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Abstract

This work consists in evaluating algebraically and numerically the influence of a disturbance on the spectral values of a diagonal-
izable matrix. Thus, two approaches will be possible; to use the theorem of disturbances of a matrix depending on a parameter, due
to Lidskii and primarily based on the structure of Jordan of the no disturbed matrix. The second approach consists in factorizing
the matrix system, and then carrying out a numerical calculation of the roots of the disturbances matrix characteristic polynomial.
This problem can be a standard model in the equations of the continuous media mechanics. During this work, we chose to use the
second approach and in order to illustrate the application, we choose the Rayleigh–Bénard problem in Darcy media, disturbed by
a filtering through flow. The matrix form of the problem is calculated starting from a linear stability analysis by a finite elements
method. We show that it is possible to break up the general phenomenon into other elementary ones described respectively by
a disturbed matrix and a disturbance. A good agreement between the two methods was seen. To cite this article: H.B. Hamed,
R. Bennacer, C. R. Mecanique 336 (2008).
© 2008 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Développement analytique d’un problème à valeurs propres d’une matrice perturbée appliqué à l’analyse de stabilité
de la convection mixte en milieu de Darcy. Ce travail consiste à évaluer algébriquement et numériquement l’influence d’une
perturbation sur les valeurs spectrales d’une matrice diagonalisable. Ainsi, deux approches seront possibles ; utiliser le théorème
de perturbations d’une matrice dépendant d’un paramètre, dû à Lidskii et essentiellement basé sur la structure de Jordan de la
matrice perturbée. La seconde approche consiste à factoriser le système matriciel puis procéder à un calcul numérique des racines
du polynôme caractéristique de la matrice des perturbations. Ce problème peut être un modèle type dans les équations de la méca-
nique des milieux continus. Au cours de ce travail, nous avons choisi d’utiliser la seconde approche et d’utiliser comme application
illustrative, le problème de la convection de Rayleigh–Bénard en milieu de Darcy, perturbée par un débit filtrant. La forme ma-
tricielle du problème est calculée à partir d’une analyse de stabilité linéaire par une méthode d’éléments finis. Nous démontrons
qu’il est possible de décomposer le phénomène général en d’autres élémentaires décrits respectivement par une matrice perturbée
et une perturbation. Un bon accord entre les deux méthodes a été relevé. Pour citer cet article : H.B. Hamed, R. Bennacer, C. R.
Mecanique 336 (2008).
© 2008 Published by Elsevier Masson SAS on behalf of Académie des sciences.
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1. Introduction

The general situation is to reduce into diagonal form a linear operator describing the mixed convection in Darcy
media. This operator is obtained via linear stability analysis performed with the finite elements method. At the thresh-
old of the instabilities, the mixed convection in the porous media can be described as filtering flow destabilized by
a vertical temperature gradient (or constant heat flux). It can be also considered as a Rayleigh–Bénard problem dis-
turbed by the filtering flow. In particular, we study the pattern of formation of progressive waves in the considered
porous medium heated from below in the presence of a horizontal flow. The system has an asymptotic response ad
infinitum. When the system exhibits a supercritical bifurcation, a linear stability analysis is performed in order to lo-
cate the transition from the rest state towards transverse 2D rolls. The presence of a through flow breaks the rotational
symmetry of the system at the supercritical instability threshold and selects transversal rolls among the infinity of
unstable modes.

This Note gives the main algebraic transformations to describe the problem by a disturbed matrix, which is the
Bénard convection matrix, with the perturbation matrix containing the influence of the added boundary condition.
A large number of continuous media mechanics can use the same approach. This subject has at the same time a fun-
damental, academic and practical interest. Indeed, the mixed convection makes it possible to explain certain weather
phenomena and it intervenes in industrial applications having strong economic stakes such as cooling or manufacture
of electronic components. The work presented here constitutes a new pattern of determination of the threshold of
instabilities and has application practises, for example, in CVD (Chemical Vapour Deposits) and other crystal growth
technics. This subject is currently open and very few publications are available in the literature.

2. Solution method

Starting from the general canonical form of eigenvalues problems (cf. Eq. (1)) we can immediately see that this
system has n solutions, where n is the dimension of the matrix [E]. We suppose that [E] is invertible.([E] − λId

){F } = 0 (1)

Id is the identity application. A trivial solution is possible only if the determinant of [E − λId ] is null. In this way,
Eq. (1) yields a set of eigenvalues λi (where 1 � i � n) with their corresponding eigenvectors {F }i , 1 � i � n, which
are the solutions of the system. The eigenvalues obtained are not necessary simple and can be arranged obeying the
following relation:

|λj | � |λp| � · · · � |λk| � · · · � |λm|, 1 � j,p, k,m, . . . � n (2)

Now we suppose that the matrix [E] can be factorized as follows:

[E] = [K]−1[B][Kθ ]−1[B], where (3a)

[Kθ ] = [K] − ε[B] (3b)

The matrices [K] and [B] are two invertible matrices, and α is a small real number called the perturbation factor.
It is then easy to remark that the matrix [E(ε = 0)] = ([K]−1[B])2 has a particular form. We will name it [E0] and
consider it as a reference perturbed matrix (supposed studied previously). Such a form is classically obtained in fluid
dynamics as in the Rayleigh–Bénard problem.

Now we propose to start an algebraic development in order to give a general relation between the controlling
parameters and the stability of the problem considered. The goal will be to get two distinct eigenvalue problems
where the first is related to the reference problem and the second focusing on the perturbation (α). We substitute [Kθ ]
by its expression (Eq. (3b)) in the global matrix [E(α)] (Eq. (3a)), and, after factorizing, get:
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[E(ε)] = [K]−1[B][[K] − ε[B]]−1[B]
= [K]−1[B][K]−1[Id − ε[B][K]−1]−1[B]

It is shown by linear algebra, when M is an invertible square matrix, that

[Id + M]−1 =
∞∑

k=0

(−1)k[M]k (4)

This series is called the Von Neumann series and is converging only if any norm of [M] is smaller than unity
(‖M‖ < 1). In our case we have to respect the condition:∥∥ε[B][K]−1

∥∥ < 1 (5)

Using (4) and bringing out the first term of the series, then we factorize the matrix [E(α)][
E(ε)

] = [K]−1[B][K]−1[Id −ε[B][K]−1︸ ︷︷ ︸
[M]

]−1[B]

= [K]−1[B][K]−1[B]︸ ︷︷ ︸
[E0]

[B]−1

( ∞∑
k=0

(−1)k
(−ε[B][K]−1)k

)
[B]

= [
E0][Id + [B]−1

∞∑
k=1

(
ε[B][K]−1)k[B]

]

Then we can write[
E(ε)

] − λId = 0

⇒ [
E0][Id + [B]−1

( ∞∑
k=1

(
ε[B][K]−1)k

)
[B]

]
− λId = 0

⇒ [
E0] +

[[
E0][B]−1

( ∞∑
k=1

(
ε[B][K]−1)k

)
[B]

]
− λId = 0

⇒ [
E0] + [

Eperturb(ε)
] − λId = 0

The obtained perturbation matrix is defined as follows:

[
Eperturb(ε)

] = [
E0][B]−1

( ∞∑
k=1

(
ε[B][K]−1)k

)
[B]

Finally we obtain:([
E0] + [

Eperturb(ε)
]) − λId = 0 (6)

Property. If we have the following properties λM = eig(M); λX = eig(X) where M and X are two invertible matrices,
then: {

M − λMId = 0
X − λXId = 0

∑
−→ (M + X) − (λM + λX)Id = 0

On the basis of the eigenvalues equation (6) and using the above property, we have

(λE0)i + (λEperturb)i = λi (7)

The consequent equation (7) will be true for all 1 � i � n, where n is the [E0] and [Eperturb] dimension.
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Fig. 1. The physical model and dimensionless boundary conditions.

Fig. 1. Modèle physique et conditions aux frontières adimensionnelles.

If the reference classical problem is well known ((λE0)i), it remains to determine (λEperturb)m

(λEperturb)m = mth eigenvalue of

([
E0][B]−1

( ∞∑
k=1

(
ε[B][K]−1)k

)
[B]

)
(8)

3. Explicit solution to the Rayleigh–Bénard problem

3.1. Physical problem definition

The system to be studied consists of a horizontal rectangular cavity with an aspect ratio A = L/H , where L′
and H ′ are respectively the length and the height of the cavity, filled with an incompressible Newtonian fluid. The
enclosure, sketched in Fig. 1, is heated from the bottom and cooled from the top. The set of equations is given in non-
dimensional form in Eq. (9), under stream function formulation. Here, RT = Ra/Da is the Darcy–Rayleigh number
which expresses the balance between buoyancy and viscous forces, Da = μ+ eK/μf L′2 is the Darcy number, which
usually takes very small values compared with unity in porous media, T is the temperature and Pr is the Prandtl
number. The operator J is defined by: J (f,g) = ∂f

∂z
∂g
∂x

− ∂f
∂x

∂g
∂z⎧⎪⎨

⎪⎩
∇2ψ = Pr RT

∂T

∂x
∂T

∂t
+ J (ψ,T ) = ∇2T

(9)

The general solution of the system of Eqs. (9) can be decomposed, regardless of how high the RT is imposed, into
a sum of pure diffusive (ψC and TC ) and convective solutions and (ψ̃ and θ̃ ). Thus, we introduce Peclet number such
as Pe = Re × Pr where Re is the Reynolds number, and we introduce the following transformations:{

ψ = ψC + ψ̃(t, x, z)

T = TC + θ̃ (t, x, z)
where

{
ψC = Pe×z

TC = CC = 1 − z
(10)

Substituting expressions (10) into the system (9) and making some algebraic calculus yields the following system
of governing equations:⎧⎪⎪⎨

⎪⎪⎩
∇2ψ̃ = Pr RT

∂θ̃

∂x
∂θ̃

∂t
+ ∂ψ̃

∂z

∂θ̃

∂x
+ Pe

∂θ̃

∂x
− ∂ψ̃

∂x

(
∂θ̃

∂z
− 1

)
= ∇2θ̃

(11)

The system (11) is the perturbation equations. The boundary conditions for the perturbations are:
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∇ θ̃ · 	n|x=0,A = 0, θ̃ |z=0,1, ψ̃ |� = 0,
∂ψ̃

∂x

∣∣∣∣
�

= 0 and
∂2ψ̃

∂z2

∣∣∣∣
�

= 0 (12)

The linear stability of the rest state is now investigated in terms of the governing parameters of the problem. The
perturbed stream function, and temperature fields can be expressed as:{

ψ̃(x, z, t) = ψ0F(x, z)ept

θ̃ (x, z, t) = θ0G(x, z)ept
(13)

where F(x, z) and G(x, z), are space functions describing the fields ψ̃(x, z, t) and θ̃ (x, z, t) at the onset of convection,
p is a complex number which expresses the perturbation growth rate and ψ0 and θ0 are constants. Considering the
marginal stability (p = 0) and substituting Eqs. (13) into (11) yields (neglecting the second order terms)⎧⎪⎨

⎪⎩
ψ0

1

Pr
∇2F = RT θ0

∂G

∂x

Pe θ0
∂G

∂x
+ ψ0

∂F

∂x
= θ0∇0G

(14)

The numerical method used to solve system (15) and (14), is the same as described in details by [1] and only the main
steps are given here. The calculus domain is discretized into four-node rectangular Hermit-cubic-elements. Using the
Bubnov–Galerkin procedure, the resulting space-discretized equations are expressed as follows:{

ψ0[K]{F } = RT θ0[B]{G}
ψ0[B]{F } = θ0[Kθ ]{G} (15)

where [B], [K] and [Kθ ] are m×m matrices, describing, respectively, the transport-term-integral, the stream function
and the temperature coefficients. {F } and {G} are unknown vectors of size m. Here m = 4n, where n is the total nodes
number. The corresponding elementary matrices are now given:

(Ki,j )
e
1�i,j�4 =

∫
	

1

Pr
∇Ni∇Nj d	; (Kθi,j

)e1�i,j�4 =
∫
	

(
∇Ni∇Nj − Pe

∂Ni

∂x
Nj

)
d	

(Ki,j )
e
1�i,j�4 =

∫
	

∇Ni∇Nj d	; (Bi,j )
e
1�i,j�4 =

∫
	

∂Ni

∂x
Nj d	 (16)

The functions Ni (x, z) defined on the calculus domain 	 as the basis functions, are the Hermit’s shape interpolation.
The above integrals are evaluated using the Gauss integration algorithm.(

[E] − 1

RT

Id

)
{F } = 0 (17)

The matrix [E] = [K]−1[B][Kθ ]−1[B] is an m × m invertible square matrix composed of products of the global
matrices, and Id is the identity application. Eq. (17) can be rearranged to the classical canonical form:

[E − λId ]{F } = 0 (18)

where, λ represents the eigenvalue λ = 1/RT and {F } is the eigenvector related to λ. Considering that the values of
the critical Rayleigh number, RC

T , are inversely proportional to the eigenvalues, the smallest value which generates
the loss of flow stability will be obtained starting from the spectral ray of the matrix.

λm = 1

RC
T

(19)

4. Application to convective flows

We first illustrate RB solution as a reference case followed by the application to mixed convection. In this case
there is no inlet flow, which means that Pe = 0, the [Kθ ] is reduced to the [K] matrix, and Eq. (12) is reduced to the
following eigenvalue problem:
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Fig. 2. Normalized Darcy–Rayleigh number in the onset of mixed convection according to the aspect ratio.

Fig. 2. Darcy–Rayleigh normalisé en fonction du rapport de forme.

[K]−1[B][K]−1[B] − 1

RT

Id = 0 (20)

Remember that: [E0] = [K]−1[B][K]−1[B].
The critical Rayleigh number RC

T is given according to the spectral ray of the global matrix [E0], and is only
depending on the cavity aspect ratio, and converges asymptotically to a constant R0 for high A value (see Fig. 2,
Pe = 0).

In the case of mixed convection, a through flow from one side of the duct is now made; in the other side, we
extract the same flow in order to maintain the equation of mass continuity. It means that Pe 
= 0 on vertical walls. We
remember that the operator describing the mixed convection is:[

E(Pe)
] = [K]−1[B][Kθ ]−1[B] (21)

The critical Rayleigh number RC
T = 1/λm is given according to the spectral ray of the global matrix [E(Pe)]. It

also depends on the aspect ratio of the cavity, Reynolds and Prandtl numbers. A series of curves for different flow
parameters is provided in Fig. 2, which illustrates the influence of the Peclet numbers, Pe = Re×Pr, on the normalized
critical Rayleigh number RT /R0.

It is now determined that the problem considered has the same form and conditions as that of Eq. (1). Then it
remains to verify condition (5) in order to transform the mixed convection on reference natural convection problem
coupled to a perturbation one. The 2D transverse rolls birth for vanishing Re numbers i.e. small Pe = Re × Pr, we
numerically verify that:∥∥Pe[B][K]−1

∥∥ < 1 (22)

So the problem (Eq. (20)) can be written as the sum of Rayleigh–Bénard and hydrodynamic perturbation matrices
(see Eq. (6)):[[

E0] + [
E

perturb
hydr

]] − 1

RT

Id = 0 (23)

There we can conclude (based on Eq. (7)) that the critical Rayleigh related to the spectral ray of the [E] matrix is:

RC
T (Pe) = R0

1 +R0
∑+∞

k=1(−Pe)k|(λk)m| (24)

Now we will illustrate the formula (24) by an application using a development of the Neumann serial for the case
n = 2. These eigenvalues are calculated with the same manner we have calculated R0. Fig. 3 is showing the range
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Fig. 3. Eigenvector corresponding to the most destabilizing mode.

Fig. 3. Vecteur propre correspondant au mode le plus déstabilisant.

Fig. 4. Calculated perturbation coefficient. The critical value of Darcy–Rayleigh number is given by R0 × perturbation coefficient given by
1/(1 +R0 ∑+∞

k=1(−Pe)k |(λk)m|).
Fig. 4. Représentation du coefficient de perturbation calculé à l’ordre 2. La valeur critique du Darcy–Rayleigh est donnée par
R0 × coefficient de perturbation, donné par 1/(1 +R0 ∑+∞

k=1(−Pe)k |(λk)m|).

of the calculated eigenvalues. These values are very small, and are decreasingly tending toward the null value, which
means, firstly that the Von Neumann term is quantifying the perturbation induced by the travelling flow, and secondly
that the effect of this perturbation vanish ad infinitum. The expression of critical Rayleigh is the ratio of the classical
natural convection R0 value by and the added perturbation. In Fig. 4 we evaluate this added quantity, and show that it
is close strictly lower than one for the different Reynolds values. Thus, we find that the travelling flow has stabilizing
effect on the global problem. For important values of A the critical RC

T tends to 4π2 corresponding to the classical
Rayleigh–Bénard problem in Darcy Porous media [2]. The behaviour of this tendency allows us to answer the question
underlined in previous works ([3] or [4]).

Finally, in Fig. 5 we show the very good agreement between the obtained critical Darcy–Rayleigh by the direct
resolution of the problem (Eq. (20) and by the two separate parts of the problem using (24).
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Fig. 5. Graphic comparison between calculated and numerical critical Darcy–Rayleigh numbers. Re = 2, Pr = 0.71.

Fig. 5. Comparaison graphique entre le Darcy–Rayleigh critique calculé et numérique. Re = 2, Pr = 0.71.

5. Conclusions

Theoretical development of the equation of the eigenvalues was undertaken in order to write the problem in the
form of a state of reference subjected to a disturbance. The established approach is illustrated based on the effect of a
through flow (due to the average flow induced from the side of the cell) on stability and bifurcations of a fluid under
Rayleigh–Bénard convection (confined natural convection) in a porous medium.

An explicit general formula of critical Rayleigh is given. We numerically check the validity of the formula found.
The basic governing equations were discretized using the finite element method, which led us to the determination

of the critical Rayleigh number by the reduction to the diagonal form of a global matrix containing all the parameters
of the system. The effect of the aspect ratio was taken into account. It is shown that, in natural convection, the loss
of stability has a close relationship with the tightening of the wavelength. In mixed convection, this effect is less and
less important that the number of Pe is large. The critical Rayleigh number tends to the asymptotical reference value,
4π2, with the aspect ratio increase. We pursue this study on the double diffusive problem where multiple solutions are
possible (see [5–11]).
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