Asymptotics of the solution of a Dirichlet spectral problem in a junction with highly oscillating boundary

Youcef Amirat ${ }^{\text {a }}$, Gregory A. Chechkin ${ }^{\text {b,c }}$, Rustem R. Gadyl'shin ${ }^{\text {d,* }}$
${ }^{\text {a }}$ Laboratoire de mathématiques, CNRS UMR 6620, Université Blaise-Pascal, 63177 Aubière cedex, France
${ }^{\text {b }}$ Department of Differential Equations, Faculty of Mechanics and Mathematics, Moscow Lomonosov State University, Moscow 119991, Russia
${ }^{\text {c }}$ Narvik University College, Postboks 385, 8505 Narvik, Norway
${ }^{\text {d }}$ Department of Mathematical Analysis, Faculty of Physics and Mathematics, Bashkir State Pedagogical University, Ufa 450000, Russia

Received 14 June 2008; accepted 19 June 2008

Presented by Évariste Sanchez-Palencia

Abstract

We study the asymptotic behavior of the eigenelements of the Dirichlet problem for the Laplacian in a bounded domain, a part of whose boundary, depending on a small parameter ε, is highly oscillating; the frequency of oscillations of the boundary is of order ε and the amplitude is fixed. We present second-order asymptotic approximations, as $\varepsilon \rightarrow 0$, of the eigenelements in the case of simple eigenvalues of the limit problem. To cite this article: Y. Amirat et al., C. R. Mecanique 336 (2008). © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Approximation asymptotique des éléments propres du problème de Dirichlet pour le Laplacien dans un domaine à frontière fortement oscillante. Nous étudions le comportement asymptotique des éléments propres du problème de Dirichlet pour le Laplacien dans un domaine borné dont une partie de la frontière, dépendant d'un petit paramètre ε, est fortement oscillante; la fréquence des oscillations est d'ordre ε et leur amplitude est fixe. Nous présentons des approximations asymptotiques d'ordre deux des éléments propres dans le cas de valeurs propres simples du problème limite. Pour citer cet article : Y. Amirat et al., C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Keywords: Asymptotic expansion; Spectral problem; Oscillating boundary
Mots-clés : Développement asymptotique ; Problème spectral ; Frontière oscillante

[^0]1631-0721/\$ - see front matter © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crme.2008.06.008

Fig. 1. Membrane with oscillating boundary.

1. Introduction and setting of the problem

Boundary-value problems involving rapidly oscillating boundaries or interfaces frequently arise when modeling problems of physics and engineering sciences, such as the scattering of acoustic and electromagnetic waves on small periodic obstacles, the free vibrations of strongly inhomogeneous elastic bodies, electric current through rough interfaces, fluids over rough walls, and coupled fluid-solid periodic structures. The mathematical analysis of these problems consists in studying the large scale behavior of the solution.

In this Note we consider a two dimensional Dirichlet spectral problem in a bounded domain, a part of whose boundary is highly oscillating. Our aim is to construct accurate asymptotic approximations of the eigenvalues and corresponding eigenfunctions. Let us mention that the case where the frequency and the amplitude of oscillations of the boundary are of the same order ε is considered in [1,2]. Other boundary conditions where considered in [3-5]. Other aspects of these problems were studied in [6-8].

Let Ω^{+}be a bounded domain in \mathbb{R}^{2}, located in the upper half space. We assume the boundary $\partial \Omega^{+}$to be piecewise smooth, consisting of the parts: $\partial \Omega^{+}=\Gamma_{0} \cup \Gamma_{1}$, where Γ_{0} is the segment ($-\frac{1}{2}, \frac{1}{2}$) on the abscissa axis, Γ_{1} coincides with lines $x_{1}=-\frac{1}{2}$ and $x_{1}=\frac{1}{2}$ at neighborhood of the abscissa axis. Let $\varepsilon=\frac{1}{2 \mathcal{N}+1}$ be a small parameter, where $\mathcal{N} \gg 1$. Assume that $0<a<\frac{1}{2}, h>0$ and define (see Fig. 1)

$$
\begin{aligned}
& \Omega_{j, \varepsilon}^{-}=\left\{x \in \mathbb{R}^{2}:-\varepsilon a<x_{1}-\varepsilon j<\varepsilon a,-h<x_{2} \leqslant 0\right\}, \quad \Omega_{\varepsilon}^{-}=\bigcup_{j=-\mathcal{N}}^{\mathcal{N}} \Omega_{j, \varepsilon}^{-} \\
& \Omega^{\varepsilon}=\Omega^{+} \cup \Omega_{\varepsilon}^{-}, \quad \Gamma^{\varepsilon}=\partial \Omega^{\varepsilon} \backslash \overline{\Gamma_{1}}
\end{aligned}
$$

We consider the spectral problem

$$
\begin{equation*}
-\Delta u_{\varepsilon}=\lambda_{\varepsilon} u_{\varepsilon} \quad \text { in } \Omega^{\varepsilon}, \quad u_{\varepsilon}=0 \quad \text { on } \partial \Omega^{\varepsilon} \tag{1}
\end{equation*}
$$

and study the asymptotic behavior, as $\varepsilon \rightarrow 0$, of the eigenvalue λ_{ε} and the corresponding eigenfunction u_{ε}.

2. Uniform bounds and convergence results

The following theorems deal with uniform estimates, convergence of solutions to nonhomogeneous boundary-value problems associated with (1), and convergence of eigenelements:

Theorem 2.1. Let $F_{\varepsilon} \in L_{2}\left(\Omega^{\varepsilon}\right)$, let Q be an arbitrary compact in the complex plane which does not contain eigenvalues of the boundary-value problem

$$
\begin{equation*}
-\Delta u_{0}^{+}=\lambda_{0} u_{0}^{+} \quad \text { in } \Omega^{+}, \quad u_{0}^{+}=0 \quad \text { on } \partial \Omega^{+} \tag{2}
\end{equation*}
$$

and let $\lambda \in Q$. Then:
(i) the boundary-value problem

$$
-\Delta U_{\varepsilon}=\lambda U_{\varepsilon}+F_{\varepsilon} \quad \text { in } \Omega^{\varepsilon}, \quad U_{\varepsilon}=0 \quad \text { on } \partial \Omega^{\varepsilon}
$$

has, for ε small enough, a unique solution satisfying the estimate

$$
\left\|U_{\varepsilon}\right\|_{H^{1}\left(\Omega^{\varepsilon}\right)} \leqslant C_{1}\left\|F_{\varepsilon}\right\|_{L_{2}\left(\Omega^{\varepsilon}\right)}
$$

uniformly with respect to ε and λ;
(ii) assume that there is $F_{0} \in L_{2}\left(\Omega^{+}\right)$such that, as $\varepsilon \rightarrow 0$,

$$
\left\|F_{\varepsilon}-F_{0}\right\|_{L_{2}\left(\Omega^{+}\right)}+\left\|F_{\varepsilon}\right\|_{L_{2}\left(\Omega^{\varepsilon} \backslash \overline{\left.\Omega^{+}\right)}\right.} \rightarrow 0
$$

and let U_{0} be the solution of the boundary-value problem

$$
-\Delta U_{0}=\lambda U_{0}+F_{0} \quad \text { in } \Omega^{+}, \quad U_{0}=0 \quad \text { on } \partial \Omega^{+}
$$

Then

$$
\left\|U_{\varepsilon}-U_{0}\right\|_{H^{1}\left(\Omega^{+}\right)}+\left\|U_{\varepsilon}\right\|_{H^{1}\left(\Omega^{\varepsilon} \backslash \overline{\Omega^{+}}\right)} \rightarrow 0
$$

uniformly with respect to λ.
Theorem 2.2. Assume that the multiplicity of the eigenvalue λ_{0} of problem (2) is equal to p. Then:
(i) there are peigenvalues of problem (1) (with multiplicities taken into account) converging to λ_{0}, as $\varepsilon \rightarrow 0$;
(ii) if $\lambda_{\varepsilon}^{1}, \ldots, \lambda_{\varepsilon}^{p}$ are the eigenvalues of problem (1), which converge to λ_{0} and $u_{\varepsilon}^{1}, \ldots, u_{\varepsilon}^{p}$ are the corresponding eigenfunctions, orthonormal in the space $L_{2}\left(\Omega^{\varepsilon}\right)$, then for any sequence $\varepsilon_{k} \xrightarrow[k \rightarrow \infty]{\longrightarrow} 0$ there exists a subsequence $\varepsilon_{k^{\prime}} \rightarrow 0$ such that

$$
\left\|u_{\varepsilon}^{j}-u_{0}^{+, j}\right\|_{H^{1}\left(\Omega^{+}\right)}+\left\|u_{\varepsilon}^{j}\right\|_{H^{1}\left(\Omega^{\varepsilon} \backslash \overline{\Omega^{+}}\right)} \rightarrow 0
$$

as $\varepsilon=\varepsilon_{k^{\prime}} \rightarrow 0$. Here, $u_{0}^{+, 1}, \ldots, u_{0}^{+, p}$ denote the eigenfunctions of problem (2), corresponding λ_{0} and orthonormal in $L_{2}\left(\Omega^{+}\right)$.

The proof of these results is analogous to the proof from [9].

3. Asymptotic approximation of the eigenelements

In this section we construct the asymptotics, as $\varepsilon \rightarrow 0$, of the eigenelements $\lambda_{\varepsilon}, u_{\varepsilon}$ to the problem (1) by means of the method of matching asymptotic expansions [10]. We consider the case where the limit λ_{0} of λ_{ε}, as $\varepsilon \rightarrow 0$, is a simple eigenvalue of problem (2) and we denote by u_{0} the corresponding eigenfunction, normalized in $L_{2}\left(\Omega^{+}\right)$.

We first construct an asymptotic approximation of the solution of (1) in Ω^{+}. For this, we define a real number λ_{1} and a function u_{1}^{+}in Ω^{+}satisfying the boundary-value problem

$$
\begin{equation*}
-\Delta u_{1}^{+}=\lambda_{0} u_{1}^{+}+\lambda_{1} u_{0}^{+} \quad \text { in } \Omega^{+}, \quad u_{1}^{+}=q(a) \frac{\partial u_{0}^{+}}{\partial x_{2}} \quad \text { on } \Gamma_{0}, \quad u_{1}^{+}=0 \quad \text { on } \Gamma_{1} \tag{3}
\end{equation*}
$$

where $q(a)$ is an arbitrary constant which will be specified below. By the solvability condition of problem (3), we have

$$
\begin{equation*}
\lambda_{1}=-q(a) \int_{-\frac{1}{2}}^{\frac{1}{2}}\left(\frac{\partial u_{0}^{+}}{\partial x_{2}}\right)^{2}\left(x_{1}\right) \mathrm{d} x_{1} \tag{4}
\end{equation*}
$$

Fig. 2. Cell of periodicity.
To determine uniquely the solution of (3), we assume in addition that $\int_{\Omega^{+}} u_{1}^{+}(x) u_{0}^{+}(x) \mathrm{d} x=0$. Denote

$$
\begin{equation*}
\tilde{\lambda}_{\varepsilon}=\lambda_{0}+\varepsilon \lambda_{1}, \quad \tilde{u}_{\varepsilon}^{+}=u_{0}^{+}+\varepsilon u_{1}^{+} \tag{5}
\end{equation*}
$$

It follows from (2) and (3) that $\tilde{u}_{\varepsilon}^{+}$belongs to $C^{\infty}\left(\overline{\Omega^{+}}\right)$and satisfies the boundary-value problem

$$
-\Delta \tilde{u}_{\varepsilon}^{+}=\tilde{\lambda}_{\varepsilon} \tilde{u}_{\varepsilon}^{+}+\tilde{f}_{\varepsilon}^{+} \quad \text { in } \Omega^{+}, \quad \tilde{u}_{\varepsilon}^{+}=0 \quad \text { on } \Gamma_{1}
$$

where $\tilde{f}_{\varepsilon}^{+}=-\varepsilon^{2} \lambda_{1} u_{1}^{+}$. Obviously, $\left\|\tilde{f}_{\varepsilon}^{+}\right\|_{L_{2}\left(\Omega^{+}\right)}=\mathrm{O}\left(\varepsilon^{2}\right)$ and $\left\|\tilde{u}_{\varepsilon}^{+}\right\|_{L_{2}\left(\Omega^{+}\right)}=1+\mathrm{o}(1)$. The pair $\left(\tilde{\lambda}_{\varepsilon}, \tilde{u}_{\varepsilon}^{+}\right)$given by (5) is defined to be an asymptotic approximation of the solution to problem (1) in Ω^{+}.

Let us now consider the domain Ω_{ε}^{-}. Introduce the notations (see Fig. 2):

$$
\begin{aligned}
& \Pi^{+}=\left(-\frac{1}{2}, \frac{1}{2}\right) \times(0,+\infty), \quad \Pi_{a}^{-}=(-a, a) \times(-\infty, 0), \quad \gamma(a)=(-a, a) \times\{0\} \\
& \Pi_{a}=\Pi^{+} \cup \Pi_{a}^{-} \cup \gamma(a), \quad \Gamma^{+}=\left(\left\{-\frac{1}{2}\right\} \times(0,+\infty)\right) \cup\left(\left\{\frac{1}{2}\right\} \times(0,+\infty)\right), \quad \Gamma_{a}^{-}=\partial \Pi_{a} \backslash \overline{\Gamma^{+}} \\
& \tilde{\Pi}_{a}=\overline{\Pi_{a}} \backslash(\{(-a, 0)\} \cup\{(a, 0)\}), \quad \Pi_{a}(R)=\left\{\xi \in \Pi_{a}: \xi_{2}<R\right\}, \quad \tilde{\Pi}_{a}(R)=\left\{\xi \in \tilde{\Pi}_{a}: \xi_{2}<R\right\}
\end{aligned}
$$

Consider the boundary-value problem

$$
\Delta_{\xi} X=0 \quad \text { in } \Pi_{a}, \quad X=0 \quad \text { on } \Gamma_{a}^{-}, \quad \frac{\partial X}{\partial \xi_{1}}=0 \quad \text { on } \Gamma^{+}
$$

One can show that problem (3) has a solution X belonging to $C^{\infty}\left(\tilde{\Pi}_{a}(R)\right) \cap H^{1}\left(\Pi_{a}(R)\right)$ for any $R>0$, even with respect to ξ_{1} and having the differentiable asymptotics

$$
\partial_{\xi}^{\beta} X(\xi)=\mathrm{O}\left(\mathrm{e}^{\frac{\pi}{a} \xi_{2}}\right), \quad \text { as } \xi_{2} \rightarrow-\infty, \quad \partial_{\xi}^{\beta}\left(X(\xi)-\xi_{2}-q(a)\right)=\mathrm{O}\left(\mathrm{e}^{-2 \pi \xi_{2}}\right), \quad \text { as } \xi_{2} \rightarrow \infty
$$

where now the constant $q(a)$ is

$$
\begin{equation*}
q(a)=\frac{a}{\pi}(4 \ln 2-[(1-2 a) \ln (1-2 a)+(1+2 a) \ln (1+2 a)]) \tag{6}
\end{equation*}
$$

Then, consider the boundary-value problems:

$$
\begin{align*}
& \Delta_{\xi} \tilde{X}=\frac{\partial X}{\partial \xi_{1}} \quad \text { in } \Pi_{a}, \quad \tilde{X}=0 \quad \text { on } \partial \Pi_{a} \tag{7}\\
& \Delta_{\xi} X_{1}=\frac{\partial \tilde{X}}{\partial \xi_{1}} \quad \text { in } \Pi_{a}, \quad X_{1}=0 \quad \text { on } \Gamma_{a}^{-}, \quad \frac{\partial X_{1}}{\partial \xi_{1}}=0 \quad \text { on } \Gamma^{+} \tag{8}
\end{align*}
$$

$$
\begin{equation*}
\Delta_{\xi} X_{2}=X \quad \text { in } \Pi_{a}, \quad X_{2}=0 \quad \text { on } \Gamma_{a}^{-}, \quad \frac{\partial X_{2}}{\partial \xi_{1}}=0 \quad \text { on } \Gamma^{+} \tag{9}
\end{equation*}
$$

Arguing as in [1], we can prove that there exists a constant $0<c<\frac{\pi}{a}$ such that each of problems (7)-(9) has a solution in $C^{\infty}\left(\tilde{\Pi}_{a}(R)\right) \cap H^{1}\left(\Pi_{a}(R)\right)$ for any $R>0$, with the differentiable asymptotics

$$
\begin{aligned}
& \partial_{\xi}^{\beta} \tilde{X}(\xi)=\mathrm{O}\left(\mathrm{e}^{\mp c \xi_{2}}\right) \quad \text { as } \xi_{2} \rightarrow \pm \infty, \quad \partial_{\xi}^{\beta} X_{j}(\xi)=\mathrm{O}\left(\mathrm{e}^{c \xi_{2}}\right), \quad \text { as } \xi_{2} \rightarrow-\infty \\
& \partial_{\xi}^{\beta}\left(X_{1}(\xi)-q_{1}(a)\right)+\partial_{\xi}^{\beta}\left(X_{2}(\xi)-\frac{1}{6} \xi_{2}^{3}-\frac{1}{2} q(a) \xi_{2}-q_{2}(a)\right)=\mathrm{O}\left(\mathrm{e}^{-c \xi_{2}}\right), \quad \text { as } \xi_{2} \rightarrow \infty
\end{aligned}
$$

where $q_{j}(a)$ denote some constants. Due to the evenness of the function X, \tilde{X} is odd in ξ_{1}, X_{j} is even in ξ_{1} and thus \tilde{X} and X_{j} have 1-periodic extensions in ξ_{1} for which we keep the same notations \tilde{X}, X_{j}.

Consider now the function defined by

$$
\begin{equation*}
\tilde{v}_{\varepsilon}\left(\xi ; x_{1}\right)=\varepsilon v_{1}\left(\xi ; x_{1}\right)+\varepsilon^{2} v_{2}\left(\xi ; x_{1}\right)+\varepsilon^{3} v_{3}\left(\xi ; x_{1}\right) \tag{10}
\end{equation*}
$$

where

$$
\begin{aligned}
& v_{1}\left(\xi ; x_{1}\right)=\alpha_{0}\left(x_{1}\right) X(\xi), \quad v_{2}\left(\xi ; x_{1}\right)=\alpha_{1}\left(x_{1}\right) X(\xi)-2 \alpha_{0}^{\prime}\left(x_{1}\right) \tilde{X}(\xi) \\
& v_{3}\left(\xi ; x_{1}\right)=\alpha_{2}\left(x_{1}\right) X_{2}(\xi)+4 \alpha_{0}^{\prime \prime}\left(x_{1}\right) X_{1}(\xi)-2 \alpha_{1}^{\prime}\left(x_{1}\right) \tilde{X}(\xi)
\end{aligned}
$$

and $\alpha_{0}\left(x_{1}\right)=\frac{\partial u_{0}^{+}}{\partial x_{2}}\left(x_{1}, 0\right), \alpha_{1}\left(x_{1}\right)=\frac{\partial u_{1}^{+}}{\partial x_{2}}\left(x_{1}, 0\right), \alpha_{2}\left(x_{1}\right)=-\left(\alpha_{0}^{\prime \prime}\left(x_{1}\right)+\lambda_{0} \alpha_{0}\left(x_{1}\right)\right)$. Denote

$$
\tilde{\Omega}_{\varepsilon}=\overline{\Omega_{\varepsilon}} \backslash\left(\bigcup_{j=-\mathcal{N}}^{\mathcal{N}}(\{-\varepsilon a+\varepsilon j\} \times\{0\}) \bigcup_{j=-\mathcal{N}}^{\mathcal{N}}(\{\varepsilon a+\varepsilon j\} \times\{0\})\right)
$$

We easily verify that the function $\tilde{v}_{\varepsilon}\left(\frac{x}{\varepsilon} ; x_{1}\right)$ belongs to $C^{\infty}\left(\tilde{\Omega}^{\varepsilon}\right) \cap H^{1}\left(\Omega^{\varepsilon}\right)$ and satisfies $\tilde{v}_{\varepsilon}\left(\frac{x}{\varepsilon} ; x_{1}\right)=0$, as $x_{1}= \pm \frac{1}{2}$. Moreover, for fixed $r>0$ and sufficiently small such that Γ_{1} coincides with the straight lines $x_{1}= \pm \frac{1}{2}$ as $0<x_{2}<r$, the function $\tilde{v}_{\varepsilon}\left(\frac{x}{\varepsilon} ; x_{1}\right)$ satisfies the boundary-value-problem

$$
\begin{equation*}
-\Delta \tilde{v}_{\varepsilon}=\tilde{\lambda}_{\varepsilon} \tilde{v}_{\varepsilon}+\tilde{f}_{\varepsilon}^{-} \quad \text { in } \Omega^{\varepsilon}, \quad \tilde{v}_{\varepsilon}=0 \quad \text { on } \partial \Omega^{\varepsilon} \cap((-\infty, \infty) \times(-h, r)) \tag{11}
\end{equation*}
$$

where

$$
\tilde{f}_{\varepsilon}^{-}(x)=-\left.\varepsilon^{2}\left(\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\tilde{\lambda}_{\varepsilon}\right)\left(v_{2}\left(\xi ; x_{1}\right)+\varepsilon v_{3}\left(\xi ; x_{1}\right)\right)+2 \frac{\partial^{2}}{\partial x_{1} \partial \xi_{1}} v_{3}\left(\xi ; x_{1}\right)\right)\right|_{\xi=\frac{x}{\varepsilon}}
$$

Moreover, we show that $\left\|\tilde{f}_{\varepsilon}^{-}\right\|_{L_{2}\left(\Omega_{\varepsilon}^{-}\right)}=\mathrm{O}\left(\varepsilon^{\frac{5}{2}}\right)$. The pair $\left(\tilde{\lambda}_{\varepsilon}, \tilde{v}_{\varepsilon}\left(\frac{x}{\varepsilon} ; x_{1}\right)\right.$) given by (5) and (10) is then defined to be an asymptotic approximation of the solution of problem (1) in Ω_{ε}^{-}.

Let us introduce the functions defined, for $\xi_{2}>0$, by

$$
X^{+}(\xi)=X(\xi)-\xi_{2}-q(a), \quad X_{1}^{+}(\xi)=X_{1}(\xi)-q_{1}(a), \quad X_{2}^{+}=X_{2}(\xi)-\frac{1}{6} \xi_{2}^{3}-\frac{1}{2} q(a) \xi_{2}-q_{2}(a)
$$

and

$$
\tilde{v}_{\varepsilon}^{+}\left(\xi ; x_{1}\right)=\varepsilon v_{1}^{+}\left(\xi ; x_{1}\right)+\varepsilon^{2} v_{2}^{+}\left(\xi ; x_{1}\right)+\varepsilon^{3} v_{3}^{+}\left(\xi ; x_{1}\right)
$$

where

$$
\begin{aligned}
& v_{1}^{+}\left(\xi ; x_{1}\right)=\alpha_{0}\left(x_{1}\right) X^{+}(\xi), \quad v_{2}^{+}\left(\xi ; x_{1}\right)=\alpha_{1}\left(x_{1}\right) X^{+}(\xi)-2 \alpha_{0}^{\prime}\left(x_{1}\right) \tilde{X}(\xi) \\
& v_{3}^{+}\left(\xi ; x_{1}\right)=\alpha_{2}\left(x_{1}\right) X_{2}^{+}(\xi)+4 \alpha_{0}^{\prime \prime}\left(x_{1}\right) X_{1}^{+}(\xi)-2 \alpha_{1}^{\prime}\left(x_{1}\right) \tilde{X}(\xi)
\end{aligned}
$$

Denote

$$
\tilde{u}_{\varepsilon, 0}(x)=\left\{\begin{array}{l}
u_{0}^{+}(x)+\varepsilon u_{1}^{+}+\varepsilon v_{1}^{+}\left(\frac{x}{\varepsilon} ; x_{1}\right) \text { in } \Omega^{+} \tag{12}\\
\varepsilon v_{1}\left(\frac{x}{\varepsilon} ; x_{1}\right) \text { in } \Omega_{\varepsilon}^{-}
\end{array}\right.
$$

and

$$
\tilde{u}_{\varepsilon, 1}(x)=\left\{\begin{array}{l}
u_{0}^{+}(x)+\varepsilon u_{1}^{+}+\varepsilon v_{1}^{+}\left(\frac{x}{\varepsilon} ; x_{1}\right)+\varepsilon^{2} v_{2}^{+}\left(\frac{x}{\varepsilon} ; x_{1}\right) \text { in } \Omega^{+} \tag{13}\\
\varepsilon v_{1}\left(\frac{x}{\varepsilon} ; x_{1}\right)+\varepsilon^{2} v_{2}\left(\frac{x}{\varepsilon} ; x_{1}\right) \text { in } \Omega_{\varepsilon}^{-}
\end{array}\right.
$$

We observe that $\tilde{u}_{\varepsilon, 0} \in H^{1}\left(\Omega^{\varepsilon}\right)$ and $\tilde{u}_{\varepsilon, 1} \notin H^{1}\left(\Omega^{\varepsilon}\right)$ since it has a jump as $x_{2}=0$. We also verify that $\left\|\tilde{u}_{\varepsilon, j}\right\|_{L_{2}\left(\Omega^{\varepsilon}\right)} \rightarrow$ 1 , as $\varepsilon \rightarrow 1$. Set

$$
\begin{equation*}
u_{\varepsilon, j}=\frac{\tilde{u}_{\varepsilon, j}}{\left\|\tilde{u}_{\varepsilon, j}\right\|_{L_{2}\left(\Omega^{\varepsilon}\right)}}, \quad j=0,1 \tag{14}
\end{equation*}
$$

Finally we have the following result:
Theorem 3.1. Let u_{ε} be an eigenfunction, normalized in $L_{2}\left(\Omega^{\varepsilon}\right)$ and corresponding to the eigenvalue λ_{ε}, let $u_{\varepsilon, j}$ ($j=0,1$) be the normalized functions defined by (12)-(14), and let λ_{1} and $q(a)$ be defined by (4) and (6), respectively. We have

$$
\lambda_{\varepsilon}=\lambda_{0}+\varepsilon \lambda_{1}+\mathrm{O}\left(\varepsilon^{2}\right)
$$

and

$$
\left\|u_{\varepsilon}-u_{\varepsilon, 0}\right\|_{L_{2}\left(\Omega^{\varepsilon}\right)}+\left\|u_{\varepsilon}-u_{\varepsilon, 1}\right\|_{H^{1}\left(\Omega^{+}\right)}+\left\|u_{\varepsilon}-u_{\varepsilon, 1}\right\|_{H^{1}\left(\Omega_{\varepsilon}^{-}\right)}=\mathrm{O}\left(\varepsilon^{2}\right) .
$$

Acknowledgements

The work of the second author was supported in part by the Leading Scientific Schools program (project HIII1698.2008.1). The work of the third author was partially supported by the Leading Scientific Schools program (project HIII-2215.2008.1). The work of the second and the third authors was also supported in part by RFBR grant No 06-01-000138.

References

[1] Y. Amirat, G.A. Chechkin, R.R. Gadyl'shin, Asymptotics for eigenelements of Laplacian in domain with oscillating boundary: Multiple eigenvalues, Appl. Anal. 86 (7) (2007) 873-897.
[2] S.A. Nazarov, Binomial asymptotic behavior of solutions of spectral problems with singular perturbations, Mat. Sb. 181 (3) (1990) $291-320$. Translation in Math. USSR-Sb. 69 (2) (1991) 307-340.
[3] T.A. Mel'nyk, On free vibrations of a thick periodic junction with concentrated masses on the fine rods, Nonlinear Oscillations 2 (1999) 511-523.
[4] A. Gaudiello, Asymptotic behavior of non-homogeneous Neumann problems in domains with oscillating boundary, Ricerche Mat. 43 (1994) 239-292.
[5] T.A. Mel'nik, S.A. Nazarov, Asymptotic behavior of the solution of the Neumann spectral problem in a domain of "Tooth Comb" Type, J. Math. Sci. (New York) 85 (6) (1997) 2326-2346.
[6] I. Babuška, R. Vyborny, Continuous dependence of eigenvalues on the domains, Czech. Math. J. 15 (1965) 169-178.
[7] W. Jäger, A. Mikelić, On the roughness-induced effective boundary conditions for an incompressible viscous flow, J. Differential Equations 170 (2001) 96-122.
[8] M. Lobo-Hidalgo, E. Sánchez-Palencia, Sur certaines propriétés spectrales des perturbations du domaine dans les problèmes aux limites, Comm. Partial Differential Equations 4 (1979) 1085-1098.
[9] Y. Amirat, G.A. Chechkin, R.R. Gadyl'shin, Asymptotics of simple eigenvalues and eigenfunctions for the Laplace operator in a domain with oscillating boundary, Zh. Vychisl. Mat. i Mat. Fiz. 46 (1) (2006) 102-115. Translation in Comput. Math. Math. Phys. 46 (1) (2006) $97-110$.
[10] A.M. Il'in, Matching of Asymptotic Expansions of Solutions of Boundary-Value Problems, Amer. Math. Soc., Providence, RI, 1992.

[^0]: * Corresponding author.

 E-mail addresses: Youcef.Amirat@math.univ-bpclermont.fr (Y. Amirat), chechkin@ mech.math.msu.su (G.A. Chechkin), gadylshin@yandex.ru (R.R. Gadyl'shin).

