetics of evaporation at the gaseous–
liquid interfaces. Eqs. (7), (8) together with (9) yield a closed system for determining c1, c2 and s, which is highly
nonlinear. We refer to it as Problem (T� ). By analogous transformation to reference coordinates, the following result
can be established under slightly more smoothness assumptions.

Theorem 5.1. If η(c) � Mη, then there exists constants A∗
3 = A∗

3(Mη) > 0 and k∗
2 = k∗

2(Mη) > 0 such that if A3 < A∗
3

and k2 > k∗
2 , then the Problem (T�) possesses a unique solution.

The proof relies on a fixed-point principle and is given in [14] (Thms. 5.3.9 and 5.4.3).
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