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Abstract

We study the asymptotic behavior of the eigenelements of the Dirichlet problem for the Laplacian in a bounded domain, a part of
whose boundary, depending on a small parameter ε, is highly oscillating; the frequency of oscillations of the boundary is of order
ε and the amplitude is fixed. We present second-order asymptotic approximations, as ε → 0, of the eigenelements in the case of
simple eigenvalues of the limit problem. To cite this article: Y. Amirat et al., C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Approximation asymptotique des éléments propres du problème de Dirichlet pour le Laplacien dans un domaine à fron-
tière fortement oscillante. Nous étudions le comportement asymptotique des éléments propres du problème de Dirichlet pour le
Laplacien dans un domaine borné dont une partie de la frontière, dépendant d’un petit paramètre ε, est fortement oscillante ; la
fréquence des oscillations est d’ordre ε et leur amplitude est fixe. Nous présentons des approximations asymptotiques d’ordre deux
des éléments propres dans le cas de valeurs propres simples du problème limite. Pour citer cet article : Y. Amirat et al., C. R.
Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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Fig. 1. Membrane with oscillating boundary.

1. Introduction and setting of the problem

Boundary-value problems involving rapidly oscillating boundaries or interfaces frequently arise when modeling
problems of physics and engineering sciences, such as the scattering of acoustic and electromagnetic waves on small
periodic obstacles, the free vibrations of strongly inhomogeneous elastic bodies, electric current through rough in-
terfaces, fluids over rough walls, and coupled fluid–solid periodic structures. The mathematical analysis of these
problems consists in studying the large scale behavior of the solution.

In this Note we consider a two dimensional Dirichlet spectral problem in a bounded domain, a part of whose
boundary is highly oscillating. Our aim is to construct accurate asymptotic approximations of the eigenvalues and
corresponding eigenfunctions. Let us mention that the case where the frequency and the amplitude of oscillations of
the boundary are of the same order ε is considered in [1,2]. Other boundary conditions where considered in [3–5].
Other aspects of these problems were studied in [6–8].

Let Ω+ be a bounded domain in R
2, located in the upper half space. We assume the boundary ∂Ω+ to be piecewise

smooth, consisting of the parts: ∂Ω+ = Γ0 ∪ Γ1, where Γ0 is the segment (− 1
2 , 1

2 ) on the abscissa axis, Γ1 coincides
with lines x1 = − 1

2 and x1 = 1
2 at neighborhood of the abscissa axis. Let ε = 1

2N+1 be a small parameter, where

N � 1. Assume that 0 < a < 1
2 , h > 0 and define (see Fig. 1)

Ω−
j,ε = {

x ∈ R
2: −εa < x1 − εj < εa,−h < x2 � 0

}
, Ω−

ε =
N⋃

j=−N
Ω−

j,ε

Ωε = Ω+ ∪ Ω−
ε , Γ ε = ∂Ωε\Γ1

We consider the spectral problem

−�uε = λεuε in Ωε, uε = 0 on ∂Ωε (1)

and study the asymptotic behavior, as ε → 0, of the eigenvalue λε and the corresponding eigenfunction uε .

2. Uniform bounds and convergence results

The following theorems deal with uniform estimates, convergence of solutions to nonhomogeneous boundary-value
problems associated with (1), and convergence of eigenelements:
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Theorem 2.1. Let Fε ∈ L2(Ω
ε), let Q be an arbitrary compact in the complex plane which does not contain eigen-

values of the boundary-value problem

−�u+
0 = λ0u

+
0 in Ω+, u+

0 = 0 on ∂Ω+ (2)

and let λ ∈ Q. Then:

(i) the boundary-value problem

−�Uε = λUε + Fε in Ωε, Uε = 0 on ∂Ωε

has, for ε small enough, a unique solution satisfying the estimate

‖Uε‖H 1(Ωε) � C1‖Fε‖L2(Ω
ε)

uniformly with respect to ε and λ;
(ii) assume that there is F0 ∈ L2(Ω

+) such that, as ε → 0,

‖Fε − F0‖L2(Ω
+) + ‖Fε‖L2(Ω

ε\Ω+)
→ 0

and let U0 be the solution of the boundary–value problem

−�U0 = λU0 + F0 in Ω+, U0 = 0 on ∂Ω+

Then

‖Uε − U0‖H 1(Ω+) + ‖Uε‖H 1(Ωε\Ω+)
→ 0

uniformly with respect to λ.

Theorem 2.2. Assume that the multiplicity of the eigenvalue λ0 of problem (2) is equal to p. Then:

(i) there are p eigenvalues of problem (1) (with multiplicities taken into account) converging to λ0, as ε → 0;
(ii) if λ1

ε, . . . , λ
p
ε are the eigenvalues of problem (1), which converge to λ0 and u1

ε, . . . , u
p
ε are the corresponding

eigenfunctions, orthonormal in the space L2(Ω
ε), then for any sequence εk −→

k→∞ 0 there exists a subsequence

εk′ → 0 such that∥∥uj
ε − u

+,j

0

∥∥
H 1(Ω+)

+ ‖uj
ε

∥∥
H 1(Ωε\Ω+)

→ 0

as ε = εk′ → 0. Here, u
+,1
0 , . . . , u

+,p

0 denote the eigenfunctions of problem (2), corresponding λ0 and orthonor-
mal in L2(Ω

+).

The proof of these results is analogous to the proof from [9].

3. Asymptotic approximation of the eigenelements

In this section we construct the asymptotics, as ε → 0, of the eigenelements λε , uε to the problem (1) by means
of the method of matching asymptotic expansions [10]. We consider the case where the limit λ0 of λε , as ε → 0, is a
simple eigenvalue of problem (2) and we denote by u0 the corresponding eigenfunction, normalized in L2(Ω

+).
We first construct an asymptotic approximation of the solution of (1) in Ω+. For this, we define a real number λ1

and a function u+
1 in Ω+ satisfying the boundary-value problem

−�u+
1 = λ0u

+
1 + λ1u

+
0 in Ω+, u+

1 = q(a)
∂u+

0

∂x2
on Γ0, u+

1 = 0 on Γ1 (3)

where q(a) is an arbitrary constant which will be specified below. By the solvability condition of problem (3), we
have

λ1 = −q(a)

1
2∫

− 1

(
∂u+

0

∂x2

)2

(x1)dx1 (4)
2
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Fig. 2. Cell of periodicity.

To determine uniquely the solution of (3), we assume in addition that
∫
Ω+ u+

1 (x)u+
0 (x)dx = 0. Denote

λ̃ε = λ0 + ελ1, ũ+
ε = u+

0 + εu+
1 (5)

It follows from (2) and (3) that ũ+
ε belongs to C∞(Ω+) and satisfies the boundary-value problem

−�ũ+
ε = λ̃εũ

+
ε + f̃ +

ε in Ω+, ũ+
ε = 0 on Γ1

where f̃ +
ε = −ε2λ1u

+
1 . Obviously, ‖f̃ +

ε ‖L2(Ω
+) = O(ε2) and ‖ũ+

ε ‖L2(Ω
+) = 1 + o(1). The pair (λ̃ε, ũ

+
ε ) given by (5)

is defined to be an asymptotic approximation of the solution to problem (1) in Ω+.
Let us now consider the domain Ω−

ε . Introduce the notations (see Fig. 2):

Π+ =
(

−1

2
,

1

2

)
× (0,+∞), Π−

a = (−a, a) × (−∞,0), γ (a) = (−a, a) × {0}

Πa = Π+ ∪ Π−
a ∪ γ (a), Γ + =

({
−1

2

}
× (0,+∞)

)
∪

({
1

2

}
× (0,+∞)

)
, Γ −

a = ∂Πa\Γ +

Π̃a = Πa\
({

(−a,0)
} ∪ {

(a,0)
})

, Πa(R) = {ξ ∈ Πa : ξ2 < R}, Π̃a(R) = {ξ ∈ Π̃a : ξ2 < R}
Consider the boundary-value problem

�ξX = 0 in Πa, X = 0 on Γ −
a ,

∂X

∂ξ1
= 0 on Γ +

One can show that problem (3) has a solution X belonging to C∞(Π̃a(R)) ∩ H 1(Πa(R)) for any R > 0, even with
respect to ξ1 and having the differentiable asymptotics

∂
β
ξ X(ξ) = O

(
e

π
a
ξ2

)
, as ξ2 → −∞, ∂

β
ξ

(
X(ξ) − ξ2 − q(a)

) = O
(
e−2πξ2

)
, as ξ2 → ∞

where now the constant q(a) is

q(a) = a

π

(
4 ln 2 − [

(1 − 2a) ln(1 − 2a) + (1 + 2a) ln(1 + 2a)
])

(6)

Then, consider the boundary-value problems:

�ξX̃ = ∂X

∂ξ1
in Πa, X̃ = 0 on ∂Πa (7)

�ξX1 = ∂X̃
in Πa, X1 = 0 on Γ −

a ,
∂X1 = 0 on Γ + (8)
∂ξ1 ∂ξ1
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�ξX2 = X in Πa, X2 = 0 on Γ −
a ,

∂X2

∂ξ1
= 0 on Γ + (9)

Arguing as in [1], we can prove that there exists a constant 0 < c < π
a

such that each of problems (7)–(9) has a solution
in C∞(Π̃a(R)) ∩ H 1(Πa(R)) for any R > 0, with the differentiable asymptotics

∂
β
ξ X̃(ξ) = O

(
e∓cξ2

)
as ξ2 → ±∞, ∂

β
ξ Xj (ξ) = O

(
ecξ2

)
, as ξ2 → −∞

∂
β
ξ

(
X1(ξ) − q1(a)

) + ∂
β
ξ

(
X2(ξ) − 1

6
ξ3

2 − 1

2
q(a)ξ2 − q2(a)

)
= O

(
e−cξ2

)
, as ξ2 → ∞

where qj (a) denote some constants. Due to the evenness of the function X, X̃ is odd in ξ1, Xj is even in ξ1 and thus
X̃ and Xj have 1-periodic extensions in ξ1 for which we keep the same notations X̃, Xj .

Consider now the function defined by

ṽε(ξ ;x1) = εv1(ξ ;x1) + ε2v2(ξ ;x1) + ε3v3(ξ ;x1) (10)

where

v1(ξ ;x1) = α0(x1)X(ξ), v2(ξ ;x1) = α1(x1)X(ξ) − 2α′
0(x1)X̃(ξ)

v3(ξ ;x1) = α2(x1)X2(ξ) + 4α′′
0 (x1)X1(ξ) − 2α′

1(x1)X̃(ξ)

and α0(x1) = ∂u+
0

∂x2
(x1,0), α1(x1) = ∂u+

1
∂x2

(x1,0), α2(x1) = −(α′′
0 (x1) + λ0α0(x1)). Denote

Ω̃ε = Ωε

∖( N⋃
j=−N

({−εa + εj} × {0}) N⋃
j=−N

({εa + εj} × {0})
)

We easily verify that the function ṽε(
x
ε
;x1) belongs to C∞(Ω̃ε) ∩ H 1(Ωε) and satisfies ṽε(

x
ε
;x1) = 0, as x1 = ± 1

2 .
Moreover, for fixed r > 0 and sufficiently small such that Γ1 coincides with the straight lines x1 = ± 1

2 as 0 < x2 < r ,
the function ṽε(

x
ε
;x1) satisfies the boundary-value-problem

−�ṽε = λ̃εṽε + f̃ −
ε in Ωε, ṽε = 0 on ∂Ωε ∩ (

(−∞,∞) × (−h, r)
)

(11)

where

f̃ −
ε (x) = −ε2

((
∂2

∂x2
1

+ λ̃ε

)(
v2(ξ ;x1) + εv3(ξ ;x1)

) + 2
∂2

∂x1∂ξ1
v3(ξ ;x1)

)∣∣∣∣
ξ= x

ε

Moreover, we show that ‖f̃ −
ε ‖L2(Ω

−
ε ) = O(ε

5
2 ). The pair (λ̃ε, ṽε(

x
ε
;x1)) given by (5) and (10) is then defined to be an

asymptotic approximation of the solution of problem (1) in Ω−
ε .

Let us introduce the functions defined, for ξ2 > 0, by

X+(ξ) = X(ξ) − ξ2 − q(a), X+
1 (ξ) = X1(ξ) − q1(a), X+

2 = X2(ξ) − 1

6
ξ3

2 − 1

2
q(a)ξ2 − q2(a)

and

ṽ+
ε (ξ ;x1) = εv+

1 (ξ ;x1) + ε2v+
2 (ξ ;x1) + ε3v+

3 (ξ ;x1)

where

v+
1 (ξ ;x1) = α0(x1)X

+(ξ), v+
2 (ξ ;x1) = α1(x1)X

+(ξ) − 2α′
0(x1)X̃(ξ)

v+
3 (ξ ;x1) = α2(x1)X

+
2 (ξ) + 4α′′

0 (x1)X
+
1 (ξ) − 2α′

1(x1)X̃(ξ)

Denote

ũε,0(x) =

⎧⎪⎪⎨
⎪⎪⎩

u+
0 (x) + εu+

1 + εv+
1

(
x

ε
;x1

)
in Ω+

εv1

(
x ;x1

)
in Ω−

ε

(12)
ε
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and

ũε,1(x) =

⎧⎪⎪⎨
⎪⎪⎩

u+
0 (x) + εu+

1 + εv+
1

(
x

ε
;x1

)
+ ε2v+

2

(
x

ε
;x1

)
in Ω+

εv1

(
x

ε
;x1

)
+ ε2v2

(
x

ε
;x1

)
in Ω−

ε

(13)

We observe that ũε,0 ∈ H 1(Ωε) and ũε,1 /∈ H 1(Ωε) since it has a jump as x2 = 0. We also verify that ‖ũε,j‖L2(Ω
ε) →

1, as ε → 1. Set

uε,j = ũε,j

‖ũε,j‖L2(Ω
ε)

, j = 0,1 (14)

Finally we have the following result:

Theorem 3.1. Let uε be an eigenfunction, normalized in L2(Ω
ε) and corresponding to the eigenvalue λε , let uε,j

(j = 0,1) be the normalized functions defined by (12)–(14), and let λ1 and q(a) be defined by (4) and (6), respectively.
We have

λε = λ0 + ελ1 + O(ε2)

and

‖uε − uε,0‖L2(Ω
ε) + ‖uε − uε,1‖H 1(Ω+) + ‖uε − uε,1‖H 1(Ω−

ε ) = O(ε2).
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