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Abstract

This paper is devoted to a micromechanics-based simulation of the response of concrete to hydrostatic and oedometric compres-
sions. Concrete is described as a composite made up of a cement matrix in which rigid inclusions are embedded. The focus is put
on the role of the interface between matrix and inclusion which represent the interfacial transition zone (ITZ). A plastic behavior
is considered for both the matrix and the interfaces. The effective response of the composite is derived from the modified secant
method adapted to the situation of imperfect interfaces. To cite this article: T.H. Le et al., C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Comportement non linéaire de composites à phase inclusionnaire sous haute pression : application aux bétons et mortiers.
On présente une approche micromécanique de la réponse d’un béton à des compressions œdométrique ou hydrostatique. Le béton
est décrit comme un composite avec une matrice cimentaire et des inclusions rigides. L’accent est mis sur le rôle de l’interface entre
matrice et inclusion qui représente la zone interfaciale de transition (ITZ). On se donne un comportement élastoplastique pour la
matrice ainsi que pour les interfaces. Le comportement homogénéisé est obtenu à l’aide de la méthode sécante modifiée adaptée à
la présence d’interfaces. Pour citer cet article : T.H. Le et al., C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The interfacial transition zone (ITZ) in concrete refers to a region of the cement paste surrounding the aggregates
in which the mechanical properties of the paste are believed to be lower than in the bulk. The purpose of the present
Note is to investigate the role of the ITZ in the effective response of concrete under compression. In particular, we
aim at highlighting that the discrepancy of behavior between the hydrostatic and œdometric compression for high
pressure values can be explained by an adapted constitutive law of the ITZ. The ITZ is replaced by a 2D interface the
behavior of which is described by a constitutive equation relating the stress vector T acting on the aggregate and the
jump [ξ ] of the displacement vector ξ in the interface. Introducing the unit normal n to the interface and the normal
and tangential stress components Tn = T · n and T t = T − Tnn, this constitutive equation reads:{

Tn = kn[ξ · n]
T t = kt [ξ ]t (1)

where [ξ ]t = [ξ ] − [ξ · n]n is the tangential component of the displacement jump. kn and kt respectively represent
the normal and tangential stiffnesses of the interface. The aggregates themselves are modelled as rigid spherical
inclusions, with density N and radius R. Their volume fraction in the composite is denoted by φa = 4πNR3/3.

The work exposed hereafter focuses on the implementation of a homogenization scheme taking specifically into
account the role of the interface. The impact of such an imperfect interface on mechanical properties at the upper scale
has already been the subject of various contributions [1–3].

Notations. In the following, the deviatoric part of the strain (resp. stress) tensor ε (resp. σ ) is εd = ε − 1
3 trε1 (resp.

σ d = σ − 1
3 trσ1). We also introduce the scalar εd = ( 1

2εd : εd)1/2 (resp. σd = ( 1
2σ d : σ d)1/2). ā denotes the average

of the field a(z) in the composite while āα is the average over the phase α.

2. Linear homogenized behavior

We first model the cement paste as an isotropic linear elastic material (stiffness tensor Cc, bulk and shear moduli kc

and μc, Poisson’s ratio νc), the interface being characterized by the two constants kn and kt . We look for the effective
behavior of the composite which is to be characterized by the homogenized stiffness tensor Chom.

In the latter, the aggregates together with the surrounding interface are considered as spherical inclusions in the
generalized sense of morphological pattern (see [4]). The cement paste is regarded as a matrix in which the aggregate+
interface (A+ I) inclusions are embedded. The effective behavior is derived according to the generalized Mori–Tanaka
scheme [4].

This requires one to solve the generalized Eshelby’s problem in which a spherical A+I inclusion with radius
R is embedded in an infinite medium with bulk and shear moduli kc and μc. Uniform strain boundary conditions
(ξ → E∞ · z) are prescribed at infinity (|z| → ∞). First an isotropic loading is considered (E∞ = E∞1). In spherical
coordinates with the center of the inclusion as a pole, the displacement in the medium surrounding the A+ I inclusions
takes the form:

ξ(z) =
(

Ar + B

r2

)
er (2)

Coefficients A and B are determined from the continuity of the stress vector at the interface and from the boundary
condition at infinity:

A = E∞; B

R3
= 3kc − knR

4μc + knR
E∞ (3)

In the framework of the generalized Mori–Tanaka scheme, the average strain in the matrix ε̄c and in the A+ I inclusion
ε̄A+I read:

ε̄c = E∞1; ε̄A+I = (
A + B/R3)1 (4)

The auxiliary strain E∞ is related to the macroscopic strain E by the average rule:

E = (1 − φa)ε̄
c + φa ε̄

A+I (5)
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Similarly, the stress average rule reads:

Σ = (1 − φa)σ̄
c + φa σ̄

A+I (6)

with σ̄ c = Cc : ε̄c and

σ̄A+I = kn(AR + B/R2)1 (7)

The condition Σ = Chom : E eventually yields:

khom = 3(1 − φa)kc + φaαknR

3(1 − φa + αφg)
with α = A + B/R3

E∞ = 4μc + 3kc

4μc + knR
(8)

In particular, in the case of an incompressible matrix:

khom = 4(1 − φa)

3φa

μc + R

3φa

kn (9)

In order to determine the homogenized shear modulus μhom, the solution of the generalized Eshelby’s problem for a
purely deviatoric strain E∞ at infinity is due. We consider for instance

E∞ = E∞(e1 ⊗ e1 − e2 ⊗ e2) (10)

where e1, e2, e3 define a Cartesian orthonormal frame. In spherical coordinates (r, θ,ϕ) (θ = 0 corresponding to the
direction of e3), the displacement field in the domain r > R is sought in the form [5]:

ξ(r) = ξr(r) sin2(θ) cos(2ϕ)er + ξθ (r) sin(θ) cos(θ) cos(2ϕ)eθ + ξϕ(r) sin(θ) cos(2ϕ)eϕ (11)

with

ξr (r) = Ar + 3
C

r4
+ 5 − 4νc

1 − 2νc

D

r2

ξθ (r) = Ar − 2
C

r4
+ 2

D

r2

ξϕ(r) = −ξθ (r) (12)

Coefficients A, C and D are again determined from the stress vector continuity at the interface and from the strain
condition at infinity (A = E∞). Following the same steps as for the spherical loading, a Mori–Tanaka estimate for
μhom is then derived. In the case of an incompressible cement matrix, the later reads:

μhom = μc

2

10μcknR + 48μ2
c + 2ktR

2kn + 12ktRμc + (12ktRμc + 6μcknR − 48μ2
c + 3ktR

2kn)φa

5μcknR + 24μ2
c + ktR2kn + 6ktRμc − (4ktRμc + 2μcknR − 16μ2

c + ktR2kn)φa

(13)

It is worth recalling that the macroscopic moduli (9) and (13) have been obtained under the assumption of the in-
terfacial law (1). The validity of the latter should obviously be restricted to compressive normal stress to avoid the
nonlinear effect of the decohesion of a unilateral contact. Keeping in mind that the aim of this work is to model the
nonlinear behavior of concrete, the linear scheme will be used as a tool in the nonlinear homogenization process.
Nevertheless, the condition of compressive stress state will have to be satisfied in this linear scheme, which will be
the case for the loadings considered hereafter.

3. Nonlinear homogenized behavior

3.1. Principle of nonlinear homogenization

A more realistic modelling should take into account irreversible strains in the cement matrix. We now assume that
the matrix is a perfect elastoplastic von Mises material, whose plastic criterion takes the form:

1
σ d : σ d = K2 (14)
2
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No unloading being considered, we approach this behavior by nonlinear elasticity. The bulk modulus kc is kept con-
stant while the shear modulus μc is a decreasing function of the scalar deviatoric strain εd , chosen in such a way that
the condition (14) is asymptotically satisfied for large εd [6,7]:

μc(εd) = K

2ε0

1

1 + εd/ε0
(15)

The constant ε0 is a reference deviatoric strain which is related to the initial elasticity μ0 = μ(0) of the matrix by
2ε0 = K/μ0. The cement-aggregate interfaces are still characterized by a constitutive equation of the form (1).

Due to the nonlinear behavior of the matrix, the shear modulus μc(εd(z)) is now a function of the loading level
and of the location in the cement paste. In order to deal with this nonlinearity, the modified secant method [8] is
adopted for the derivation of the homogenized behavior. In short, secant methods propose to estimate the shear strain
level in the matrix by a so-called “effective” value 〈εd〉, which is supposed to represent an average of the strain field.
In turn, the shear modulus μc(εd(z)) is then approximated by μc(〈εd〉). The modified secant method introduces an
original energy-based effective strain. More precisely, the later is the second order moment εd = ( 1

2εd : εd
c)1/2 of the

deviatoric strain. εd is related to the derivative of the homogenized stiffness w.r.t. μc [9]

2φcεd
2 = 1

2
E : ∂

∂μc

Chom : E (16)

If macroscopic properties are isotropic (Chom = 3khomJ + 2μhomK), it yields:

2φcεd
2 = 1

2

∂khom

∂μc

E2
v + ∂μhom

∂μc

Ed : Ed (17)

where E is the macroscopic strain applied to the representative elementary volume (r.e.v.) (Ev = tr(E) and Ed =
E − 1

3
trEI).

The composite made up of the matrix with shear modulus μc(εd) together with the A + I inclusions is then ho-
mogenized in the framework of the generalized Mori–Tanaka scheme presented at Section 2. The effective behavior is
finally estimated in the nonlinear form Σ = Chom(E) : E. For simplicity, only the limit case of incompressible matrix
(kc → ∞) is considered.

3.2. Compaction of concrete under hydrostatic compression

We investigate in this section the behavior of concrete under hydrostatic compression (E = E1). It is recalled by
(9) that khom depends on the effective matrix shear modulus μc(εd) and on kn which is first regarded as constant.
Combining this equation with (17) yields the following estimate for εd :

εd = − Ev√
3φa

(18)

Hence, εd increases simultaneously with the macroscopic volume strain |Ev| whereas (15) and (9) indicate that both
μc(εd) and khom decrease. Asymptotically, khom tends toward the limit Rkn/(3φa) as shown on Fig. 1. In contrast, the
experimental results [10] on the behavior of concrete under high hydrostatic pressure plotted on the same figure reveal
a stiffening of the material and a change of curvature in the Σc(Ev) curve. It is believed that these features should be
attributed to the stiffening of the cement-aggregate interfaces, as closure goes on. In addition, a constant value of kn

allows the normal displacement jump to reach any negative value and thus may not prevent possible interpenetrations.
We therefore introduce a phenomenological dependence of the normal stiffness kn of the interface on the normal
component β = [ξ ] · n of the displacement jump:

kn = kn0

1 + β/β0
(19)

The positive constant β0 can be interpreted as the maximum possible closure of the interface. Due to the incompress-
ibility of the cement matrix, the surface average of β can be directly related to Ev :

Ev = 3φa

β̄
(20)
R
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Fig. 1. Macroscopic homogenized behavior and stiffening effects – points: experimental results from Burlion et al. [10] – curves: models with the
following parameters Rkn0 = 2100 Mpa, φa = 0.5, ε0 = 0.0027, μ0 = 11 700 Mpa for kn constant and β0/R = 0.135 for kn nonlinear.

The homogenized behavior in hydrostatic compression is obtained by considering both μc and kn as functions of Ev .
As shown in Fig. 1, this simple small strain model with rigid aggregates and incompressible plastic matrix provides an
excellent agreement with the experimental results. Interestingly, it reproduces the change of concavity of the experi-
mental stress-strain curve and the existence of a vertical asymptote. Indeed, the maximum compaction corresponding
to total interface closure (β = −β0) is given by:

Elim
v = −3φa

β0

R
(21)

It is emphasized that the average normal displacement jump is involved by means of a first order moment. Indeed, this
choice allows to relate the latter to the macroscopic strain by the exact relationship (20) i.e. without resorting to any
homogenization scheme. We could also have chosen a second order moment to interpret our nonlinear homogenization
scheme in the framework of variational methods developed in [11]. This would have had the great advantage of
providing a macroscopic potential. Nevertheless, these methods rely upon the existence of a microscopic potential
defining the behavior of each constituent, which will not be the case anymore in the next section in which β0 will
depend on the shear strains in the interface.

3.3. Compaction of concrete under oedometric loading

In the framework of the model of Section 3.2, it should be observed that the above value of maximum compaction
is also relevant under oedometric compression (uniaxial confined compression), that is, for a uniaxial macroscopic
strain state. This is due to the fact that the maximum closure of the interface is assumed to be a material constant. In
contrast, the macroscopic volume strain is known to be greater in oedometric compression than in a purely hydrostatic
experiment [10]: it is believed that this is due to the fact that nonpure hydrostatic loading induces irreversible shear
strains in the interfaces which enhance the compaction. Indeed, it should be emphasized that this behavior is specific
to concrete and mortar. For instance, it does not occur in porous metal alloys in which the maximum volume strain
corresponds to the closure of the porosity. This strongly suggests that it must be related to the existence of the ITZ.

In fact, the aggregates and the cement being modelled as incompressible materials, the volume strain observed at
the macroscopic scale goes back to the pore collapse in the ITZ. The idea is that the amount of pore collapse depends
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on the shear strain applied to the ITZ. We therefore modify the phenomenological model (19) through the fact that β0
now depends on the tangential component γ = |[ξ ]t | of the displacement jump:

kn = kn0

1 + β/β0(γ )
(22)

where γ is the sliding of the interface. kt is supposed constant. Moreover, we choose a simple linear law for β0

β0(γ ) = β0
0 (1 + a0γ /R) (23)

In order to implement this model, an estimate of γ is due. For this purpose, we resort to the quadratic average of γ

over the cement-aggregate interface. The later is related to the derivative of the homogenized stiffness tensor w.r.t.
the tangential stiffness of the interface [12]. This result represents the counterpart in terms of displacement jump of
Kreher’s identity (16). More precisely, let us consider a r.e.v. Ω of the composite. The elastic energy density Ψ in the
linear elastic problem is the sum of the contributions of the cement paste (domain Ωc) and of the interfaces Ii :

|Ω|Ψ = 1

2

∫
Ωc

ε : Cc : ε dΩ +
∑

i

1

2

∫
Ii

(
knβ

2 + ktγ
2)dS = |Ω|

2
E : C

hom : E (24)

Deriving this relation w.r.t. kt , it can be shown that:

|Ω|∂Ψ

∂kt

= |Ω|
2

E : ∂Chom

∂kt

: E = 1

2

∫
I

γ 2 dS (25)

where I = ⋃
i Ii . Note that this result is by no means trivial since both the strain field ε in the cement paste and the

displacement jump [ξ ] depend on kt . The quadratic average ¯̄γ of the tangential jump is then defined as:

¯̄γ 2 = 1

|I|
∫
I

γ 2 dS (26)

We eventually derive ¯̄γ from (25):

¯̄γ 2 = R

3φa

E : ∂Chom

∂kt

: E (27)

In particular, in the isotropic case, (27) reduces to

¯̄γ 2 = 2R

3φa

∂μhom

∂kt

Ed : Ed (28)

where the identity ∂khom/∂kt = 0 (see (9)) has been used. In particular, under hydrostatic compression, we retrieve
from (28) that ¯̄γ = 0.

Returning now to the nonlinear homogenization problem, the spirit of the modified secant method suggests to
estimate the tangential stiffness kt (γ ) in the real r.e.v. by the uniform value kt ( ¯̄γ ). In the case of an oedometric
loading, we have

Ed : Ed = 2

3
E2

v (29)

The averages β̄ , εd and ¯̄γ are related to the macroscopic strain respectively by (16), (20), (28), together with the
expressions (9) of khom and (13) of μhom. Fig. 2 compares the prediction of the micromechanical model with ex-
perimental results. The parameters of the model are on the one hand those identified previously from the results of
an hydrostatic compression test, and on the other hand the coefficient a0 and the tangential stiffness kt . Again, the
agreement with the experimental data is excellent at high mean pressure Σm. The discrepancy between theory and
experiment (dashed line part of the experimental curve) is most probably due to experimental problems to measure
accurately low values of Σm [10].

It should also be recalled that the nonlinear homogenization scheme implemented here relies on the definition of a
unique effective value of the strain state for each phase. The heterogeneity of the strain state within the matrix phase
should be better captured by defining several concentric spheres centered on the inclusions and an effective strain in
each zone. As shown in [13], this method could improve the accuracy of the macroscopic response.
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Fig. 2. Stress–strain response under hydrostatic compression loading and uniaxial confined loading with a0 = 160, kt = kn0 and the same parame-
ters as in Fig. 1.
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